1
|
Isah AS, Ramachandran R, Sukumaran AT, Kiess AS, Castañeda CD, Boltz T, Macklin KS, Abdelhamed H, Zhang L. Construction and characterization of bioluminescent Salmonella Reading outbreak and non-outbreak strains. Microbiol Spectr 2024:e0126324. [PMID: 39727399 DOI: 10.1128/spectrum.01263-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serotype Reading has recently been identified as a significant foodborne pathogen from contaminated poultry products. There is a critical need for close monitoring of this newly emerged pathogen. This study developed bioluminescent strains of S. Reading for real-time pathogen tracking using bioluminescence imaging. Two strains of S. Reading were used: an outbreak strain and a non-outbreak strain. The chloramphenicol acetyltransferase gene was cloned into the plasmid pBS-slpGFPluxABCDE, which carries luxABCDE operon and an ampicillin resistance gene. The newly constructed plasmid was then transformed into the outbreak and non-outbreak strains of S. Reading by electroporation. The resulting colonies were confirmed by visualizing bioluminescence using an in vivo imaging system and by testing their resistance to chloramphenicol. These strains demonstrated a high bioluminescence level (108-109 Photons/s/cm2/sr) and were tested for growth and plasmid stability by daily subculturing in Luria-Bertani medium with and without antibiotics. The plasmid remained stable for 8 days under non-selective conditions, and growth rates were comparable to non-bioluminescent parent strains in antibiotic-free conditions. However, growth was notably different in the presence of chloramphenicol, indicating successful plasmid retention and function. This study successfully created stable bioluminescent S. Reading strains, marking a significant step forward in monitoring and potentially reducing the spread of this emergent foodborne pathogen in the poultry industry. IMPORTANCE Salmonella enterica serotype Reading has recently become a significant foodborne pathogen linked to poultry products. To enhance pathogen monitoring, this study developed bioluminescent strains of S. Reading by inserting the chloramphenicol acetyltransferase gene into a plasmid containing a bioluminescence gene cluster. These modified strains were transformed into outbreak and non-outbreak bacterial strains via electroporation. The bioluminescent strains demonstrated stable plasmid retention and high bioluminescence levels. They also showed growth comparable to their parent strains, even in the absence of antibiotics. These bioluminescent strains could potentially facilitate real-time monitoring and control of S. Reading in poultry industries.
Collapse
Affiliation(s)
- Abubakar Shitu Isah
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| | | | | | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
2
|
Ozdemir E, Abdelhamed H, Ozdemir O, Lawrence M, Karsi A. Development of Bioluminescent Virulent Aeromonas hydrophila for Understanding Pathogenicity. Pathogens 2023; 12:pathogens12050670. [PMID: 37242340 DOI: 10.3390/pathogens12050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, it is critical to study the pathogenicity of vAh in catfish. To this goal, a new bioluminescence expression plasmid (pAKgfplux3) with the chloramphenicol acetyltransferase (cat) gene was constructed and mobilized into vAh strain ML09-119, yielding bioluminescent vAh (BvAh). After determining optimal chloramphenicol concentration, plasmid stability, bacteria number-bioluminescence relationship, and growth kinetics, the catfish were challenged with BvAh, and bioluminescent imaging (BLI) was conducted. Results showed that 5 to 10 µg/mL chloramphenicol was suitable for stable bioluminescence expression in vAh, with some growth reduction. In the absence of chloramphenicol, vAh could not maintain pAKgfplux3 stably, with the half-life being 16 h. Intraperitoneal injection, immersion, and modified immersion (adipose fin clipping) challenges of catfish with BvAh and BLI showed that MAS progressed faster in the injection group, followed by the modified immersion and immersion groups. BvAh was detected around the anterior mouth, barbels, fin bases, fin epithelia, injured skin areas, and gills after experimental challenges. BLI revealed that skin breaks and gills are potential attachment and entry portals for vAh. Once vAh breaches the skin or epithelial surfaces, it can cause a systemic infection rapidly, spreading to all internal organs. To our best knowledge, this is the first study that reports the development of a bioluminescent vAh and provides visual evidence for catfish-vAh interactions. Findings are expected to provide a better understanding of vAh pathogenicity in catfish.
Collapse
Affiliation(s)
- Eda Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Gregor C. Generation of bright autobioluminescent bacteria by chromosomal integration of the improved lux operon ilux2. Sci Rep 2022; 12:19039. [PMID: 36351939 PMCID: PMC9646698 DOI: 10.1038/s41598-022-22068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial bioluminescence system enables the generation of light by living cells without the requirement of an external luciferin. Due to the relatively low light emission, many applications of bioluminescence imaging would benefit from an increase in brightness of this system. In this report, a new approach of mutagenesis and screening of the involved proteins is described that is based on the identification of mutants with improved properties under rate-limiting reaction conditions. Multiple rounds of screening in Escherichia coli resulted in the operon ilux2 that contains 26 new mutations in the fatty acid reductase complex which provides the aldehyde substrate for the bioluminescence reaction. Chromosomal integration of ilux2 yielded an autonomously bioluminescent E. coli strain with sixfold increased brightness compared to the previously described ilux operon. The ilux2 strain produces sufficient signal for the robust detection of individual cells and enables highly sensitive long-term imaging of bacterial propagation without a selection marker.
Collapse
Affiliation(s)
- Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V., Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
5
|
Salmonella enterica subsp. enterica Serovar Heidelberg Food Isolates Associated with a Salmonellosis Outbreak Have Enhanced Stress Tolerance Capabilities. Appl Environ Microbiol 2019; 85:AEM.01065-19. [PMID: 31175193 DOI: 10.1128/aem.01065-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Heidelberg is currently the 12th most common serovar of Salmonella enterica causing salmonellosis in the United States and results in twice the average incidence of blood infections caused by nontyphoidal salmonellae. Multiple outbreaks of salmonellosis caused by Salmonella Heidelberg resulted from the same poultry processor, which infected 634 people during 2013 and 2014. The hospitalization and invasive illness rates were 38% and 15%, respectively. We hypothesized that the outbreak strains of Salmonella Heidelberg had enhanced stress tolerance and virulence capabilities. We sourced nine food isolates collected during the outbreak investigation and three reference isolates to assess their tolerance to heat and sanitizers, ability to attach to abiotic surfaces, and invasiveness in vitro We performed RNA sequencing on three isolates (two outbreak-associated isolates and a reference Salmonella Heidelberg strain) with various levels of heat tolerance to gain insight into the mechanism behind the isolates' enhanced heat tolerance. We also performed genomic analyses to determine the genetic relationships among the outbreak isolates. Ultimately, we determined that (i) six Salmonella Heidelberg isolates associated with the foodborne outbreak had enhanced heat tolerance, (ii) one outbreak isolate with enhanced heat tolerance also had an enhanced biofilm-forming ability under stressful conditions, (iii) exposure to heat stress increased the expression of Salmonella Heidelberg multidrug efflux and virulence genes, and (iv) outbreak-associated isolates were likely transcriptionally primed to better survive processing stresses and, potentially, to cause illness.IMPORTANCE This study provides a deep analysis of the intrinsic stress tolerance and virulence capabilities of Salmonella Heidelberg that may have contributed to the length and severity of a recent salmonellosis outbreak. Additionally, this study provides a comprehensive analysis of the transcriptomic response of S. enterica strains to heat stress conditions and compares baseline stationary-phase gene expression among outbreak- and non-outbreak-associated Salmonella Heidelberg isolates. These data can be used in assay development to screen isolates for stress tolerance and subsequent survival. This study adds to our understanding of the strains associated with the outbreak and informs ongoing regulatory discussions on Salmonella in poultry.
Collapse
|
6
|
Oscar TP. Development and validation of a neural network model for predicting growth of
Salmonella
Newport on diced Roma tomatoes during simulated salad preparation and serving: extrapolation to other serotypes. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas P. Oscar
- United States Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit Center for Food Science and Technology University of Maryland Eastern Shore Room 2111 Princess Anne MD 21853 USA
| |
Collapse
|
7
|
Akgul A, Al-Janabi N, Das B, Lawrence M, Karsi A. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle. PLoS One 2017; 12:e0189809. [PMID: 29253892 PMCID: PMC5734760 DOI: 10.1371/journal.pone.0189809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Nawar Al-Janabi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Bhaskar Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mark Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
8
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
9
|
Evans NP, Collins DA, Pierson FW, Mahsoub HM, Sriranganathan N, Persia ME, Karnezos TP, Sims MD, Dalloul RA. Investigation of Medium Chain Fatty Acid Feed Supplementation for Reducing Salmonella Typhimurium Colonization in Turkey Poults. Foodborne Pathog Dis 2017; 14:531-536. [PMID: 28696788 PMCID: PMC5646746 DOI: 10.1089/fpd.2016.2273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies indicate that persistent Salmonella colonization occurs in poultry that are infected early in life, leading to both food safety and public health concerns. Development of improved preharvest Salmonella management strategies is needed to reduce poultry product contamination. The objective of this study was to evaluate the efficacy of a product containing medium chain fatty acids (MCFA) for reducing early Salmonella colonization in turkey poults. Day-of-hatch turkeys were provided a standard starter diet supplemented with MCFA at 0 (negative and positive controls), 1.5, 3, 4.5, or 6 lbs/ton of feed. Positive control and MCFA treated birds were also crop-gavaged with 108 colony forming units (CFU) of bioluminescent Salmonella Typhimurium. Gastrointestinal tissue samples were collected at 3 days postinoculation for bioluminescence imaging (Meckel's diverticulum to the cloaca) and selective enumeration (cecal contents). Quantification of bioluminescence indicated that the 4.5 and 6 lbs/ton MCFA groups had significantly less colonization than the positive control group (p = 0.0412 and p < 0.0001, respectively). Similarly, significantly lower numbers (1-log10 CFU/g reduction) of Salmonella were observed in the ceca of the 6 lbs/ton MCFA group compared to the positive control group (p = 0.0153). These findings indicate that incorporation of MCFA in turkey diets can significantly reduce early Salmonella colonization. In addition, this study highlights the utility of bioluminescence imaging as a screening methodology for assessing the efficacy of treatments that may reduce Salmonella in poultry.
Collapse
Affiliation(s)
- Nicholas P. Evans
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - David A. Collins
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Frank William Pierson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Hassan M. Mahsoub
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
- Department of Poultry Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Mike E. Persia
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia
| | | | - Michael D. Sims
- Virginia Diversified Research Corporation, Harrisonburg, Virginia
| | - Rami A. Dalloul
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
10
|
Salehi S, Howe K, Brooks J, Lawrence ML, Bailey RH, Karsi A. Identification of Salmonella enterica serovar Kentucky genes involved in attachment to chicken skin. BMC Microbiol 2016; 16:168. [PMID: 27473153 PMCID: PMC4966735 DOI: 10.1186/s12866-016-0781-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Regardless of sanitation practices implemented to reduce Salmonella prevalence in poultry processing plants, the problem continues to be an issue. To gain an understanding of the attachment mechanism of Salmonella to broiler skin, a bioluminescent-based mutant screening assay was used. A random mutant library of a field-isolated bioluminescent strain of Salmonella enterica serovar Kentucky was constructed. Mutants' attachment to chicken skin was assessed in 96-well plates containing uniform 6 mm diameter pieces of circular chicken skin. After washing steps, mutants with reduced attachment were selected based on reduced bioluminescence, and transposon insertion sites were identified. RESULTS Attachment attenuation was detected in transposon mutants with insertion in genes encoding flagella biosynthesis, lipopolysaccharide core biosynthesis protein, tryptophan biosynthesis, amino acid catabolism pathway, shikimate pathway, tricarboxylic acid (TCA) cycle, conjugative transfer system, multidrug resistant protein, and ATP-binding cassette (ABC) transporter system. In particular, mutations in S. Kentucky flagellar biosynthesis genes (flgA, flgC, flgK, flhB, and flgJ) led to the poorest attachment of the bacterium to skin. CONCLUSIONS The current study indicates that attachment of Salmonella to broiler skin is a multifactorial process, in which flagella play an important role.
Collapse
Affiliation(s)
- Sanaz Salehi
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John Brooks
- USDA-ARS, Genetics and Precision Agriculture Unit, Mississippi State, Mississippi, USA
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - R. Hartford Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
11
|
Ammari MG, Harris AN, Stokes JV, Bailey RH, Pinchuk LM. NEGATIVE REGULATORY EFFECTS OF PHOSPHATIDYLINOSITOL3-KINASE PATHWAY ON PHAGOCYTOSIS AND MACROPINOCYTOSIS IN BOVINE MONOCYTES. JOURNAL OF VETERINARY MEDICINE AND RESEARCH 2014; 1:1008. [PMID: 25893219 PMCID: PMC4399709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent studies have shown that monocytes and macrophages not only present antigens to effector T cells and stimulate and shape T cell-mediated immune responses, but they also prime naïve T cells, thus initiating adaptive immune responses. Phosphatidylinositol 3-kinase functions at an early phase of toll-like receptor signaling pathways, modulates the magnitude of the primary immune responses, and is involved in the reorganization of the actin cytoskeleton during macropinocytic and phagocytic antigen uptakes, important early steps in triggering adaptive immune responses. We assessed by flow cytometry the endocytic capacities of bovine monocytes by using endocytic tracers and Salmonella transformed with a green fluorescence plasmid GFP to evaluate macropinocytosis, mannose receptor-mediated endocytosis, and phagocytosis in bovine professional antigen presenting cells, respectively. Our data reveal that wortmannin, an inhibitor of phosphatidylinositol 3-kinase signaling pathway, significantly increased macropinocytosis and phagocytosis but did not affect the mannose receptor-mediated antigen uptake in bovine monocytes. Protein expression data support these findings by showing decreased levels of phosphoinositide 3-kinase in the presence of wortmannin during macropinocytosis. We expanded further the key role of phosphatidylinositol 3-kinase as an endogenous suppressor of primary immune responses, suggesting a novel mechanism of phosphatidylinositol 3-kinase antigen uptake modulation that may provide a unique therapeutic target for controlling excessive inflammation.
Collapse
Affiliation(s)
- Mais G. Ammari
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Autumn N. Harris
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA
- Department of Small Animal Internal Medicine, University of Florida, Gainesville, FL 32611, USA
| | - John V. Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA
| | - Richard H. Bailey
- Department of Pathobiology and Population Medicine, Mississippi State, MS 39762, USA
| | - Lesya M. Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA
| |
Collapse
|
12
|
Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Luo Z, Simmons CW, VanderGheynst JS, Nitin N. Quantitative real time measurements of bacteria–bacteriophages interactions in fresh lettuce leaves. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack J, Hortelano ER, Ehrlich GD, Russell AJ. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater 2012; 8:1869-80. [PMID: 22342353 DOI: 10.1016/j.actbio.2012.01.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 01/20/2023]
Abstract
Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.
Collapse
|
15
|
Howe K, Karsi A, Germon P, Wills RW, Lawrence ML, Bailey RH. Development of stable reporter system cloning luxCDABE genes into chromosome of Salmonella enterica serotypes using Tn7 transposon. BMC Microbiol 2010; 10:197. [PMID: 20653968 PMCID: PMC2918591 DOI: 10.1186/1471-2180-10-197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonellosis may be a food safety problem when raw food products are mishandled and not fully cooked. In previous work, we developed bioluminescent Salmonella enterica serotypes using a plasmid-based reporting system that can be used for real-time monitoring of the pathogen's growth on food products in short term studies. In this study, we report the use of a Tn7-based transposon system for subcloning of luxCDABE genes into the chromosome of eleven Salmonella enterica serotypes isolated from the broiler production continuum. RESULTS We found that the lux operon is constitutively expressed from the chromosome post-transposition and the lux cassette is stable without external pressure, i.e. antibiotic selection, for all Salmonella enterica serotypes used. Bioluminescence expression is based on an active electron transport chain and is directly related with metabolic activity. This relationship was quantified by measuring bioluminescence against a temperature gradient in aqueous solution using a luminometer. In addition, bioluminescent monitoring of two serotypes confirmed that our chicken skin model has the potential to be used to evaluate pathogen mitigation strategies. CONCLUSIONS This study demonstrated that our new stable reporting system eliminates bioluminescence variation due to plasmid instability and provides a reliable real-time experimental system to study application of preventive measures for Salmonella on food products in real-time for both short and long term studies.
Collapse
Affiliation(s)
- Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pierre Germon
- INRA, UR 1282 Infectiologie Animale et Santé Publique, Laboratoire de Pathogénie Bactérienne, Nouzilly, France
| | - Robert W Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Richard H Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
16
|
Neutralizing monoclonal antibody to edema toxin and its effect on murine anthrax. Infect Immun 2010; 78:2890-8. [PMID: 20385755 DOI: 10.1128/iai.01101-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edema factor (EF) is a component of an anthrax toxin that functions as an adenylate cyclase. Numerous monoclonal antibodies (MAbs) have been reported for the other Bacillus anthracis toxin components, but relatively few to EF have been studied. We report the generation of six murine hybridoma lines producing two IgM and four IgG1 MAbs to EF. Of the six MAbs, only one IgM neutralized EF, as assayed by an increase in cyclic AMP (cAMP) production by Chinese hamster ovary (CHO) cells. Analysis of the variable gene elements revealed that the single neutralizing MAb had a different binding site than the others. There was no competition between the neutralizing IgM and the nonneutralizing IgG MAbs indicative of different specificity. MAb-based capture enzyme-linked immunosorbent assay (ELISA) detected EF in liver lysates from mice infected with B. anthracis Sterne 34F2. Administration of the neutralizing IgM MAb to A/JCr mice lethally infected with B. anthracis strain Sterne had no significant effect on median time to death, but mice treated with the MAb were more likely to survive infection. Combining the neutralizing IgM to EF with a subprotective dose of a neutralizing MAb to protective antigen (PA) prolonged mean time to death of infected mice, suggesting that neutralization of EF and PA could produce synergistic beneficial effects. In summary, the results from our study and literature observations suggest that the majority of Abs to EF are nonneutralizing, but the toxin has some epitopes that can be targeted by the humoral response to generate useful Abs that may contribute to defense against anthrax.
Collapse
|
17
|
Moulton K, Ryan P, Lay D, Willard S. Photonic plasmid stability of transformed Salmonella typhimurium: a comparison of three unique plasmids. BMC Microbiol 2009; 9:152. [PMID: 19635131 PMCID: PMC2720975 DOI: 10.1186/1471-2180-9-152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 07/27/2009] [Indexed: 11/21/2022] Open
Abstract
Background Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S. typh-lux) using three different plasmids and characterize their respective photonic properties. Results In presence of ampicillin (AMP), S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 plasmids exhibited 100% photon-emitting colonies over a 10-d study period. Photon emitters of S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 without AMP selection decreased over time (P < 0.05), representing only 11 ± 1%, 35 ± 1% and 43 ± 1%, respectively, of original photon emitting properties of the bacterial population by d 10. Photonic emissions were positively correlated with bacterial concentration (P < 0.05) for pAK1-lux, pCGLS-1 and pXEN-1 (r = 0.96, 0.98 and 0.82, respectively). When stratified by high, medium and low density bacteria concentrations, photonic emissions for high density populations containing pAK1-lux, pCGLS-1 and pXEN-1 resulted in differences of photonic emissions across a range of bacterial concentrations (1 × 107 to 1 × 109 CFU, P < 0.05) with positive correlations (P < 0.05) of (r = 0.72, 0.46 and 0.72, respectively). The correlation of photonic emissions with bacterial concentrations for samples with medium and low density bacteria (pAK1-lux, pCGLS-1, and pXEN-1 plasmids) imaged in tubes were also positively correlated (medium; r = 0.69, 0.49, 0.46, low; r = 0.90, 0.71, 0.68, respectively; P > 0.05); although photonic emissions across a range of bacterial concentrations were not different (1 × 104 to 1 × 106 CFU, P > 0.05). For very low density bacterial concentrations imaged in 96 well plates photonic emissions were positively correlated with bacterial concentration (P < 0.05) for pAK1-lux, pCGLS-1, and pXEN-1 plasmids (r = 0.99, 0.99, and 0.96, respectively), and photonic emissions across a range of bacterial concentrations (1 × 103 to 1 × 105 CFU) low to high were different in the 96-well plate format (P < 0.05). Conclusion These data characterize photon stability properties for S. typh-lux transformed with three different photon generating plasmids that may facilitate real-time Salmonella tracking using in vivo or in situ biophotonic paradigms.
Collapse
Affiliation(s)
- Keesla Moulton
- Department of Animal and Dairy Science, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
18
|
Cox NA, Richardson LJ, Berrang ME, Fedorka-Cray RJ, Buhr RJ. Campylobacter coli naturally resistant to elevated levels of gentamicin as a marker strain in poultry research. J Food Prot 2009; 72:1288-92. [PMID: 19610342 DOI: 10.4315/0362-028x-72.6.1288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Campylobacter inoculation studies are limited without a suitable marker strain. The lurpose of this study was to screen Campylobacter strains (n=2073) obtained from poultry carcass rinses through the Centers for Disease Control and Prevention's National Antimicrobial Resistant Monitoring System for resistance to gentamicin and evaluate one strain's efficacy as a marker. A C. coli strain was found resistant to gentamicin at >32 microg/ml. Gentamicin was incorporated into media (Campy-Cefex agar, Brucella agar, and blood agar) from 0 to 1000 microg/ml, and the upper level of gentamicin resistance was determined. C. coli strain's upper level of growth on Campy-Cefex plates, blood agar plates, and Brucella agar plates was 400, 300, and 200 pg/ml, respectively. Ceca and postpick carcass rinses were obtained and streaked onto Campy-Cefex agar at the above gentamicin levels to evaluate background microflora exclusion. Campy-Cefex agar containing gentamicin at 100 ag/ml prevented from the ceca, and reduced from the rinse, background microflora. The C. coli strain was orally or intracloacally inoculated into chicks. At 1, 3, and 6 weeks of age, inoculated broilers were removed and several tissue types sampled for the presence of the marker strain. At 6 weeks of age, 10 additional noninoculated penmates were sampled. The C. coli strain colonized chicks, disseminated to body tissues, colonized penmates, and persisted throughout the 6-week grow-out. The C. coli strain's unique characteristic, being resistant to high levels of gentamicin, allows for a marker that can be used in a wide range of Campylobacter research projects.
Collapse
Affiliation(s)
- N A Cox
- U.S. Department of Agriculture, Agricultural Research Service, Poultry Microbiology Safety Research Unit, Russell Research Center, 950 College Station Road, Athens, Georgia 30605, USA.
| | | | | | | | | |
Collapse
|