1
|
Sagmeister T, Gubensäk N, Buhlheller C, Grininger C, Eder M, Ðordić A, Millán C, Medina A, Murcia PAS, Berni F, Hynönen U, Vejzović D, Damisch E, Kulminskaya N, Petrowitsch L, Oberer M, Palva A, Malanović N, Codée J, Keller W, Usón I, Pavkov-Keller T. The molecular architecture of Lactobacillus S-layer: Assembly and attachment to teichoic acids. Proc Natl Acad Sci U S A 2024; 121:e2401686121. [PMID: 38838019 PMCID: PMC11181022 DOI: 10.1073/pnas.2401686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.
Collapse
Affiliation(s)
- Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | | | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Anđela Ðordić
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Claudia Millán
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Ana Medina
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Pedro Alejandro Sánchez Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria8010
| | - Francesca Berni
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Ulla Hynönen
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Djenana Vejzović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Elisabeth Damisch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Airi Palva
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Nermina Malanović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Jeroen Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08003, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| |
Collapse
|
2
|
Nguyen HM, V Le KT, Nguyen NL, Tran-Van H, Ho GT, Nguyen TT, Haltrich D, Nguyen TH. Surface-Displayed Mannanolytic and Chitinolytic Enzymes Using Peptidoglycan Binding LysM Domains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12655-12664. [PMID: 38775266 DOI: 10.1021/acs.jafc.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Using Lactiplantibacillus plantarum as a food-grade carrier to create non-GMO whole-cell biocatalysts is gaining popularity. This work evaluates the immobilization yield of a chitosanase (CsnA, 30 kDa) from Bacillus subtilis and a mannanase (ManB, 40 kDa) from B. licheniformis on the surface of L. plantarum WCFS1 using either a single LysM domain derived from the extracellular transglycosylase Lp_3014 or a double LysM domain derived from the muropeptidase Lp_2162. ManB and CsnA were fused with the LysM domains of Lp_3014 or Lp_2162, produced in Escherichia coli and anchored to the cell surface of L. plantarum. The localization of the recombinant proteins on the bacterial cell surface was successfully confirmed by Western blot and flow cytometry analysis. The highest immobilization yields (44-48%) and activities of mannanase and chitosanase on the displaying cell surface (812 and 508 U/g of dry cell weight, respectively) were obtained when using the double LysM domain of Lp_2162 as an anchor. The presence of manno-oligosaccharides or chito-oligosaccharides in the reaction mixtures containing appropriate substrates and ManB or CsnA-displaying cells was determined by high-performance anion exchange chromatography. This study indicated that non-GMO Lactiplantibacillus chitosanase- and mannanase-displaying cells could be used to produce potentially prebiotic oligosaccharides.
Collapse
Affiliation(s)
- Hoang-Minh Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, The University of Da Nang─University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam
| | - Khanh-Trang V Le
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Faculty of Biology and Environmental Science, The University of Da Nang - University of Science and Education, Da Nang 550000, Vietnam
| | - Ngoc-Luong Nguyen
- Hue University, College of Sciences, 77 Nguyen Hue, Hue 70000, Vietnam
| | - Hieu Tran-Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Giap T Ho
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City 700000, Vietnam
| | - Tien-Thanh Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No.1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
3
|
Yadav AK, Varikuti SR, Kumar A, Kumar M, Debanth N, Rajkumar H. Expression of heterologous heparan sulphate binding protein of Helicobacter pylori on the surface of Lactobacillus rhamnosus GG. 3 Biotech 2023; 13:19. [PMID: 36568501 PMCID: PMC9768065 DOI: 10.1007/s13205-022-03428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of most commonly found pathogen in the stomach. In spite of emergence of different treatment strategies, H. pylori infection remains difficult to treat. The bioengineered probiotic lactobacilli that could displace H. pylori and simultaneously present immunogenic peptides such as heparan sulphate binding protein (Hsbp) to elicit immune response could emerge as a potential therapeutic agent. The aim of this study was to discover the anti-H. pylori activities and faster exclusion of H. pylori from host cells by the recombinant strain of Lactobacillus expressing the immunogenic Hsbp protein. The results were promising and showed a 65% reduction in H. pylori adhesion after two hours of pre-incubation with recombinant-LGG and HeLa S3 cells, followed by the adhesion of H. pylori pathogen (P < 0.002). Additionally, 36% and 39% reduction were examined in co-incubation and post-incubation with recombinant-LGG, respectively. When challenged with H. pylori, the proinflammatory cytokine expression was also down regulated in recombinant-LGG treated HeLa S3 cells. This promising result provides a new insight of bioengineered probiotic lactobacilli which could displace H. pylori and simultaneously has immunogenic properties thereby may be useful to prevent H. pylori infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03428-4.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Sudarshan Reddy Varikuti
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Jant-Pali, 123031 Haryana India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nabendu Debanth
- Centre for Molecular Biology, Central University of Jammu, Distt., Samba, 181143 Jammu and Kashmir India
| | - Hemalatha Rajkumar
- Department of Microbiology and Immunology, ICMR-National Institute of Nutrition, Hyderabad, 500007 Telangana India
| |
Collapse
|
4
|
Kong W, Gan J, Su M, Xiong B, Jiang X, Zhang T, Zeng X, Wu Z, Sun Y, Pan D, Liu Q, Ling N, Guo Y. Identification and Characterization of Domains Responsible for Cell Wall Binding, Self-Assembly, and Adhesion of S-layer Protein from Lactobacillus acidophilus CICC 6074. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12982-12989. [PMID: 36190122 DOI: 10.1021/acs.jafc.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactobacillus S-layer protein (SLP) is a biologically active protein on the cell surface. To further elucidate the structures and functions of SLP in Lactobacillus acidophilus CICC 6074, this study was conducted to identify the functional domains of SLP which is responsible for cell wall anchoring, self-assembly, and adhesion. The gene (slpA) of L. acidophilus CICC 6074 SLP was amplified by polymerase chain reaction and speculated functional domains. Fusion proteins of C-terminal truncations from SLP were exogenously expressed in Escherichia coli BL21 (DE3). FITC-labeling N-terminal truncations of SLP were synthesized. The C-terminal domain was more likely to be the binding region, and the cell wall-anchored receptor of SLP was teichoic acid. Furthermore, N-terminal truncations could self-assemble to milk fat globule membrane polar lipid liposomes observed using a fluorescence microscope. Notably, SAN1 (region 32-55) of N-terminal truncations was mainly responsible for the adhesion of SLP to HT-29 cells. These results showed that SLP played a crucial role in the functions of L. acidophilus CICC 6074, which might be of significant reference value for future studies.
Collapse
Affiliation(s)
- Weimei Kong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Junai Gan
- Department of Food Science and Technology, University of California, Davis, California95616, United States
| | - Mi Su
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Binyi Xiong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Xiaoxiao Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Xiaoqun Zeng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Zhen Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Yangying Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Qing Liu
- Nanjing Weigang Dairy Co., Ltd., Nanjing, Jiangsu211100, P. R. China
| | - Nan Ling
- Nanjing Weigang Dairy Co., Ltd., Nanjing, Jiangsu211100, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| |
Collapse
|
5
|
Surface Layer Protein Pattern of Levilactobacillus brevis Strains Investigated by Proteomics. Nutrients 2022; 14:nu14183679. [PMID: 36145058 PMCID: PMC9504196 DOI: 10.3390/nu14183679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties.
Collapse
|
6
|
Lin Tan Z, Miyanaga K, Kitamoto Y, Yamamoto N. Levilactobacillus brevis surface layer protein B promotes liposome targeting to antigen-presenting cells in Peyer’s patches. Int J Pharm 2022; 622:121896. [DOI: 10.1016/j.ijpharm.2022.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
|
7
|
Influence of hydrophilic polymers on mechanical property and wound recovery of hybrid bilayer wound dressing system for delivering thermally unstable probiotic. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112696. [DOI: 10.1016/j.msec.2022.112696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
|
8
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
9
|
Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021; 12:663468. [PMID: 33889148 PMCID: PMC8056022 DOI: 10.3389/fmicb.2021.663468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.
Collapse
Affiliation(s)
- Janani Ravi
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
11
|
Li Q, Loponen J, Gänzle MG. Characterization of the Extracellular Fructanase FruA in Lactobacillus crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8637-8647. [PMID: 32687341 DOI: 10.1021/acs.jafc.0c02313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) trigger symptoms of irritable bowel syndrome (IBS). Fructan degradation during bread making reduces FODMAPs in bread while maintaining the content of dietary fiber. This study explored the presence of the fructanases FruA in lactobacilli and characterized its use in bread making. FruA was exclusively present in vertebrate-adapted lactobacilli. In Lactobacillus crispatus DSM29598, FruA was located in cell wall fractions and includes a SLAP domain. FruA hydrolyzed levan or inulin; expression of fruA was not subject to catabolite repression. Fructans in bread were reduced by less than 50% in a straight dough process; conventional sourdough fermentation reduced fructans in bread by 65-70%. Sourdough fermentation with L. crispatus reduced fructans in bread by more than 90%. In conclusion, reduction of FODMAP by sourdough fermentation may improve tolerance in many IBS patients. Fermentation with FruA-expressing L. crispatus DSM29598 produces a low FODMAP bread.
Collapse
Affiliation(s)
- Qing Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
12
|
Kobatake E, Kabuki T. S-Layer Protein of Lactobacillus helveticus SBT2171 Promotes Human β-Defensin 2 Expression via TLR2-JNK Signaling. Front Microbiol 2019; 10:2414. [PMID: 31681252 PMCID: PMC6813279 DOI: 10.3389/fmicb.2019.02414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides that contribute to innate immunity are among the most important protective measures against infection in many organisms. Several substances are known to regulate the expression of antimicrobial peptides. In this study, we investigated the factors in lactic acid bacteria (LAB) that induce antimicrobial peptide expression in the host. We found that Lactobacillus helveticus SBT2171 (LH2171) induced the expression of human β-defensin (hBD)2 in Caco-2 human colonic epithelial cells. Specifically, surface layer protein (SLP) of LH2171 stimulated hBD2 expression by activating c-Jun N-terminal kinase (JNK) signaling via Toll-like receptor (TLR)2 in Caco-2 cells. SLPs extracted from other lactobacilli similarly increased hBD2 expression, suggesting that this stimulatory effect is common feature of Lactobacillus SLPs. Interestingly, Lactobacillus strains that strongly induced hBD2 expression also potently activated JNK signaling. Thus, upregulation of hBD2 induced by TLR2–JNK signaling contributes to protection of the host against infection.
Collapse
Affiliation(s)
- Eiji Kobatake
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Toshihide Kabuki
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| |
Collapse
|
13
|
Fina Martin J, Palomino MM, Cutine AM, Modenutti CP, Fernández Do Porto DA, Allievi MC, Zanini SH, Mariño KV, Barquero AA, Ruzal SM. Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 2019; 103:4839-4857. [PMID: 31053916 DOI: 10.1007/s00253-019-09795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.
Collapse
Affiliation(s)
- Joaquina Fina Martin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Mercedes Palomino
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Carlos P Modenutti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario A Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Allievi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia H Zanini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Andrea A Barquero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra M Ruzal
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Suzuki S, Yokota K, Igimi S, Kajikawa A. Comparative analysis of immunological properties of S-layer proteins isolated from Lactobacillus strains. MICROBIOLOGY-SGM 2019; 165:188-196. [PMID: 30620267 DOI: 10.1099/mic.0.000766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have suggested that some Lactobacillus S-layer proteins could modulate immune responses. Primary structures of the S-layer proteins are variable, and their immunological differences are poorly understood. In this study, we evaluated the immunological properties of eight distinct S-layer proteins from different Lactobacillus species. We found that removal of the S-layer proteins from the cell surface reduced the immunological activities of Lactobacillus cells in THP-1 cells. Furthermore, the purified S-layer proteins induced the production of IL-12 p40, although their immunological activities varied between the different S-layer proteins. The production of IL-12 p40 was notably induced by the S-layer protein SLP(aly) from Lactobacillus amylolyticus NRIC 0558T. Multiple sequence alignment revealed that the percent identity of the S-layer proteins of the eight strains vary from 10 to 90 %. In particular, N-terminal regions showed high levels of diversity. To obtain more information about their structure and the immunogenicity, truncated and chimeric S-layer proteins were constructed in recombinant E. coli. Profiling of cytokine production in THP-1 cells by truncated and chimeric S-layer proteins suggested that the intact conformation of the N-terminal region of SLP(aly) contributes to high immunogenicity.
Collapse
Affiliation(s)
- Shunya Suzuki
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Yokota
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shizunobu Igimi
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akinobu Kajikawa
- 2+810354772327.,1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
15
|
Bönisch E, Oh YJ, Anzengruber J, Hager FF, López-Guzmán A, Zayni S, Hinterdorfer P, Kosma P, Messner P, Duda KA, Schäffer C. Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology 2018; 28:148-158. [PMID: 29309573 PMCID: PMC5993097 DOI: 10.1093/glycob/cwx102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-positive lactic acid bacterium Lactobacillus buchneri CD034 is covered by a two-dimensional crystalline, glycoproteinaceous cell surface (S-) layer lattice. While lactobacilli are extensively exploited as cell surface display systems for applied purposes, questions about how they stick their cell wall together are remaining open. This also includes the identification of the S-layer cell wall ligand. In this study, lipoteichoic acid was isolated from the L. buchneri CD034 cell wall as a significant fraction of the bacterium's cell wall glycopolymers, structurally characterized and analyzed for its potential to mediate binding of the S-layer to the cell wall. Combined component analyses and 1D- and 2D-nuclear magnetic resonance spectroscopy (NMR) revealed the lipoteichoic acid to be composed of on average 31 glycerol-phosphate repeating units partially substituted with α-d-glucose, and with an α-d-Galp(1→2)-α-d-Glcp(1→3)-1,2-diacyl-sn-Gro glycolipid anchor. The specificity of binding between the L. buchneri CD034 S-layer protein and purified lipoteichoic acid as well as their interaction force of about 45 pN were obtained by single-molecule force spectroscopy; this value is in the range of typical ligand-receptor interactions. This study sheds light on a functional implication of Lactobacillus cell wall architecture by showing direct binding between lipoteichoic acid and the S-layer of L. buchneri CD034.
Collapse
Affiliation(s)
- Eva Bönisch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Yoo Jin Oh
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
- Keysight Technologies Austria GmbH, A-4020 Linz, Austria
| | - Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Sonja Zayni
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Katarzyna A Duda
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Junior Group of Allergobiochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, D−23845 Borstel, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| |
Collapse
|
16
|
Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, Hemalatha R, Batish VK. Adhesion of Lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 2017; 57:2042-2056. [PMID: 25879917 DOI: 10.1080/10408398.2014.918533] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The probiotic potential of lactic acid bacteria primarily point toward colonizing ability of Lactobacilli as the most important attribute for endowing all the known beneficial effects in a host. Lactobacillus species exert health-promoting function in the gastrointestinal tract through various mechanisms such as pathogen exclusion, maintenance of microbial balance, immunomodulation, and other crucial functions. It has been seen that many surface layer proteins are involved in host adhesion, and play significant role in the modification of some signaling pathways within the host cells. Interaction between different bacterial cell surface proteins and host receptor has been imperative for a better understanding of the mechanism through which Lactobacilli exert their health-promoting functions.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India.,b Centre for Molecular Biology, Central University of Jammu , Samba , Jammu & Kashmir , India
| | - Ashish Tyagi
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Ashwani Kumar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India.,e Department of Nutrition Biology , Central University of Haryana , Mahendergarh , Haryana , India
| | - Surbhi Panwar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India
| | - Sunita Grover
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | | | - Rajkumar Hemalatha
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India
| | - Virender Kumar Batish
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
17
|
Wang R, Jiang L, Zhang M, Zhao L, Hao Y, Guo H, Sang Y, Zhang H, Ren F. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins. Sci Rep 2017; 7:44029. [PMID: 28281568 DOI: 10.1038/srep44029if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/03/2017] [Indexed: 07/26/2024] Open
Abstract
Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.
Collapse
Affiliation(s)
- Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Lun Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Yue Sang
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing 100083, P. R. China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
18
|
The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins. Sci Rep 2017; 7:44029. [PMID: 28281568 PMCID: PMC5345100 DOI: 10.1038/srep44029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/03/2017] [Indexed: 12/03/2022] Open
Abstract
Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.
Collapse
|
19
|
Malamud M, Carasi P, Bronsoms S, Trejo SA, Serradell MDLA. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins. Antonie Van Leeuwenhoek 2016; 110:515-530. [PMID: 28004217 DOI: 10.1007/s10482-016-0820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Sílvia Bronsoms
- Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sebastián A Trejo
- CCT-La Plata, CONICET, Buenos Aires, Argentina.,Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET, La Plata, Argentina
| | - María de Los Angeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina. .,CCT-La Plata, CONICET, Buenos Aires, Argentina. .,Instituto de Ciencias de la Salud, Universidad Arturo Jauretche (UNAJ), Florencio Varela, Argentina.
| |
Collapse
|
20
|
Roselli M, Finamore A, Hynönen U, Palva A, Mengheri E. Differential protection by cell wall components of Lactobacillus amylovorus DSM 16698 Tagainst alterations of membrane barrier and NF-kB activation induced by enterotoxigenic F4 + Escherichia coli on intestinal cells. BMC Microbiol 2016; 16:226. [PMID: 27688074 PMCID: PMC5041403 DOI: 10.1186/s12866-016-0847-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/22/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698T is able to reduce the enterotoxigenic F4+ Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698T cell wall components in the protection against F4+ETEC infection using the intestinal Caco-2 cell line. METHODS Purified cell wall fragments (CWF) from L. amylovorus DSM 16698T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4+ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4+ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4+ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. RESULTS We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4+ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4+ETEC, inhibited membrane damage and prevented NF-kB activation. CONCLUSIONS The results indicate that the various components of L. amylovorus DSM 16698T cell wall may counteract the damage caused by F4+ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4+ETEC infection. U-CWF are not able to defend the cells when they are infected with F4+ETEC but may activate protective mechanisms before pathogen infection.
Collapse
Affiliation(s)
- Marianna Roselli
- CREA-NUT, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Food and Nutrition Research Center, Via Ardeatina 546, 00178, Rome, Italy.
| | - Alberto Finamore
- CREA-NUT, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Food and Nutrition Research Center, Via Ardeatina 546, 00178, Rome, Italy
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| | - Elena Mengheri
- CREA-NUT, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Food and Nutrition Research Center, Via Ardeatina 546, 00178, Rome, Italy
| |
Collapse
|
21
|
Truncation Derivatives of the S-Layer Protein of Sporosarcina ureae ATCC 13881 (SslA): Towards Elucidation of the Protein Domain Responsible for Self-Assembly. Molecules 2016; 21:molecules21091117. [PMID: 27563868 PMCID: PMC6272907 DOI: 10.3390/molecules21091117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 11/28/2022] Open
Abstract
The cell surface of Sporosarcina ureae ATCC 13881 is covered by an S-layer (SslA) consisting of identical protein subunits that assemble into lattices exhibiting square symmetry. In this work the self-assembly properties of the recombinant SslA were characterised with an emphasis on the identification of protein regions responsible for self-assembly. To this end, recombinant mature SslA (aa 31-1097) and three SslA truncation derivatives (one N-terminal, one C-terminal and one CN-terminal) were produced in a heterologous expression system, isolated, purified and their properties analysed by in vitro recrystallisation experiments on a functionalised silicon wafer. As a result, recombinant mature SslA self-assembled into crystalline monolayers with lattices resembling the one of the wild-type SslA. The study identifies the central protein domain consisting of amino acids 341-925 self-sufficient for self-assembly. Neither the first 341 amino acids nor the last 172 amino acids of the protein sequence are required to self-assemble into lattices.
Collapse
|
22
|
Palomino MM, Waehner PM, Fina Martin J, Ojeda P, Malone L, Sánchez Rivas C, Prado Acosta M, Allievi MC, Ruzal SM. Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 2016; 100:8475-84. [PMID: 27376794 DOI: 10.1007/s00253-016-7698-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/12/2016] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Abstract
In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.
Collapse
Affiliation(s)
- María Mercedes Palomino
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Pablo M Waehner
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Joaquina Fina Martin
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Paula Ojeda
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Lucía Malone
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Carmen Sánchez Rivas
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Mariano Prado Acosta
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Mariana C Allievi
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina
| | - Sandra M Ruzal
- Laboratorio Bacterias Gram Positivas, sus Fagos y Estrés, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales-UBA, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellon II, piso 4, Buenos Aires, 1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Douillard FP, Rasinkangas P, Bhattacharjee A, Palva A, de Vos WM. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG. PLoS One 2016; 11:e0153373. [PMID: 27070897 PMCID: PMC4829219 DOI: 10.1371/journal.pone.0153373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022] Open
Abstract
Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.
Collapse
Affiliation(s)
- François P. Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (FPD); (WMdV)
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Bhattacharjee
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (FPD); (WMdV)
| |
Collapse
|
24
|
Hypothetical protein Avin_16040 as the S-layer protein of Azotobacter vinelandii and its involvement in plant root surface attachment. Appl Environ Microbiol 2015; 81:7484-95. [PMID: 26276116 DOI: 10.1128/aem.02081-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.
Collapse
|
25
|
Yanagihara S, Kato S, Ashida N, Yamamoto N. Lactobacillus acidophilus CP23 with weak immunomodulatory activity lacks anchoring structure for surface layer protein. J Biosci Bioeng 2014; 119:521-5. [PMID: 25454604 DOI: 10.1016/j.jbiosc.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
To determine the reason for the low levels of Surface layer protein A (SlpA) on CP23 cells, which might play a crucial role in the immunomodulatory effect of Lactobacillus acidophilus, the DNA sequence of the slpA gene of CP23 and L-92 strains, including the upstream region, were analyzed. Unexpectedly, there was no significant difference in the predicted amino acid sequence of the C-terminus needed for cell anchoring, and only an additional Ala-Val-Ala sequence inserted in the N-terminal region of the mature CP23 protein. Therefore, anchoring of SlpA on the cell wall of CP23 and L-92 was evaluated by a reconstitution assay, which showed that SlpA released by LiCl treatment from both CP23 and L-92 was successfully anchored on LiCl-treated L-92 cells, but not on LiCl-treated CP23 cells. Moreover, quantitative analysis of SlpA protein in the culture medium of CP23 and L-92 by ELISA revealed higher levels of SlpA secretion in CP23 cells than in L-92 cells. Collectively, these results suggest that the lower levels of SlpA on the surface of CP23 cells might be caused by less cell wall capacity for SlpA anchoring, leading to an accumulation of SlpA in the culture medium of CP23 cells. The present study supports the importance of cell surface structure of L. acidophilus L-92 for SlpA anchoring on the cell surface needed for immunomodulatory effect.
Collapse
Affiliation(s)
- Sae Yanagihara
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan.
| | - Shinji Kato
- Microbiology and Fermentation Laboratory, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan.
| | - Nobuhisa Ashida
- Feed Technology Group Feed Division, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan.
| | - Naoyuki Yamamoto
- Research and Development Planning Department, Calpis Co. Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan.
| |
Collapse
|
26
|
Basic and clinical research on the regulation of the intestinal barrier by Lactobacillus and its active protein components: a review with experience of one center. Mol Biol Rep 2014; 41:8037-46. [PMID: 25185994 DOI: 10.1007/s11033-014-3701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022]
Abstract
Probiotics got protective effects on the intestinal barrier. Our present study is to review the basic and clinical progress on the regulation of the intestinal barrier by Lactobacillus and its active protein components, combing the study of our center. Our study have isolated the active component of micro integral membrane protein (MIMP) within the media place of the integral membrane protein of Lactobacillus plantarum, which was verified about the protective effects against the intestinal epithelial dysfunction. On the other hand, we also found the effects of perioperative use of probiotics in the prevention and treatment of postoperative intestinal barrier dysfunction, and reduction of the postoperative infective complications. In this review, we would like to report the founding of our center, involving in the basic and clinical research progress of regulation of intestinal barrier by Lactobacillus and its active protein component MIMP. Furthermore, we may also promote our following studies about the MIMP and its clinical verification.
Collapse
|
27
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
28
|
Kontro I, Wiedmer SK, Hynönen U, Penttilä PA, Palva A, Serimaa R. The structure of Lactobacillus brevis surface layer reassembled on liposomes differs from native structure as revealed by SAXS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2099-104. [DOI: 10.1016/j.bbamem.2014.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/03/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022]
|
29
|
Hynönen U, Kant R, Lähteinen T, Pietilä TE, Beganović J, Smidt H, Uroić K, Avall-Jääskeläinen S, Palva A. Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains. BMC Microbiol 2014; 14:199. [PMID: 25070625 PMCID: PMC4236617 DOI: 10.1186/1471-2180-14-199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) -layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. RESULTS Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. CONCLUSIONS We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P,O, Box 66, Helsinki 00014, Finland.
| |
Collapse
|
30
|
Douillard FP, Rasinkangas P, von Ossowski I, Reunanen J, Palva A, de Vos WM. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J Biol Chem 2014; 289:15764-75. [PMID: 24753244 DOI: 10.1074/jbc.m113.542332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.
Collapse
Affiliation(s)
- François P Douillard
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Pia Rasinkangas
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Ingemar von Ossowski
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Justus Reunanen
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Airi Palva
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and
| | - Willem M de Vos
- From the Department of Veterinary Biosciences, University of Helsinki, Helsinki 00790, Finland and the Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
31
|
Lähteinen T, Lindholm A, Rinttilä T, Junnikkala S, Kant R, Pietilä TE, Levonen K, von Ossowski I, Solano-Aguilar G, Jakava-Viljanen M, Palva A. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Vet Immunol Immunopathol 2014; 158:14-25. [DOI: 10.1016/j.vetimm.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/11/2013] [Accepted: 09/02/2013] [Indexed: 01/13/2023]
|
32
|
Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen. Microbiol Res 2013; 168:639-45. [DOI: 10.1016/j.micres.2013.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/15/2013] [Accepted: 05/27/2013] [Indexed: 11/23/2022]
|
33
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
34
|
Eslami N, Kermanshahi RK, Erfan M. Studying the Stability of S-Layer Protein of Lactobacillus Acidophilus ATCC 4356 in Simulated Gastrointestinal Fluids Using SDS-PAGE and Circular Dichroism. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2013; 12:47-56. [PMID: 24250671 PMCID: PMC3813368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are now recognized as one of the most common outermost cell envelope components of prokaryotic organisms. The surface layer protein of Lactobacillus acidophilus ATCC4356 is composed of a single species of protein of apparent molecular weight of 43-46 KDa. Considering the Lactobacillus acidophilus ATCC4356 having the S-layer is stable in harsh gastrointestinal (GI) conditions, a protective role against destructive GI factors which has been proposed for these nanostructures. It opens interesting perspectives in the using and development of this S-layer as a protective coat for oral administration of unstable drug nanocarriers. To achieve this goal, it is necessary to study the in-vitro stability of the S-layers in the simulated gastrointestinal fluids (SGIF). This study was planned to evaluate the in-vitro stability of the extracted S-layer protein of Lactobacillus acidophilus ATCC4356 in SGIF using it as a protective coat in oral drug delivery. Sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy were used to study the stability of the S-layer protein incubated in SGIF. Both the SDS-PAGE and CD spectra results showed that Lactobacillus acidophilus ATCC4356 S-layer protein is stable in simulated gastric fluid (SGF) with pH = 2 up to 5 min. It is stable in SGF pH = 3.2 and above it, with and without pepsin. It is also stable in all the simulated intestinal fluids. This S-layer is also stable in all of the simulated intestinal fluids.
Collapse
Affiliation(s)
- Neda Eslami
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Sciences, Alzahra University of Basic Sciences, Tehran, Iran.
| | - Rouha Kasra Kermanshahi
- Department of Biology, School of Sciences, Alzahra University of Basic Sciences, Tehran, Iran.
| | - Mohammad Erfan
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
35
|
In vitro evaluation of Lactobacillus crispatus K313 and K243: High-adhesion activity and anti-inflammatory effect on Salmonella braenderup infected intestinal epithelial cell. Vet Microbiol 2012; 159:212-20. [DOI: 10.1016/j.vetmic.2012.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 03/11/2012] [Accepted: 03/28/2012] [Indexed: 02/01/2023]
|
36
|
Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 2012; 97:1941-52. [PMID: 22526799 DOI: 10.1007/s00253-012-4044-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/11/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
Abstract
It was previously shown that the surface (S)-layer proteins covering the cell surface of Lactobacillus crispatus K313 were involved in the adherence of this strain to human intestinal cell line HT-29. To further elucidate the structures and functions of S-layers, three putative S-layer protein genes (slpA, slpB, and slpC) of L. crispatus K313 were amplified by PCR, sequenced, and characterized in detail. Quantitative real-time PCR analysis reveals that slpA was silent under the tested conditions; whereas slpB and slpC, the putative amino acid sequences which exhibited minor similarities to the previously reported S-layer proteins in L. crispatus, were actively expressed. slpB, which was predominantly expressed in L. crispatus K313, was further investigated for its functional domains. Genetic truncation of the untranslated leader sequence (UTLS) of slpB results in a reduction in protein production, indicating that the UTLS contributed to the efficient S-layer protein expression. By producing a set of N- and C-terminally truncated recombinant SlpB proteins in Escherichia coli, the cell wall-binding region was mapped to the C terminus, where rSlpB(380-501) was sufficient for binding to isolated cell wall fragments. Moreover, the binding ability of the C terminus was variable among the Lactobacillus species (S-layer- and non-S-layer-producing strains), and teichoic acid may be acting as the receptor of SlpB. To determine the adhesion region of SlpB to extracellular matrix proteins, ELISA was performed. Binding to immobilized types I and IV collagen was observed with the His-SlpB(1-379) peptides, suggesting that the extracellular matrix protein-binding domain was located in the N terminus.
Collapse
Affiliation(s)
- Zhilan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Involvement of the mannose receptor and p38 mitogen-activated protein kinase signaling pathway of the microdomain of the integral membrane protein after enteropathogenic Escherichia coli infection. Infect Immun 2012; 80:1343-50. [PMID: 22290149 DOI: 10.1128/iai.05930-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microdomain of the integral membrane protein (MIMP) has been shown to adhere to mucin and to antagonize the adhesion of enteropathogenic Escherichia coli (EPEC) to epithelial cells; however, the mechanism has not been fully elucidated. In this study, we further identified the receptor of MIMP on NCM460 cells and investigated the mechanism (the p38 mitogen-activated protein kinase [MAPK] pathway) following the interaction of MIMP and its corresponding receptor, mannose receptor. We first identified the target receptor of MIMP on the surfaces of NCM460 cells using immunoprecipitation-mass spectrometry technology. We also verified the mannose receptor and examined the degradation and activation of the p38 MAPK signaling pathway. The results indicated that MIMP adhered to NCM460 cells by binding to the mannose receptor and inhibited the phosphorylation of p38 MAPK stimulated after EPEC infection via inhibition of the Toll-like receptor 5 pathway. These findings indicated that MIMPs relieve the injury of NCM460 cells after enteropathogenic E. coli infection through the mannose receptor and inhibition of the p38 MAPK signaling pathway, both of which may therefore be potential therapeutic targets for intestinal diseases, such as inflammatory bowel disease.
Collapse
|
38
|
Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein. Microb Cell Fact 2011; 10:86. [PMID: 22035337 PMCID: PMC3215925 DOI: 10.1186/1475-2859-10-86] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB). In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. RESULTS Multiple sequence alignment revealed that the C-terminal region (LcsB) of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP) or beta-galactosidase (Gal) was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. CONCLUSION The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological application.
Collapse
|
39
|
Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J Biosci Bioeng 2011; 112:333-7. [DOI: 10.1016/j.jbiosc.2011.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/23/2011] [Accepted: 06/07/2011] [Indexed: 01/26/2023]
|
40
|
Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components. Anaerobe 2011; 17:334-6. [PMID: 21621625 DOI: 10.1016/j.anaerobe.2011.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 11/28/2022]
Abstract
The aim of this research was to study the mechanisms of Lactobacillus brevis antiviral activity towards HSV-2 and to identify the bacterial components responsible for the inhibiting effect. Bacterial extract and cell walls were prepared by lysozyme digestion of L. brevis cells untreated or treated with LiCl to remove S-layer proteins. Bacterial extract and cell wall fragments showed a dose dependent inhibitory effect on HSV-2 multiplication. In order to characterize the inhibitory activity of L. brevis, the bacterial extract was subjected to different physical and chemical treatments. The inhibitory activity was resistant to high temperature and proteases digestion and appeared to be associated with compounds with a molecular weight higher than 10 kDa. DNA, RNA and lipids isolated from bacterial cells were devoid of inhibitory effect. The antiviral activity of both bacterial extract and cell wall fragments obtained from L. brevis cells after the S-layer removal was significantly reduced compared to untreated cells suggesting that the inhibitory activity is likely due to a heat-resistant non-protein cell surface bacterial component.
Collapse
Affiliation(s)
- Paola Mastromarino
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | | | | | | |
Collapse
|
41
|
Dohm N, Petri A, Schlander M, Schlott B, König H, Claus H. Molecular and biochemical properties of the S-layer protein from the wine bacterium Lactobacillus hilgardii B706. Arch Microbiol 2011; 193:251-61. [PMID: 21221529 DOI: 10.1007/s00203-010-0670-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Different strains of the genus Lactobacillus can be regularly isolated from must and wine samples. By various physiological activities, they can improve or reduce the wine quality. Lactobacillus hilgardii that is known to survive under harsh wine conditions is classified as a spoilage bacterium, e.g. due to the production of histamine. Many lactobacilli form an S-layer as the outermost cell wall component which has been found to facilitate the colonization of special ecological niches. A detailed understanding of the properties related to their S-layer proteins is necessary to improve the knowledge of the interactions between different bacterial cells and with the surrounding environments. The S-layer protein from the wine-related L. hilgardii strain B706 has been isolated and its gene sequence determined. The deduced amino acid sequence corresponds to a 41 kDa protein with an isoelectric point of 9.6 without additional posttranslational modifications after splitting off the leader peptide. The complete protein is organized in a 32 amino acids signal sequence for membrane translocation, a positively charged N-terminal domain that binds to the cell wall and a negatively charged C-terminal domain. When the S-layer was removed, the corresponding L. hilgardii B706 cells became more sensitive to bacteriolytic enzymes and some wine-related stress conditions. From a practical point of view, the S-layer may be considered as a target for the inhibition of food-spoiling lactobacilli.
Collapse
Affiliation(s)
- Nina Dohm
- Institute of Microbiology and Wine Research, Johannes Gutenberg-University of Mainz, Becherweg 15, 55099, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
42
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Lactobacillus plantarum surface layer adhesive protein protects intestinal epithelial cells against tight junction injury induced by enteropathogenic Escherichia coli. Mol Biol Rep 2010; 38:3471-80. [PMID: 21086172 DOI: 10.1007/s11033-010-0457-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023]
Abstract
Lactobacillus plantarum (LP) has previously been used for the treatment and prevention of intestinal disorders and disease. However, the role of the LP surface layer adhesive protein (SLAP) in inhibition of epithelial cell disruption is not fully understood. The aim of the present study was to investigate the protective effects of purified SLAP on Caco-2 cells infected with enteropathogenic Escherichia coli (EPEC). The role of ERK in LP-mediated inhibition of tight junction (TJ) injury was also evaluated in order to determine the molecular mechanisms underlying the protective effects of LP in epithelial cells. SLAP was extracted and purified from LP cells using a porcine stomach mucin-Sepharose 4B column. SLAP-mediated inhibition of bacterial adhesion was measured using a competition-based adhesion assay. Expression of TJ-associated proteins, maintenance of TJ structure, and levels of extracellular signal regulated kinase (ERK) and ERK phosphorylation were assessed in SLAP-treated cells by a combination of real-time PCR, western blotting, and immunofluorescence microscopy. Cell permeability was analyzed by measurement of trans-epithelial electrical resistance (TER) and dextran permeability. The effect of SLAP on levels of apoptosis in epithelial cells was assessed by flow cytometry. Results from these experiments revealed that treatment with SLAP decreased the level of adhesion of EPEC to Caco-2 cells. SLAP treatment also enhanced expression of TJ proteins at both the mRNA and protein levels and affected F-actin distribution. Although ERK levels remained unchanged, ERK phosphorylation was increased by SLAP treatment. Caco-2 cells treated with SLAP exhibited increased TER and decreased macromolecular permeability, which was accompanied by a decrease in the level of apoptosis. Together, these results suggest that LP-produced SLAP protects intestinal epithelial cells from EPEC-induced injury, likely through a mechanism involving ERK activation.
Collapse
|
45
|
Characterization and separate activities of the two promoters of the Lactobacillus brevis S-layer protein gene. Appl Microbiol Biotechnol 2010; 87:657-68. [PMID: 20229202 DOI: 10.1007/s00253-010-2500-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 02/03/2023]
Abstract
Lactobacillus brevis ATCC 8287 possesses a surface (S)-layer protein SlpA, the gene of which is very efficiently expressed. To study the expression signals of the slpA gene, several different reporter plasmids, based on the low-copy-number vector pKTH2121 derived from pGK12, were constructed. In the reporter plasmids, only one of the two consecutive slpA promoters (P1, P2) was placed upstream of the Lactobacillus helveticus proline iminopeptidase (pepI) gene, and defined parts of the sequences upstream of the promoter were deleted. As indicated by reporter enzyme activities, both promoters were efficiently recognized at different growth stages in L. brevis. An upstream region important for the full activity of P1 was identified. The quantification of pepI-specific mRNA in L. brevis and SDS-PAGE indicated that slpA expression is not regulated at the post-transcriptional level and revealed no regulation of slpA promoters under the conditions tested. The high expression levels of both slpA and the reporter gene in L. brevis were found to remain at a high level after the addition of bile or pancreatin in the growth medium or after a change of the carbon source, which is advantageous for the potential use of SlpA as a carrier in live oral vaccines.
Collapse
|
46
|
Deepika G, Charalampopoulos D. Surface and adhesion properties of lactobacilli. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:127-52. [PMID: 20359456 DOI: 10.1016/s0065-2164(10)70004-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface properties of lactobacilli are of significant technological importance as they determine the interaction of the bacterial cells with the gastrointestinal mucosa, and therefore influence their location in the gut and their functionality. Studying the surface of the bacteria is critical for understanding the adhesion process better. This review compiles the knowledge from studies on the characterization Lactobacillus surfaces and evaluates the potential relationship between the cells' physicochemical characteristics and their adhesive abilities. It also discusses the effect that the production processes, such as fermentation and drying, can exert on the surface properties and adhesion abilities of lactobacilli.
Collapse
Affiliation(s)
- G Deepika
- Department of Food and Nutritional Sciences, The University of Reading, Reading RG6 6AP, UK
| | | |
Collapse
|
47
|
Surface location of individual residues of SlpA provides insight into the Lactobacillus brevis S-layer. J Bacteriol 2009; 191:3339-49. [PMID: 19304849 DOI: 10.1128/jb.01782-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial surface layer (S-layer) proteins are excellent candidates for in vivo and in vitro nanobiotechnological applications because of their ability to self-assemble into two-dimensional lattices that form the outermost layer of many Eubacteria and most Archaea species. Despite this potential, knowledge about their molecular architecture is limited. In this study, we investigated SlpA, the S-layer protein of the potentially probiotic bacterium Lactobacillus brevis ATCC 8287 by cysteine-scanning mutagenesis and chemical modification. We generated a series of 46 mutant proteins by replacing single amino acids with cysteine, which is not present in the wild-type protein. Most of the replaced amino acids were located in the self-assembly domain (residues 179 to 435) that likely faces the outer surface of the lattice. As revealed by electron microscopy, all the mutant proteins were able to form self-assembly products identical to that of the wild type, proving that this replacement does not dramatically alter the protein conformation. The surface accessibility of the sulfhydryl groups introduced was studied with two maleimide-containing marker molecules, TMM(PEG)(12) (molecular weight [MW], 2,360) and AlexaFluor488-maleimide (MW = 720), using both monomeric proteins in solution and proteins allowed to self-assemble on cell wall fragments. Using the acquired data and available domain information, we assigned the mutated residues into four groups according to their location in the protein monomer and lattice structure: outer surface of the lattice (9 residues), inner surface of the lattice (9), protein interior (12), and protein-protein interface/pore regions (16). This information is essential, e.g., in the development of therapeutic and other health-related applications of Lactobacillus S-layers.
Collapse
|