1
|
Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJG, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics 2015; 16:741. [PMID: 26438312 PMCID: PMC4594904 DOI: 10.1186/s12864-015-1904-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Liliana M Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK. .,Present address: Department of Plant Pathology, North Carolina State University Raleigh, Raleigh, NC, 27695, USA.
| | | | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl von Linne´ Weg 10, Cologne, 50829, Germany.
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Christine Sambles
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - D Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371, Olomouc, Czech Republic.
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Otmar Spring
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Reinhard Zipper
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - David J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Integrative Fungal Research (IPF), Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L. The sunflower downy mildew pathogen Plasmopara halstedii. MOLECULAR PLANT PATHOLOGY 2015; 16:109-22. [PMID: 25476405 PMCID: PMC6638465 DOI: 10.1111/mpp.12164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers. Downy mildew attacks can have a great economic impact on sunflower crops, and several Pl resistance genes are present in cultivars to protect them against the disease. Nevertheless, some of these resistances have been overcome by the occurrence of novel isolates of the pathogen showing increased virulence. A better characterization of P. halstedii infection and dissemination mechanisms, and the identification of the molecular basis of the interaction with sunflower, is a prerequisite to efficiently fight this pathogen. This review summarizes what is currently known about P. halstedii, provides new insights into its infection cycle on resistant and susceptible sunflower lines using scanning electron and light microscopy imaging, and sheds light on the pathogenicity factors of P. halstedii obtained from recent molecular data. TAXONOMY Kingdom Stramenopila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Plasmopara; Species Plasmopara halstedii. DISEASE SYMPTOMS Sunflower seedling damping off, dwarfing of the plant, bleaching of leaves, starting from veins, and visible white sporulation, initially on the lower side of cotyledons and leaves. Plasmopara halstedii infection may severely impact sunflower seed yield. INFECTION PROCESS In spring, germination of overwintered sexual oospores leads to sunflower root infection. Intercellular hyphae are responsible for systemic plant colonization and the induction of disease symptoms. Under humid and fresh conditions, dissemination structures are produced by the pathogen on all plant organs to release asexual zoosporangia. These zoosporangia play an important role in pathogen dissemination, as they release motile zoospores that are responsible for leaf infections on neighbouring plants. DISEASE CONTROL Disease control is obtained by both chemical seed treatment (mefenoxam) and the deployment of dominant major resistance genes, denoted Pl. However, the pathogen has developed fungicide resistance and has overcome some plant resistance genes. Research for more sustainable strategies based on the identification of the molecular basis of the interaction are in progress. USEFUL WEBSITES http://www.heliagene.org/HP, http://lipm-helianthus.toulouse.inra.fr/dokuwiki/doku.php?id=start, https://www.heliagene.org/PlasmoparaSpecies (soon available).
Collapse
Affiliation(s)
- Quentin Gascuel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
3
|
As-sadi F, Carrere S, Gascuel Q, Hourlier T, Rengel D, Le Paslier MC, Bordat A, Boniface MC, Brunel D, Gouzy J, Godiard L, Vincourt P. Transcriptomic analysis of the interaction between Helianthus annuus and its obligate parasite Plasmopara halstedii shows single nucleotide polymorphisms in CRN sequences. BMC Genomics 2011; 12:498. [PMID: 21988821 PMCID: PMC3204308 DOI: 10.1186/1471-2164-12-498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background Downy mildew in sunflowers (Helianthus annuus L.) is caused by the oomycete Plasmopara halstedii (Farl.) Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST) during the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in putative effectors to show polymorphisms between the different races of P. halstedii. Results A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively) generated 113,720 and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races (100, 304, 703 and 710), 22 SNPs were detected, providing new information on pathogen polymorphisms. Conclusions This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN effector sequences were used to determine the genetic distances between the four races of P. halstedii. This work therefore provides valuable tools for further discoveries regarding the H. annuus/P. halstedii pathosystem.
Collapse
Affiliation(s)
- Falah As-sadi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CMM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RHY, Johnson J, Krajaejun T, Lin H, Meijer HJG, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 2010; 11:R73. [PMID: 20626842 PMCID: PMC2926784 DOI: 10.1186/gb-2010-11-7-r73] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/02/2010] [Accepted: 07/13/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. RESULTS The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. CONCLUSIONS Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Collapse
Affiliation(s)
- C André Lévesque
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Henk Brouwer
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Carson Holt
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | | | | | - Gregg P Robideau
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Marco Thines
- Biodiversity and Climate Research Centre, Georg-Voigt-Str 14-16, D-60325, Frankfurt, Germany
- Department of Biological Sciences, Insitute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University, Siesmayerstr. 70, D-60323 Frankfurt, Germany
| | - Joe Win
- The Sainsbury Laboratory, Norwich, NR4 7UH, UK
| | - Marcelo M Zerillo
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Gordon W Beakes
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jeffrey L Boore
- Genome Project Solutions, 1024 Promenade Street, Hercules, CA 94547, USA
| | - Dana Busam
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Bernard Dumas
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Steve Ferriera
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | | | | | - Elodie Gaulin
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Laura Grenville-Briggs
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Horner
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jessica Hostetler
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Rays HY Jiang
- The Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Justin Johnson
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Haining Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Harold JG Meijer
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
| | - Barry Moore
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Paul Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntmart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Daniela Puiu
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jyoti Shetty
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Stephan Wawra
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Pieter van West
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Brett R Whitty
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Frank Martin
- USDA-ARS, 1636 East Alisal St, Salinias, CA, 93905, USA
| | - Paul D Thomas
- Evolutionary Systems Biology, SRI International, Room AE207, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Ronald P De Vries
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Ned Tisserat
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|