1
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
2
|
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase ( msrA) Expression for Oxidative Stress Adaptation. Appl Environ Microbiol 2022; 88:e0003822. [PMID: 35575549 PMCID: PMC9195949 DOI: 10.1128/aem.00038-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.
Collapse
|
3
|
Ji C, Zhang N, Jiang H, Meng X, Ge H, Yang X, Xu X, Qian K, Park Y, Zheng Y, Wang J. 20-hydroxyecdysone regulates expression of methioninesulfoxide reductases through transcription factor FOXO in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103546. [PMID: 33548484 DOI: 10.1016/j.ibmb.2021.103546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The oxidation of methionine (Met) by reactive oxygen species (ROS) causes detrimental effects on the protein functions. Methionine sulfoxide reductase (Msr) is the secondary antioxidant enzyme involved in protein repair, and is divided into two distinct classes, MsrA and MsrB, although the mechanisms underlying the transcriptional regulation of Msrs remain largely unknown. In this study, the full-length cDNAs encoding MsrA and three alternatively spliced isoforms of MsrB were isolated from the red flour beetle, Tribolium castaneum. Exposure of female adults to oxidative, heat and cold stresses induced expressions of both MsrA and MsrB. RNAi-mediated knockdown of MsrA and MsrB resulted in increased sensitivity of T. castaneum to paraquat-induced oxidative stress. Treatment with 20-hydroxyecdysone (20E) increased expression levels of both MsrA and MsrB. Knockdown of transcription factor forkhead box O (FOXO) decreased both MsrA and MsrB mRNA levels and abolished the induction of MsrA and MsrB by paraquat. Luciferase reporter assays revealed that FOXO directly activates the promoters of both MsrA and MsrB. Moreover, paraquat treatment induced expression of two ecdysone biosynthesis genes, Shade and Phantom, 20E upregulated exoression of FOXO, promoted FOXO nuclear translocation,and knockdown of FOXO abolished induction of MsrA and MsrB expression by 20E, suggesting that regulation of MsrA and MsrB by 20E was mediated by FOXO. Overall, these results provide important insights into the transcriptional regulation of insect Msrs.
Collapse
Affiliation(s)
- Caihong Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; School of Horticulture and Landscape, Yangzhou Polytechnic College, Yangzhou, 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture AndAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Takamatsu D, Okumura K, Tabata A, Okamoto M, Okura M. Transcriptional regulator SpxA1a controls the resistance of the honey bee pathogen Melissococcus plutonius to the antimicrobial activity of royal jelly. Environ Microbiol 2020; 22:2736-2755. [PMID: 32519428 DOI: 10.1111/1462-2920.15125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 12/01/2022]
Abstract
Royal jelly (RJ), a brood food of honey bees, has strong antimicrobial activity. Melissococcus plutonius, the causative agent of European foulbrood of honey bees, exhibits resistance to this antimicrobial activity and infects larvae orally. Among three genetically distinct groups (CC3, CC12 and CC13) of M. plutonius, CC3 strains exhibit the strongest RJ resistance. In this study, to identify genes involved in RJ resistance, we generated an RJ-susceptible derivative from a highly RJ-resistant CC3 strain by UV mutagenesis. Genome sequence analysis of the derivative revealed the presence of a frameshift mutation in the putative regulator gene spxA1a. The deletion of spxA1a from a CC3 strain resulted in increased susceptibility to RJ and its antimicrobial component 10-hydroxy-2-decenoic acid. Moreover, the mutant became susceptible to low-pH and oxidative stress, which may be encountered in brood foods. Differentially expressed gene analysis using wild-type and spxA1a mutants revealed that 45 protein-coding genes were commonly upregulated in spxA1a-positive strains. Many upregulated genes were located in a prophage region, and some highly upregulated genes were annotated as universal/general stress proteins, oxidoreductase/reductase, chaperons and superoxide dismutase. These results suggest that SpxA1a is a key regulator to control the tolerance status of M. plutonius against stress in honey bee colonies.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kayo Okumura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Atsushi Tabata
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Mariko Okamoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
5
|
Zhai Z, Yang Y, Wang H, Wang G, Ren F, Li Z, Hao Y. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. Food Microbiol 2020; 87:103389. [DOI: 10.1016/j.fm.2019.103389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/27/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
|
6
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Singh VK, Singh K, Baum K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants (Basel) 2018; 7:antiox7100128. [PMID: 30274148 PMCID: PMC6210949 DOI: 10.3390/antiox7100128] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductases (MSRA1 and MSRB) are proteins overproduced in Staphylococcus aureus during exposure with cell wall-active antibiotics. Later studies identified the presence of two additional MSRA proteins (MSRA2 and MSRA3) in S. aureus. These MSR proteins have been characterized in many other bacteria as well. This review provides the current knowledge about the conditions and regulatory network that mimic the expression of these MSR encoding genes and their role in defense from oxidative stress and virulence.
Collapse
Affiliation(s)
- Vineet K Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| | | | - Kyle Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| |
Collapse
|
8
|
Peana M, Medici S, Pangburn HA, Lamkin TJ, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. J Inorg Biochem 2016; 164:49-58. [DOI: 10.1016/j.jinorgbio.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
9
|
Evidence that Oxidative Stress Induces spxA2 Transcription in Bacillus anthracis Sterne through a Mechanism Requiring SpxA1 and Positive Autoregulation. J Bacteriol 2016; 198:2902-2913. [PMID: 27501985 PMCID: PMC5055595 DOI: 10.1128/jb.00512-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis possesses two paralogs of the transcriptional regulator, Spx. SpxA1 and SpxA2 interact with RNA polymerase (RNAP) to activate the transcription of genes implicated in the prevention and alleviation of oxidative protein damage. The spxA2 gene is highly upregulated in infected macrophages, but how this is achieved is unknown. Previous studies have shown that the spxA2 gene was under negative control by the Rrf2 family repressor protein, SaiR, whose activity is sensitive to oxidative stress. These studies also suggested that spxA2 was under positive autoregulation. In the present study, we show by in vivo and in vitro analyses that spxA2 is under direct autoregulation but is also dependent on the SpxA1 paralogous protein. The deletion of either spxA1 or spxA2 reduced the diamide-inducible expression of an spxA2-lacZ construct. In vitro transcription reactions using purified B. anthracis RNAP showed that SpxA1 and SpxA2 protein stimulates transcription from a DNA fragment containing the spxA2 promoter. Ectopically positioned spxA2-lacZ fusion requires both SpxA1 and SpxA2 for expression, but the requirement for SpxA1 is partially overcome when saiR is deleted. Electrophoretic mobility shift assays showed that SpxA1 and SpxA2 enhance the affinity of RNAP for spxA2 promoter DNA and that this activity is sensitive to reductant. We hypothesize that the previously observed upregulation of spxA2 in the oxidative environment of the macrophage is at least partly due to SpxA1-mediated SaiR repressor inactivation and the positive autoregulation of spxA2 transcription. IMPORTANCE Regulators of transcription initiation are known to govern the expression of genes required for virulence in pathogenic bacterial species. Members of the Spx family of transcription factors function in control of genes required for virulence and viability in low-GC Gram-positive bacteria. In Bacillus anthracis, the spxA2 gene is highly induced in infected macrophages, which suggests an important role in the control of virulence gene expression during the anthrax disease state. We provide evidence that elevated concentrations of oxidized, active SpxA2 result from an autoregulatory positive-feedback loop driving spxA2 transcription.
Collapse
|
10
|
Springer MT, Singh VK, Cheung AL, Donegan NP, Chamberlain NR. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. J Med Microbiol 2016; 65:848-857. [PMID: 27375177 DOI: 10.1099/jmm.0.000304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is responsible for a wide variety of infections that include superficial skin and soft tissue infections, septicaemia, central nervous system infections, endocarditis, osteomyelitis and pneumonia. Others have demonstrated the importance of toxin-antitoxin (TA) modules in the formation of persisters and the role of the Clp proteolytic system in the regulation of these TA modules. This study was conducted to determine the effect of clpP and clpC deletion on S. aureus persister cell numbers following antibiotic treatment. Deletion of clpP resulted in a significant decrease in persister cells following treatment with oxacillin and erythromycin but not with levofloxacin and daptomycin. Deletion of clpC resulted in a decrease in persister cells following treatment with oxacillin. These differences were dependent on the antibiotic class and the CFU ml-1 in which the cells were treated. Persister revival assays for all the bacterial strains in these studies demonstrated a significant delay in resumption of growth characteristic of persister cells, indicating that the surviving organisms in this study were not likely due to spontaneous antibiotic resistance. Based on our results, ClpP and possibly ClpC play a role in persister cell formation or maintenance, and this effect is dependent on antibiotic class and the CFU ml-1 or the growth phase of the cells.
Collapse
Affiliation(s)
- Matthew T Springer
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Vineet K Singh
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Neal R Chamberlain
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| |
Collapse
|
11
|
Regulation of Expression of Oxacillin-Inducible Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2015; 2015:617925. [PMID: 26483841 PMCID: PMC4592908 DOI: 10.1155/2015/617925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Cell wall-active antibiotics cause induction of a locus that leads to elevated synthesis of two methionine sulfoxide reductases (MsrA1 and MsrB) in Staphylococcus aureus. To understand the regulation of this locus, reporter strains were constructed by integrating a DNA fragment consisting of the msrA1/msrB promoter in front of a promoterless lacZ gene in the chromosome of wild-type and MsrA1-, MsrB-, MsrA1/MsrB-, and SigB-deficient methicillin-sensitive S. aureus strain SH1000 and methicillin-resistant S. aureus strain COL. These reporter strains were cultured in TSB and the cellular levels of β-galactosidase activity in these cultures were assayed during different growth phases. β-galactosidase activity assays demonstrated that the lack of MsrA1, MsrB, and SigB upregulated the msrA1/msrB promoter in S. aureus strain SH1000. In S. aureus strain COL, the highest level of β-galactosidase activity was observed under the conditions when both MsrA1 and MsrB proteins were absent. The data suggest that the msrA1/msrB locus, in part, is negatively regulated by MsrA1, MsrB, and SigB in S. aureus.
Collapse
|
12
|
Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans. J Bacteriol 2015; 197:2160-2170. [PMID: 25897032 DOI: 10.1128/jb.00118-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The SpxA1 and SpxA2 (formerly SpxA and SpxB) transcriptional regulators of Streptococcus mutans are members of a highly conserved family of proteins found in Firmicutes, and they were previously shown to activate oxidative stress responses. In this study, we showed that SpxA1 exerts substantial positive regulatory influence over oxidative stress genes following exposure to H2O2, while SpxA2 appears to have a secondary regulatory role. In vitro transcription (IVT) assays using purified SpxA1 and/or SpxA2 showed that SpxA1 and, less often, SpxA2 directly activate transcription of some of the major oxidative stress genes. Addition of equimolar concentrations of SpxA1 and SpxA2 to the IVT reactions neither enhanced transcription of the tested genes nor disrupted the dominant role of SpxA1. Substitution of a conserved glycine residue (G52) present in both Spx proteins by arginine (SpxG52R) resulted in strains that phenocopied the Δspx strains. Moreover, addition of purified SpxA1G52R completely failed to activate transcription of ahpC, sodA, and tpx, further confirming that the G52 residue is critical for Spx functionality. IMPORTANCE Streptococcus mutans is a pathogen associated with the formation of dental caries in humans. Within the oral cavity, S. mutans routinely encounters oxidative stress. Our previous data revealed that two regulatory proteins, SpxA1 and SpxA2 (formerly SpxA and SpxB), bear high homology to the Spx regulator that has been characterized as a critical activator of oxidative stress genes in Bacillus subtilis. In this report, we prove that Spx proteins of S. mutans directly activate transcription of genes involved in the oxidative stress response, though SpxA1 appears to have a more dominant role than SpxA2. Therefore, the Spx regulators play a critical role in the ability of S. mutans to thrive within the oral cavity.
Collapse
|
13
|
Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon C. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet 2015; 11:e1004957. [PMID: 25643072 PMCID: PMC4409812 DOI: 10.1371/journal.pgen.1004957] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
RsaE is the only known trans-acting small regulatory RNA (sRNA) besides the ubiquitous 6S RNA that is conserved between the human pathogen Staphylococcus aureus and the soil-dwelling Firmicute Bacillus subtilis. Although a number of RsaE targets are known in S. aureus, neither the environmental signals that lead to its expression nor its physiological role are known. Here we show that expression of the B. subtilis homolog of RsaE is regulated by the presence of nitric oxide (NO) in the cellular milieu. Control of expression by NO is dependent on the ResDE two-component system in B. subtilis and we determined that the same is true in S. aureus. Transcriptome and proteome analyses revealed that many genes with functions related to oxidative stress and oxidation-reduction reactions were up-regulated in a B. subtilis strain lacking this sRNA. We have thus renamed it RoxS. The prediction of RoxS-dependent mRNA targets also suggested a significant enrichment for mRNAs related to respiration and electron transfer. Among the potential direct mRNA targets, we have validated the ppnKB mRNA, encoding an NAD+/NADH kinase, both in vivo and in vitro. RoxS controls both translation initiation and the stability of this transcript, in the latter case via two independent pathways implicating RNase Y and RNase III. Furthermore, RNase Y intervenes at an additional level by processing the 5′ end of the RoxS sRNA removing about 20 nucleotides. Processing of RoxS allows it to interact more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase, thus expanding the repertoire of targets recognized by this sRNA. Bacteria have evolved various strategies to continually monitor the redox state of the internal and external environments to prevent cell damage and/or to protect them from host defense mechanisms. These signals modify the expression of genes, allowing bacteria to adapt to altered redox environments and to maintain homeostasis. Studies in Enterobacteriaceae have shown that sRNAs play central roles in adaptation to oxidative stress. We show here that the conserved sRNA, RoxS is induced by the presence of nitric oxide (NO) in the medium, through the ResDE and SrrAB two-component systems of Bacillus subtilis and Staphylococcus aureus, respectively. B. subtilis RoxS regulates functions related to oxidation-reduction reactions and acts as an antisense RNA to control translation initiation and the degradation of ppnKB mRNA, encoding an NAD+/NADH kinase. Interestingly, RNase Y processes the 5′ end of the RoxS sRNA leading to a truncated sRNA that in turn interacts more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase. Taken together this work shows that RoxS is part of a complex regulatory network that allows the cell to sense and respond to redox perturbations, and revealed a novel process that allows an expansion of the repertoire of sRNA targets.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Efthimia Lioliou
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Cédric Romilly
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Anne-Catherine Helfer
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Laurianne Kuhn
- Plateforme Protéomique Esplanade, IBMC, Strasbourg, France
| | - Noé Quittot
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pierre Nicolas
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pascale Romby
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (CC); (PR)
| | - Ciarán Condon
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
- * E-mail: (CC); (PR)
| |
Collapse
|
14
|
Engman J, von Wachenfeldt C. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 2014; 95:51-63. [PMID: 25353645 DOI: 10.1111/mmi.12842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacteria use stress response pathways to activate diverse target genes to react to a variety of stresses. The Bacillus subtilis Spx protein is a global transcriptional regulator that controls expression of more than 140 genes and operons in response to thiol-specific oxidative stress. Under nonstress conditions the concentration of Spx is kept low by proteolysis catalyzed by the ClpXP complex. Spx protein levels increase in response to disulfide stress and decrease when the cells cope with the stress. The cytosolic adaptor protein YjbH is required to target Spx for efficient proteolysis by ClpXP. We demonstrate that YjbH aggregates in response to disulfide stress, that is, the YjbH protein is soluble under nonstressed conditions and destabilized during stress leading to aggregation. Stress conditions (heat and ethanol) that cause severe perturbations in protein stability/folding also induced aggregation of YjbH and led to induction of Spx. By heterologous expression of a less aggregation prone YjbH homolog Spx induction was abolished. Thus we show that moderation of YjbH solubility is an important mechanism of signal transduction and represents a new mechanism of controlling the activity of adaptor proteins.
Collapse
Affiliation(s)
- Jakob Engman
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | | |
Collapse
|
15
|
Nakano MM, Kominos-Marvell W, Sane B, Nader YM, Barendt SM, Jones MB, Zuber P. spxA2, encoding a regulator of stress resistance in Bacillus anthracis, is controlled by SaiR, a new member of the Rrf2 protein family. Mol Microbiol 2014; 94:815-27. [PMID: 25231235 DOI: 10.1111/mmi.12798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Spx, a member of the ArsC (arsenate reductase) protein family, is conserved in Gram-positive bacteria, and interacts with RNA polymerase to activate transcription in response to toxic oxidants. In Bacillus anthracis str. Sterne, resistance to oxidative stress requires the activity of two paralogues, SpxA1 and SpxA2. Suppressor mutations were identified in spxA1 mutant cells that conferred resistance to hydrogen peroxide. The mutations generated null alleles of the saiR gene and resulted in elevated spxA2 transcription. The saiR gene resides in the spxA2 operon and encodes a member of the Rrf2 family of transcriptional repressors. Derepression of spxA2 in a saiR mutant required SpxA2, indicating an autoregulatory mechanism of spxA2 control. Reconstruction of SaiR-dependent control of spxA2 was accomplished in Bacillus subtilis, where deletion analysis uncovered two cis-elements within the spxA2 regulatory region that are required for repression. Mutations to one of the sequences of dyad symmetry substantially reduced SaiR binding and SaiR-dependent repression of transcription from the spxA2 promoter in vitro. Previous studies have shown that spxA2 is one of the most highly induced genes in a macrophage infected with B. anthracis. The work reported herein uncovered a key regulator, SaiR, of the Spx system of stress response control.
Collapse
Affiliation(s)
- Michiko M Nakano
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Barendt S, Lee H, Birch C, Nakano MM, Jones M, Zuber P. Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne. Microbiologyopen 2013; 2:695-714. [PMID: 23873705 PMCID: PMC3831629 DOI: 10.1002/mbo3.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022] Open
Abstract
Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes. Bacillus anthracis harbors two paralogs of the global transcriptional regulator of stress response, SpxA. SpxA1 and SpxA2 contribute to disulfide stress tolerance, but only SpxA1 functions in resistance to peroxide. Transcriptome analysis uncovered potential SpxA1 and SpxA2 regulon members, which include genes activated by both paralogs. However, paralog-specific gene activation was also observed. Genes encoding glutamate racemase, CoA disulfide reductase, and products functioning in bacillithiol biosynthesis, are among the genes activated by the SpxA paralogs.
Collapse
Affiliation(s)
- Skye Barendt
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, Oregon
| | | | | | | | | | | |
Collapse
|
17
|
Tirumalai MR, Rastogi R, Zamani N, O’Bryant Williams E, Allen S, Diouf F, Kwende S, Weinstock GM, Venkateswaran KJ, Fox GE. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS One 2013; 8:e66012. [PMID: 23799069 PMCID: PMC3682946 DOI: 10.1371/journal.pone.0066012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T). 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T). Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T) and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T). This cluster of five genes is considered to be an especially promising target for future experimental work.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Rajat Rastogi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nader Zamani
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Elisha O’Bryant Williams
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Shamail Allen
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Fatma Diouf
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Sharon Kwende
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kasthuri J. Venkateswaran
- Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
18
|
Bos J, Duverger Y, Thouvenot B, Chiaruttini C, Branlant C, Springer M, Charpentier B, Barras F. The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MsrB but not MsrA. PLoS One 2013; 8:e63647. [PMID: 23671689 PMCID: PMC3650055 DOI: 10.1371/journal.pone.0063647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Controlling iron homeostasis is crucial for all aerobically grown living cells that are exposed to oxidative damage by reactive oxygen species (ROS), as free iron increases the production of ROS. Methionine sulfoxide reductases (Msr) are key enzymes in repairing ROS-mediated damage to proteins, as they reduce oxidized methionine (MetSO) residues to methionine. E. coli synthesizes two Msr, A and B, which exhibit substrate diastereospecificity. The bacterial iron-responsive small RNA (sRNA) RyhB controls iron metabolism by modulating intracellular iron usage. We show in this paper that RyhB is a direct regulator of the msrB gene that encodes the MsrB enzyme. RyhB down-regulates msrB transcripts along with Hfq and RNaseE proteins since mutations in the ryhB, fur, hfq, or RNaseE-encoded genes resulted in iron-insensitive expression of msrB. Our results show that RyhB binds to two sequences within the short 5'UTR of msrB mRNA as identified by reverse transcriptase and RNase and lead (II) protection assays. Toeprinting analysis shows that RyhB pairing to msrB mRNA prevents efficient ribosome binding and thereby inhibits translation initiation. In vivo site directed-mutagenesis experiments in the msrB 5'UTR region indicate that both RyhB-pairing sites are required to decrease msrB expression. Thus, this study suggests a novel mechanism of translational regulation where a same sRNA can basepair to two different locations within the same mRNA species. In contrast, expression of msrA is not influenced by changes in iron levels.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Base Sequence
- Binding Sites/genetics
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Down-Regulation
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Iron/metabolism
- Methionine Sulfoxide Reductases/genetics
- Methionine Sulfoxide Reductases/metabolism
- Mutation
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Julia Bos
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
| | - Benoît Thouvenot
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Claude Chiaruttini
- Unité Propre de Recherche du Centre National de la Recherche Scientifique, Université Denis Diderot, Paris VII, Institut de Biologie Physico-chimique, Paris, France
| | - Christiane Branlant
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Mathias Springer
- Unité Propre de Recherche du Centre National de la Recherche Scientifique, Université Denis Diderot, Paris VII, Institut de Biologie Physico-chimique, Paris, France
| | - Bruno Charpentier
- Centre National de la Recherche Scientifique-Université de Lorraine, Unité Mixte de Recherche, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique-Aix Marseille Université, Unité Mixte de Recherche, Marseille, France
- * E-mail:
| |
Collapse
|
19
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
20
|
Evidence that a single monomer of Spx can productively interact with RNA polymerase in Bacillus subtilis. J Bacteriol 2012; 194:1697-707. [PMID: 22307755 DOI: 10.1128/jb.06660-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spx activates transcription initiation in Bacillus subtilis by directly interacting with the C-terminal domain of the RNA polymerase (RNAP) holoenzyme α subunit, which generates a complex that recognizes the promoter regions of genes within the Spx regulon. Many Gram-positive species possess multiple paralogs of Spx, suggesting that two paralogous forms of Spx could simultaneously contact RNAP. The composition of Spx/RNAP was examined in vitro using an Spx variant (SpxΔCHA) bearing a 12-amino-acid deletion of the C terminus (SpxΔC) and a hemagglutinin (HA) epitope tag and Spxc-Myc, a full-length Spx with a C-terminal myelocytomatosis oncoprotein (c-Myc) epitope tag. All Spx/RNAP complexes bearing deletion or C-terminal-tagged variants were transcriptionally active in vivo and in vitro. Reaction mixtures containing SpxΔCHA and Spxc-Myc combined with RNAP were applied to either anti-HA or anti-c-Myc affinity columns. Eluted fractions contained RNAP with only one of the epitope-tagged Spx derivatives. The resin-bound RNAP complex bearing a single epitope-tagged Spx derivative was transcriptionally active. In vivo production of SpxΔC and SpxΔCHA followed by anti-HA affinity column chromatography of a cleared lysate resulted in retrieval of Spx/RNAP with only the SpxΔCHA derivative. Binding reactions that combined active Spxc-Myc, inactive Spx(R60E)ΔCHA, and RNAP, when applied to the anti-HA affinity column, yielded only inactive Spx(R60E)ΔCHA/RNAP complexes. The results strongly argue for a model in which a single Spx monomer engages RNAP to generate an active transcriptional complex.
Collapse
|
21
|
Expression of Four Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2012; 2012:719594. [PMID: 22272204 PMCID: PMC3261475 DOI: 10.1155/2012/719594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus possesses three MsrA enzymes (MsrA1, MsrA2, MsrA3) that reduce the S-epimer of methionine sulfoxide (MetO) and an MsrB enzyme that reduces R-MetO. The four msr genes are expressed from three different promoters. The msrA1/msrB genes are coexpressed. To determine the expression pattern of msr genes, three independent reporter strains were constructed where msr promoter was cloned in front of a promoterless lacZ and the resulting construct was integrated in the chromosome. Using these strains, it was determined that the msrA1/B expression is significantly higher in S. aureus compared to msrA2 or msrA3. Expression of msrA1/B was highest during stationary phase growth, but the expression of msrA2 and msrA3 was highest during the early to midexponential growth phase. Expression of msrA1/B was induced by oxacillin and the expression of msrA3 was upregulated by salt. Expression of msrA2 remained unchanged under all tested conditions.
Collapse
|
22
|
Luo Y, Helmann JD. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 2012; 83:623-39. [PMID: 22211522 DOI: 10.1111/j.1365-2958.2011.07953.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Bacillus subtilis extracytoplasmic function (ECF) σ factor σ(M) is inducible by, and confers resistance to, several cell envelope-acting antibiotics. Here, we demonstrate that σ(M) is responsible for intrinsic β-lactam resistance, with σ(X) playing a secondary role. Activation of σ(M) upregulates several cell wall biosynthetic enzymes including one, PBP1, shown here to be a target for the beta-lactam cefuroxime. However, σ(M) still plays a major role in cefuroxime resistance even in cells lacking PBP1. To better define the role of σ(M) in β-lactam resistance, we characterized suppressor mutations that restore cefuroxime resistance to a sigM null mutant. The most frequent suppressors inactivated gdpP (yybT) which encodes a cyclic-di-AMP phosphodiesterase (PDE). Intriguingly, σ(M) is a known activator of disA encoding one of three paralogous diadenylate cyclases (DAC). Overproduction of the GdpP PDE greatly sensitized cells to β-lactam antibiotics. Conversely, genetic studies indicate that at least one DAC is required for growth with depletion leading to cell lysis. These findings support a model in which c-di-AMP is an essential signal molecule required for cell wall homeostasis. Other suppressors highlight the roles of ECF σ factors in counteracting the deleterious effects of autolysins and reactive oxygen species in β-lactam-treated cells.
Collapse
Affiliation(s)
- Yun Luo
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
23
|
Nannapaneni P, Hertwig F, Depke M, Hecker M, Mäder U, Völker U, Steil L, van Hijum SAFT. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. MICROBIOLOGY-SGM 2011; 158:696-707. [PMID: 22174379 DOI: 10.1099/mic.0.055434-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structure of the SigB-dependent general stress regulon of Bacillus subtilis has previously been characterized by proteomics approaches as well as DNA array-based expression studies. However, comparing the SigB targets published in three previous major transcriptional profiling studies it is obvious that although each of them identified well above 100 target genes, only 67 were identified in all three studies. These substantial differences can likely be attributed to the different strains, growth conditions, microarray platforms and experimental setups used in the studies. In order to gain a better understanding of the structure of this important regulon, a targeted DNA microarray analysis covering most of the known SigB-inducing conditions was performed, and the changes in expression kinetics of 252 potential members of the SigB regulon and appropriate control genes were recorded. Transcriptional data for the B. subtilis wild-type strain 168 and its isogenic sigB mutant BSM29 were analysed using random forest, a machine learning algorithm, by incorporating the knowledge from previous studies. This analysis revealed a strictly SigB-dependent expression pattern for 166 genes following ethanol, butanol, osmotic and oxidative stress, low-temperature growth and heat shock, as well as limitation of oxygen or glucose. Kinetic analysis of the data for the wild-type strain identified 30 additional members of the SigB regulon, which were also subject to control by additional transcriptional regulators, thus displaying atypical SigB-independent induction patterns in the mutant strain under some of the conditions tested. For 19 of these 30 SigB regulon members, published reports support control by secondary regulators along with SigB. Thus, this microarray-based study assigns a total of 196 genes to the SigB-dependent general stress regulon of B. subtilis.
Collapse
Affiliation(s)
- Priyanka Nannapaneni
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Falk Hertwig
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Maren Depke
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Ulrike Mäder
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Sacha A F T van Hijum
- NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands.,Radboud University Nijmegen Medical Centre, Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
24
|
Zuber P, Chauhan S, Pilaka P, Nakano MM, Gurumoorthy S, Lin AA, Barendt SM, Chi BK, Antelmann H, Mäder U. Phenotype enhancement screen of a regulatory spx mutant unveils a role for the ytpQ gene in the control of iron homeostasis. PLoS One 2011; 6:e25066. [PMID: 21949854 PMCID: PMC3176815 DOI: 10.1371/journal.pone.0025066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022] Open
Abstract
Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis.
Collapse
Affiliation(s)
- Peter Zuber
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Winter T, Winter J, Polak M, Kusch K, Mäder U, Sietmann R, Ehlbeck J, van Hijum S, Weltmann KD, Hecker M, Kusch H. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 2011; 11:3518-30. [DOI: 10.1002/pmic.201000637] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 01/19/2023]
|
26
|
Zhang C, Jia P, Jia Y, Li Y, Webster KA, Huang X, Achary M, Lemanski SL, Lemanski LF. Anoxia, acidosis, and intergenic interactions selectively regulate methionine sulfoxide reductase transcriptions in mouse embryonic stem cells. J Cell Biochem 2011; 112:98-106. [PMID: 20872796 DOI: 10.1002/jcb.22876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Methionine sulfoxide reductases (Msr) belong to a gene family that contains one MsrA and three MsrBs (MsrB1, MsrB2, and MsrB3). We have identified all four of the genes that are expressed in mouse embryonic stem cell cultures. The vital cellular functions of the Msr family of genes are to protect cells from oxidative damage by enzymatically reducing the oxidized sulfide groups of methionine residues in proteins from the sulfoxide form (--SO) back to sulfide thus restoring normal protein functions as well as reducing intracellular reactive oxygen species (ROS). We have performed studies on the Msr family genes to examine the regulation of gene expression. Our studies using real-time RT-PCR and Western blotting have shown that expression levels of the four Msr family genes are under differential regulation by anoxia/reoxygenation treatment, acidic culture conditions and interactions between MsrA and MsrB. Results from these in vitro experiments suggest that although these genes function as a whole in oxidative stress protection, each one of the Msr genes could be responsive to environmental stimulants differently at the tissue level.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Renzoni A, Andrey DO, Jousselin A, Barras C, Monod A, Vaudaux P, Lew D, Kelley WL. Whole genome sequencing and complete genetic analysis reveals novel pathways to glycopeptide resistance in Staphylococcus aureus. PLoS One 2011; 6:e21577. [PMID: 21738716 PMCID: PMC3124529 DOI: 10.1371/journal.pone.0021577] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/03/2011] [Indexed: 01/10/2023] Open
Abstract
The precise mechanisms leading to the emergence of low-level glycopeptide resistance in Staphylococcus aureus are poorly understood. In this study, we used whole genome deep sequencing to detect differences between two isogenic strains: a parental strain and a stable derivative selected stepwise for survival on 4 µg/ml teicoplanin, but which grows at higher drug concentrations (MIC 8 µg/ml). We uncovered only three single nucleotide changes in the selected strain. Nonsense mutations occurred in stp1, encoding a serine/threonine phosphatase, and in yjbH, encoding a post-transcriptional negative regulator of the redox/thiol stress sensor and global transcriptional regulator, Spx. A missense mutation (G45R) occurred in the histidine kinase sensor of cell wall stress, VraS. Using genetic methods, all single, pairwise combinations, and a fully reconstructed triple mutant were evaluated for their contribution to low-level glycopeptide resistance. We found a synergistic cooperation between dual phospho-signalling systems and a subtle contribution from YjbH, suggesting the activation of oxidative stress defences via Spx. To our knowledge, this is the first genetic demonstration of multiple sensor and stress pathways contributing simultaneously to glycopeptide resistance development. The multifactorial nature of glycopeptide resistance in this strain suggests a complex reprogramming of cell physiology to survive in the face of drug challenge.
Collapse
Affiliation(s)
- Adriana Renzoni
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schroeter R, Voigt B, Jürgen B, Methling K, Pöther DC, Schäfer H, Albrecht D, Mostertz J, Mäder U, Evers S, Maurer KH, Lalk M, Mascher T, Hecker M, Schweder T. The peroxide stress response of Bacillus licheniformis. Proteomics 2011; 11:2851-66. [DOI: 10.1002/pmic.201000461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 03/27/2011] [Accepted: 05/03/2011] [Indexed: 12/31/2022]
|
29
|
YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO). J Bacteriol 2011; 193:2133-40. [PMID: 21378193 DOI: 10.1128/jb.01350-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Spx protein of Bacillus subtilis is a global regulator of the oxidative stress response. Spx concentration is controlled at the level of proteolysis by the ATP-dependent protease ClpXP and a substrate-binding protein, YjbH, which interacts with Spx. A yeast two-hybrid screen was carried out using yjbH as bait to uncover additional substrates or regulators of YjbH activity. Of the several genes identified in the screen, one encoded a small protein, YirB (YuzO), which elevated Spx concentration and activity in vivo when overproduced from an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible yirB construct. Pulldown experiments using extracts of B. subtilis cells producing a His-tagged YirB showed that native YjbH interacts with YirB in B. subtilis. Pulldown experiments using affinity-tagged Spx showed that YirB inhibited YjbH interaction with Spx. In vitro, YjbH-mediated proteolysis of Spx by ClpXP was inhibited by YirB. The activity of YirB is similar to that of the antiadaptor proteins that were previously shown to reduce proteolysis of a specific ClpXP substrate by interacting with a substrate-binding protein.
Collapse
|
30
|
Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 2010; 78:3889-97. [PMID: 20566694 DOI: 10.1128/iai.00165-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methionine sulfoxide reductases A and B are antioxidant repair enzymes that reduce the S- and R-diastereomers of methionine sulfoxides back to methionine, respectively. Enterococcus faecalis, an important nosocomial pathogen, has one msrA gene and one msrB gene situated in different parts of the chromosome. Promoters have been mapped and mutants have been constructed in two E. faecalis strains (strains JH2-2 and V583) and characterized. For both backgrounds, the mutants are more sensitive than the wild-type parents to exposure to H2O2, and in combination the mutations seem to be additive. The virulence of the mutants has been analyzed in four different models. Survival of the mutants inside mouse peritoneal macrophages stimulated with recombinant gamma interferon plus lipopolysaccharide but not in naïve phagocytes is significantly affected. The msrA mutant is attenuated in the Galleria mellonella insect model. Deficiency in either Msr enzyme reduced the level of virulence in a systemic and urinary tract infection model. Virulence was reconstituted in the complemented strains. The combined results show that Msr repair enzymes are important for the oxidative stress response, macrophage survival, and persistent infection with E. faecalis.
Collapse
|
31
|
Abstract
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and induce expression of protective activities include the PerR and OhrR proteins, which show acute discrimination for their peroxide stimuli, whereas the general stress control factor, the RNA polymerase sigma(B) subunit and the thiol-based sensor Spx, govern the protective response to oxidants under multiple stress conditions. Some specific and some redundant protective mechanisms are mobilized at different stages of the Bacillus developmental cycle to deal with vulnerable cells in stationary-phase conditions and during spore germination and outgrowth. An important unknown is the nature and influence of the low-molecular-weight thiols that mediate the buffering of the redox environment.
Collapse
Affiliation(s)
- Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
32
|
Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Médigue C, Danchin A. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. MICROBIOLOGY (READING, ENGLAND) 2009; 155:1758-1775. [PMID: 19383706 PMCID: PMC2885750 DOI: 10.1099/mic.0.027839-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 11/18/2022]
Abstract
Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.
Collapse
Affiliation(s)
- Valérie Barbe
- CEA, Institut de Génomique, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Stéphane Cruveiller
- CEA, Institut de Génomique, Laboratoire de Génomique Comparative/CNRS UMR8030, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Frank Kunst
- CEA, Institut de Génomique, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Patricia Lenoble
- CEA, Institut de Génomique, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Guillaume Meurice
- Institut Pasteur, Intégration et Analyse Génomiques, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Agnieszka Sekowska
- Institut Pasteur, Génétique des Génomes Bactériens/CNRS URA2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - David Vallenet
- CEA, Institut de Génomique, Laboratoire de Génomique Comparative/CNRS UMR8030, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Tingzhang Wang
- Institut Pasteur, Génétique des Génomes Bactériens/CNRS URA2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivan Moszer
- Institut Pasteur, Intégration et Analyse Génomiques, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Claudine Médigue
- CEA, Institut de Génomique, Laboratoire de Génomique Comparative/CNRS UMR8030, Génoscope, 2 rue Gaston Crémieux, 91057 Évry, France
| | - Antoine Danchin
- Institut Pasteur, Génétique des Génomes Bactériens/CNRS URA2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|