1
|
Díaz-Rullo Edreira S, Vasiliadou IA, Prado A, Espada JJ, Wattiez R, Leroy B, Martínez F, Puyol D. Elucidating metabolic tuning of mixed purple phototrophic bacteria biofilms in photoheterotrophic conditions through microbial photo-electrosynthesis. Commun Biol 2024; 7:1526. [PMID: 39557963 PMCID: PMC11574181 DOI: 10.1038/s42003-024-07188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Reducing greenhouse gas emissions is critical for humanity nowadays, but it can be beneficial by developing engineered systems that valorize CO2 into commodities, thus mimicking nature's wisdom. Purple phototrophic bacteria (PPB) naturally accept CO2 into their metabolism as a primary redox sink system in photo-heterotrophy. Dedicated use of this feature for developing sustainable processes (e.g., through negative-emissions photo-bioelectrosynthesis) requires a deep knowledge of the inherent metabolic mechanisms. This work provides evidence of tuning the PPB metabolic mechanisms upon redox stressing through negative polarization (-0.4 and -0.8 V vs. Ag/AgCl) in photo-bioelectrochemical devices. A mixed PPB-culture upregulates its ability to capture CO2 from organics oxidation through the Calvin-Besson-Bassam cycle and anaplerotic pathways, and the redox imbalance is promoted to polyhydroxyalkanoates production. The ecological relationship of PPB with mutualist bacteria stabilizes the system and opens the door for future development of photo-bioelectrochemical devices focused on CO up-cycling.
Collapse
Affiliation(s)
- Sara Díaz-Rullo Edreira
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Ioanna A Vasiliadou
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Amanda Prado
- Department of Automation, Electric Engineering and Electronic Technology, Polytechnic University of Cartagena, Cartagena, Spain
| | - Juan José Espada
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Fernando Martínez
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain
| | - Daniel Puyol
- Department of Chemical and Environmental Engineering, High School of Experimental Sciences and Technology, University Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
2
|
Seyler LM, Kraus EA, McLean C, Spear JR, Templeton AS, Schrenk MO. An untargeted exometabolomics approach to characterize dissolved organic matter in groundwater of the Samail Ophiolite. Front Microbiol 2023; 14:1093372. [PMID: 36970670 PMCID: PMC10033605 DOI: 10.3389/fmicb.2023.1093372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023] Open
Abstract
The process of serpentinization supports life on Earth and gives rise to the habitability of other worlds in our Solar System. While numerous studies have provided clues to the survival strategies of microbial communities in serpentinizing environments on the modern Earth, characterizing microbial activity in such environments remains challenging due to low biomass and extreme conditions. Here, we used an untargeted metabolomics approach to characterize dissolved organic matter in groundwater in the Samail Ophiolite, the largest and best characterized example of actively serpentinizing uplifted ocean crust and mantle. We found that dissolved organic matter composition is strongly correlated with both fluid type and microbial community composition, and that the fluids that were most influenced by serpentinization contained the greatest number of unique compounds, none of which could be identified using the current metabolite databases. Using metabolomics in conjunction with metagenomic data, we detected numerous products and intermediates of microbial metabolic processes and identified potential biosignatures of microbial activity, including pigments, porphyrins, quinones, fatty acids, and metabolites involved in methanogenesis. Metabolomics techniques like the ones used in this study may be used to further our understanding of life in serpentinizing environments, and aid in the identification of biosignatures that can be used to search for life in serpentinizing systems on other worlds.
Collapse
Affiliation(s)
- Lauren M. Seyler
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
- *Correspondence: Lauren M. Seyler,
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Environmental Engineering, University of Colorado, Boulder, Boulder, CO, United States
| | - Craig McLean
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Jiang C, Zhu S, Feng J, Shui W. Slope aspect affects the soil microbial communities in karst tiankeng negative landforms. BMC Ecol Evol 2022; 22:54. [PMID: 35501694 PMCID: PMC9063220 DOI: 10.1186/s12862-022-01986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/04/2022] [Indexed: 01/10/2023] Open
Abstract
Background Karst tiankeng is a large-scale negative surface terrain, and slope aspects affect the soil conditions, vegetation and microbial flora in the tiankeng. However, the influence of the slope aspect on the soil microbial community in tiankeng has not been elucidated. Methods In this study, metagenomic sequencing technology was used to analyze the soil microbial community structure and functional potentials on the shady and sunny slopes of karst tiankeng. Results The Shannon–Wiener diversity of microbial communities on shady slope (SHS) was significantly higher than that on sunny slope (SUS). Although the composition of dominant phyla on shady slope (SHS) and sunny slope (SUS) was similar, there were significant differences in beta-diversity. The linear discriminate analysis (LDA) results showed that biomarkers mainly belongs to Actinobacteria, Chloroflexi and Proteobacteria. Functional pathways and CAZy (Carbohydrate-Active Enzymes) genes also had a remarkable response to slope aspect change. LEfSe results indicated several biomarker pathways in sunny slope involved in human disease. Moreover, the abundance of CAZy genes was higher in shady slope and had stronger ability in decomposing litter. The microbial communities were mainly correlation with the vegetation characteristics (species richness and coverage) and soil properties (SOC and pH). Conclusions These results indicate slope aspect has a pronounced influence on microbial community composition, structure and function at karst tiankeng. In the future, the conservation of karst tiankeng biodiversity should pay more attention to topographical factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01986-y.
Collapse
|
4
|
Convergent evolution of zoonotic Brucella species toward the selective use of the pentose phosphate pathway. Proc Natl Acad Sci U S A 2020; 117:26374-26381. [PMID: 33020286 DOI: 10.1073/pnas.2008939117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of the factors that govern host tropism remains incompletely understood for most pathogens. Brucella species, which are capable of infecting a wide range of hosts, offer a useful avenue to address this question. We hypothesized that metabolic fine-tuning to intrahost niches is likely an underappreciated axis underlying pathogens' ability to infect new hosts and tropism. In this work, we compared the central metabolism of seven Brucella species by stable isotopic labeling and genetics. We identified two functionally distinct groups, one overlapping with the classical zoonotic species of domestic livestock that exclusively use the pentose phosphate pathway (PPP) for hexose catabolism, whereas species from the second group use mostly the Entner-Doudoroff pathway (EDP). We demonstrated that the metabolic dichotomy among Brucellae emerged after the acquisition of two independent EDP-inactivating mutations in all classical zoonotic species. We then examined the pathogenicity of key metabolic mutants in mice and confirmed that this trait is tied to virulence. Altogether, our data are consistent with the hypothesis that the PPP has been incrementally selected over the EDP in parallel to Brucella adaptation to domestic livestock.
Collapse
|
5
|
Seyler L, Kujawinski EB, Azua-Bustos A, Lee MD, Marlow J, Perl SM, Cleaves II HJ. Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. ASTROBIOLOGY 2020; 20:1251-1261. [PMID: 32551936 PMCID: PMC7116171 DOI: 10.1089/ast.2019.2135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.
Collapse
Affiliation(s)
- Lauren Seyler
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Address correspondence to: Lauren Seyler, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86 Water Street, Woods Hole, MA 02543, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Armando Azua-Bustos
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Michael D. Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Jeffrey Marlow
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Scott M. Perl
- Geological and Planetary Sciences, California Institute of Technology/NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, California, USA
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, USA
- Geographical Research Laboratory, Carnegie Institution of Washington
| |
Collapse
|
6
|
Zhang L, Lv J. Metagenomic analysis of microbial community and function reveals the response of soil respiration to the conversion of cropland to plantations in the Loess Plateau of China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
A Model Roseobacter, Ruegeria pomeroyi DSS-3, Employs a Diffusible Killing Mechanism To Eliminate Competitors. mSystems 2020; 5:5/4/e00443-20. [PMID: 32788406 PMCID: PMC7426152 DOI: 10.1128/msystems.00443-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Roseobacter clade is a group of alphaproteobacteria that have diverse metabolic and regulatory capabilities. They are abundant in marine environments and have a substantial role in marine ecology and biogeochemistry. However, interactions between roseobacters and other bacterioplankton have not been extensively explored. In this study, we identify a killing mechanism in the model roseobacter Ruegeria pomeroyi DSS-3 by coculturing it with a group of phylogenetically diverse bacteria. The killing mechanism is diffusible and occurs when cells are grown both on surfaces and in suspension and is dependent on cell density. A screen of random transposon mutants revealed that the killing phenotype, as well as resistance to killing, require genes within an ∼8-kb putative gamma-butyrolactone synthesis gene cluster, which resembles similar pheromone-sensing systems in actinomycetes that regulate secondary metabolite production, including antimicrobials. Transcriptomics revealed the gene cluster is highly upregulated in wild-type DSS-3 compared to a nonkiller mutant when grown in liquid coculture with a roseobacter target. Our findings show that R. pomeroyi has the capability to eliminate closely and distantly related competitors, providing a mechanism to alter the community structure and function in its native habitats.IMPORTANCE Bacteria carry out critical ecological and biogeochemical processes and form the foundations of ecosystems. Identifying the factors that influence microbial community composition and the functional capabilities encoded within them is key to predicting how microbes impact an ecosystem. Because microorganisms must compete for limited space and nutrients to promote their own propagation, they have evolved diverse mechanisms to outcompete or kill competitors. However, the genes and regulatory strategies that promote such competitive abilities are largely underexplored, particularly in free-living marine bacteria. Here, genetics and omics techniques are used to investigate how a model marine bacterium is capable of quickly eliminating natural competitors in coculture. We determined that a previously uncharacterized horizontally acquired gene cluster is required for this bacterium to kill diverse competitors. This work represents an important step toward understanding the mechanisms bacterial populations can use to become dominant members in marine microbial communities.
Collapse
|
8
|
Ray A, Edmonds KA, Palmer LD, Skaar EP, Giedroc DP. Staphylococcus aureus Glucose-Induced Biofilm Accessory Protein A (GbaA) Is a Monothiol-Dependent Electrophile Sensor. Biochemistry 2020; 59:2882-2895. [PMID: 32697076 DOI: 10.1021/acs.biochem.0c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a commensal pathogen that has evolved to protect itself from unfavorable conditions by forming complex community structures termed biofilms. The regulation of the formation of these structures is multifactorial and in S. aureus involves a number of transcriptional regulators. GbaA (glucose-induced biofilm accessory protein A) is a tetracycline repressor (TetR) family regulator that harbors two conserved Cys residues (C55 and C104) and impacts the regulation of formation of poly-N-acetylglucosamine-based biofilms in many methicillin-resistant S. aureus (MRSA) strains. Here, we show that GbaA-regulated transcription of a divergently transcribed operon in a MRSA strain can be induced by potent electrophiles, N-ethylmaleimide and methylglyoxal. Strikingly, induction of transcription in cells requires C55 or C104, but not both. These findings are consistent with in vitro small-angle X-ray scattering, chemical modification, and DNA operator binding experiments, which reveal that both reduced and intraprotomer (C55-C104) disulfide forms of GbaA have very similar overall structures and each exhibits a high affinity for the DNA operator, while DNA binding is strongly inhibited by derivatization of one or the other Cys residues via formation of a mixed disulfide with bacillithiol disulfide or a monothiol derivatization adduct with NEM. While both Cys residues are reactive toward electrophiles, C104 in the regulatory domain is the more reactive thiolate. These characteristics enhance the inducer specificity of GbaA and would preclude sensing of generalized cellular oxidative stress via disulfide bond formation. The implications of the findings for GbaA function in MRSA strains are discussed.
Collapse
Affiliation(s)
- Abhinaba Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
9
|
The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum. mSystems 2020; 5:5/2/e00091-20. [PMID: 32156794 PMCID: PMC7065512 DOI: 10.1128/msystems.00091-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood. In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated R. solanacearum strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase (pfk-1) and phosphogluconate dehydrogenase (gnd) enzymes that are relevant for glycolysis and OxPPP, respectively. R. solanacearum F1C1 cells fed with [13C]glucose (99% [1-13C]glucose or 99% [1,2-13C]glucose or 40% [13C6]glucose) followed by gas chromatography-mass spectrometry (GC-MS)-based labeling analysis of fragments from amino acids, glycerol, and ribose provided clear evidence that rather than glycolysis and the OxPPP, the ED pathway and non-OxPPP are the main routes sustaining metabolism in R. solanacearum. The 13C incorporation in the mass ions of alanine (m/z 260 and m/z 232), valine (m/z 288 and m/z 260), glycine (m/z 218), serine (m/z 390 and m/z 362), histidine (m/z 440 and m/z 412), tyrosine (m/z 466 and m/z 438), phenylalanine (m/z 336 and m/z 308), glycerol (m/z 377), and ribose (m/z 160) mapped the pathways supporting the observations. The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. IMPORTANCE Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.
Collapse
|
10
|
GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 2019; 54:35-53. [DOI: 10.1016/j.ymben.2019.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
|
11
|
Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab Eng 2019; 54:200-211. [DOI: 10.1016/j.ymben.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023]
|
12
|
Bill N, Tomasch J, Riemer A, Müller K, Kleist S, Schmidt-Hohagen K, Wagner-Döbler I, Schomburg D. Fixation of CO 2 using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae. Environ Microbiol 2017; 19:2645-2660. [PMID: 28371065 DOI: 10.1111/1462-2920.13746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 01/26/2023]
Abstract
The ability of aerobic anoxygenic photoheterotrophs (AAPs) to gain additional energy from sunlight represents a competitive advantage, especially in conditions where light has easy access or under environmental conditions may change quickly, such as those in the world´s oceans. However, the knowledge about the metabolic consequences of aerobic anoxygenic photosynthesis is very limited. Combining transcriptome and metabolome analyses, isotopic labelling techniques, measurements of growth, oxygen uptake rates, flow cytometry, and a number of other biochemical analytical techniques we obtained a comprehensive overview on the complex adaption of the marine bacterium Dinoroseobacter shibae DFL12T during transition from heterotrophy to photoheterotrophy (growth on succinate). Growth in light was characterized by reduced respiration, a decreased metabolic flux through the tricarboxylic acid (TCA) cycle and the assimilation of CO2 via an enhanced flux through the ethylmalonyl-CoA (EMC) pathway, which was shown to be connected to the serine metabolism. Adaptation to photoheterotrophy is mainly characterized by metabolic reactions caused by a surplus of reducing potential and might depend on genes located in one operon, encoding branching point enzymes of the EMC pathway, serine metabolism and the TCA cycle.
Collapse
Affiliation(s)
- Nelli Bill
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Jürgen Tomasch
- Department of Microbial Communication, Helmholtz-Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, D-38124, Germany
| | - Alexander Riemer
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Katrin Müller
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Sarah Kleist
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| | - Irene Wagner-Döbler
- Department of Microbial Communication, Helmholtz-Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, D-38124, Germany
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Rebenring 56, Braunschweig, D-38106, Germany
| |
Collapse
|
13
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
14
|
Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J 2017; 14:104. [PMID: 28592325 PMCID: PMC5463345 DOI: 10.1186/s12985-017-0773-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/01/2017] [Indexed: 11/24/2022] Open
Abstract
Background Erythrobacter comprises a widespread and ecologically significant genus of marine bacteria. However, no phage infecting Erythrobacter spp. has been reported to date. This study describes the isolation and characterization of phage vB_EliS-R6L from Erythrobacter. Methods Standard virus enrichment and double-layer agar methods were used to isolate and characterize the phage. Morphology was observed by transmission electron microscopy, and a one-step growth curve assay was performed. The phage genome was sequenced using the Illumina Miseq platform and annotated using standard bioinformatics tools. Phylogenetic analyses were performed based on the deduced amino acid sequences of terminase, endolysin, portal protein, and major capsid protein, and genome recruitment analysis was conducted using Jiulong River Estuary Virome, Pacific Ocean Virome and Global Ocean Survey databases. Results A novel phage, vB_EliS-R6L, from coastal waters of Xiamen, China, was isolated and found to infect the marine bacterium Erythrobacter litoralis DSM 8509. Morphological observation and genome analysis revealed that phage vB_EliS-R6L is a siphovirus with a 65.7-kb genome that encodes 108 putative gene products. The phage exhibits growth at a wide range of temperature and pH conditions. Genes encoding five methylase-related proteins were found in the genome, and recognition site predictions suggested its resistance to restriction-modification host systems. Genomic comparisons and phylogenetic analyses indicate that phage vB_EliS-R6L is distinct from other known phages. Metagenomic recruitment analysis revealed that vB_EliS-R6L-like phages are widespread in marine environments, with likely distribution in coastal waters. Conclusions Isolation of the first Erythrobacter phage (vB_EliS-R6L) will contribute to our understanding of host-phage interactions, the ecology of marine Erythrobacter and viral metagenome annotation efforts.
Collapse
|
15
|
Ebert M, Laaß S, Thürmer A, Roselius L, Eckweiler D, Daniel R, Härtig E, Jahn D. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae. Front Microbiol 2017; 8:642. [PMID: 28473807 PMCID: PMC5398030 DOI: 10.3389/fmicb.2017.00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated.
Collapse
Affiliation(s)
- Matthias Ebert
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Sebastian Laaß
- Institute for Molecular Biosciences, Goethe-University FrankfurtFrankfurt, Germany
| | - Andrea Thürmer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Louisa Roselius
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| |
Collapse
|
16
|
Carbohydrate catabolism in Phaeobacter inhibens DSM 17395, a member of the marine roseobacter clade. Appl Environ Microbiol 2015; 80:4725-37. [PMID: 24858085 DOI: 10.1128/aem.00719-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since genome analysis did not allow unambiguous reconstruction of transport, catabolism, and substrate-specific regulation for several important carbohydrates in Phaeobacter inhibens DSM 17395, proteomic and metabolomic analyses of N-acetylglucosamine-, mannitol-, sucrose-, glucose-, and xylose-grown cells were carried out to close this knowledge gap. These carbohydrates can pass through the outer membrane via porins identified in the outer membrane fraction. For transport across the cytoplasmic membrane, carbohydrate-specific ABC transport systems were identified. Their coding genes mostly colocalize with the respective "catabolic" and "regulatory" genes. The degradation of N-acetylglucosamine proceeds via N-acetylglucosamine-6-phosphate and glucosamine-6-phosphate directly to fructose-6-phosphate; two of the three enzymes involved were newly predicted and identified. Mannitol is catabolized via fructose, sucrose via fructose and glucose, glucose via glucose-6-phosphate, and xylose via xylulose-5-phosphate. Of the 30 proteins predicted to be involved in uptake, regulation, and degradation, 28 were identified by proteomics and 19 were assigned to their respective functions for the first time. The peripheral degradation pathways feed into the Entner-Doudoroff (ED) pathway, which is connected to the lower branch of the Embden-Meyerhof-Parnas (EMP) pathway. The enzyme constituents of these pathways displayed higher abundances in P. inhibens DSM 17395 cells grown with any of the five carbohydrates tested than in succinate-grown cells. Conversely, gluconeogenesis is turned on during succinate utilization. While tricarboxylic acid (TCA) cycle proteins remained mainly unchanged, the abundance profiles of their metabolites reflected the differing growth rates achieved with the different substrates tested. Homologs of the 74 genes involved in the reconstructed catabolic pathways and central metabolism are present in various Roseobacter clade members.
Collapse
|
17
|
Large-Scale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose. Appl Environ Microbiol 2015; 81:2408-22. [PMID: 25616803 DOI: 10.1128/aem.03157-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria form one of the largest living surfaces on Earth, and their metabolic activity is of fundamental importance for global nutrient cycling. Here, we explored the largely unknown intracellular pathways in 25 microbes representing different classes of marine bacteria that use glucose: Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia of the Bacteriodetes phylum. We used (13)C isotope experiments to infer metabolic fluxes through their carbon core pathways. Notably, 90% of all strains studied use the Entner-Doudoroff (ED) pathway for glucose catabolism, whereas only 10% rely on the Embden-Meyerhof-Parnas (EMP) pathway. This result differed dramatically from the terrestrial model strains studied, which preferentially used the EMP pathway yielding high levels of ATP. Strains using the ED pathway exhibited a more robust resistance against the oxidative stress typically found in this environment. An important feature contributing to the preferential use of the ED pathway in the oceans could therefore be enhanced supply of NADPH through this pathway. The marine bacteria studied did not specifically rely on a distinct anaplerotic route, but the carboxylation of phosphoenolpyruvate (PEP) or pyruvate for fueling of the tricarboxylic acid (TCA) cycle was evenly distributed. The marine isolates studied belong to clades that dominate the uptake of glucose, a major carbon source for bacteria in seawater. Therefore, the ED pathway may play a significant role in the cycling of mono- and polysaccharides by bacterial communities in marine ecosystems.
Collapse
|
18
|
Ji J, Zhang R, Jiao N. Complete genome sequence of Roseophage vB_DshP-R1, which infects Dinoroseobacter shibae DFL12. Stand Genomic Sci 2015; 10:6. [PMID: 26380630 PMCID: PMC4572628 DOI: 10.1186/1944-3277-10-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/23/2014] [Indexed: 04/09/2023] Open
Abstract
The Roseophages, a group of marine viruses that uniquely infect the Roseobacter clade of bacteria, play a significant role in marine ecosystems. Here we present a complete genomic sequence of an N4 phage ‘vB_DshP-R1’, which infects Dinoroseobacter shibae DFL12, together with its structural and genomic features. vB_DshP-R1 has an ~ 75 nm diameter icosahedral structure and a complete genome of 75,028 bp. This is the first genome sequence of a lytic phage of the genus Dinoroseobacter.
Collapse
Affiliation(s)
- Jianda Ji
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR China
| |
Collapse
|
19
|
Ji J, Zhang R, Jiao N. Complete genome sequence of Roseophage vB_DshP-R1, which infects Dinoroseobacter shibae DFL12. Stand Genomic Sci 2015; 9:31. [PMID: 25685262 PMCID: PMC4322955 DOI: 10.1186/1944-3277-9-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/23/2014] [Indexed: 12/26/2022] Open
Abstract
The Roseophages, a group of marine viruses that uniquely infect the Roseobacter clade of bacteria, play a significant role in marine ecosystems. Here we present a complete genomic sequence of an N4 phage ‘vB_DshP-R1’, which infects Dinoroseobacter shibae DFL12, together with its structural and genomic features. vB_DshP-R1 has an ~ 75 nm diameter icosahedral structure and a complete genome of 75,028 bp. This is the first genome sequence of a lytic phage of the genus Dinoroseobacter.
Collapse
Affiliation(s)
- Jianda Ji
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, PR, China
| |
Collapse
|
20
|
Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME JOURNAL 2014; 9:371-84. [PMID: 25083934 DOI: 10.1038/ismej.2014.134] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/21/2014] [Indexed: 12/31/2022]
Abstract
The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10-31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry.
Collapse
|
21
|
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 2014; 9:e88368. [PMID: 24709961 PMCID: PMC3977821 DOI: 10.1371/journal.pone.0088368] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response.
Collapse
Affiliation(s)
- Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
22
|
Laass S, Kleist S, Bill N, Drüppel K, Kossmehl S, Wöhlbrand L, Rabus R, Klein J, Rohde M, Bartsch A, Wittmann C, Schmidt-Hohagen K, Tielen P, Jahn D, Schomburg D. Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion. J Biol Chem 2014; 289:13219-31. [PMID: 24648520 DOI: 10.1074/jbc.m113.545004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metabolic flexibility is the key to the ecological success of the marine Roseobacter clade bacteria. We investigated the metabolic adaptation and the underlying changes in gene expression of Dinoroseobacter shibae DFL12(T) to anoxic life by a combination of metabolome, proteome, and transcriptome analyses. Time-resolved studies during continuous oxygen depletion were performed in a chemostat using nitrate as the terminal electron acceptor. Formation of the denitrification machinery was found enhanced on the transcriptional and proteome level, indicating that D. shibae DFL12(T) established nitrate respiration to compensate for the depletion of the electron acceptor oxygen. In parallel, arginine fermentation was induced. During the transition state, growth and ATP concentration were found to be reduced, as reflected by a decrease of A578 values and viable cell counts. In parallel, the central metabolism, including gluconeogenesis, protein biosynthesis, and purine/pyrimidine synthesis was found transiently reduced in agreement with the decreased demand for cellular building blocks. Surprisingly, an accumulation of poly-3-hydroxybutanoate was observed during prolonged incubation under anoxic conditions. One possible explanation is the storage of accumulated metabolites and the regeneration of NADP(+) from NADPH during poly-3-hydroxybutanoate synthesis (NADPH sink). Although D. shibae DFL12(T) was cultivated in the dark, biosynthesis of bacteriochlorophyll was increased, possibly to prepare for additional energy generation via aerobic anoxygenic photophosphorylation. Overall, oxygen depletion led to a metabolic crisis with partly blocked pathways and the accumulation of metabolites. In response, major energy-consuming processes were reduced until the alternative respiratory denitrification machinery was operative.
Collapse
Affiliation(s)
- Sebastian Laass
- From the Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
24
|
Neumann A, Patzelt D, Wagner-Döbler I, Schulz S. Identification of new N-acylhomoserine lactone signalling compounds of Dinoroseobacter shibae DFL-12(T) by overexpression of luxI genes. Chembiochem 2013; 14:2355-61. [PMID: 24218333 DOI: 10.1002/cbic.201300424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 01/06/2023]
Abstract
Bacteria of the Roseobacter clade are widespread in the ocean and occur in many different habitats. In the genome of Dinoroseobacter shibae DFL-12, luxI homologous genes that encode synthases responsible for the formation of N-acylhomoserine lactones (AHLs) have been described. These compounds are known autoinducers that regulate several biological traits-namely, flagella formation and cell differentiation-in D. shibae through quorum sensing. The AHLs produced by D. shibae mainly consisted of N-octadecadienoylhomoserine lactone (C18:2-AHL) and N-octadecenoylhomoserine lactone (C18:1-HSL). In the wild type these AHLs are synthesized only in low abundance. The luxI genes were therefore expressed in Escherichia coli; this resulted in the formation of AHLs mostly different from those found in the D. shibae wild type. A luxI1 -deficient mutant of D. shibae was then reprovided with an overexpressed luxI1 gene. This strain produced large amounts of C18:2-AHL and C18:1-AHL, allowing full characterization of these compounds by mass spectrometric techniques and derivatization. Synthesis of the proposed structures confirmed that the major compound is (2E,11Z)-N-octadeca-2,11-dienoylhomoserine lactone (6, C18:2-HSL), accompanied by (Z)-N-octadec-11-enoylhomoserine lactone (5, C18:1-HSL). AHL 6 has not been reported before from other organisms and contains an unusual 2E double bond.
Collapse
Affiliation(s)
- Alexander Neumann
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106 Braunschweig (Germany)
| | | | | | | |
Collapse
|
25
|
Rex R, Bill N, Schmidt-Hohagen K, Schomburg D. Swimming in light: a large-scale computational analysis of the metabolism of Dinoroseobacter shibae. PLoS Comput Biol 2013; 9:e1003224. [PMID: 24098096 PMCID: PMC3789786 DOI: 10.1371/journal.pcbi.1003224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/31/2013] [Indexed: 01/26/2023] Open
Abstract
The Roseobacter clade is a ubiquitous group of marine α-proteobacteria. To gain insight into the versatile metabolism of this clade, we took a constraint-based approach and created a genome-scale metabolic model (iDsh827) of Dinoroseobacter shibae DFL12T. Our model is the first accounting for the energy demand of motility, the light-driven ATP generation and experimentally determined specific biomass composition. To cover a large variety of environmental conditions, as well as plasmid and single gene knock-out mutants, we simulated 391,560 different physiological states using flux balance analysis. We analyzed our results with regard to energy metabolism, validated them experimentally, and revealed a pronounced metabolic response to the availability of light. Furthermore, we introduced the energy demand of motility as an important parameter in genome-scale metabolic models. The results of our simulations also gave insight into the changing usage of the two degradation routes for dimethylsulfoniopropionate, an abundant compound in the ocean. A side product of dimethylsulfoniopropionate degradation is dimethyl sulfide, which seeds cloud formation and thus enhances the reflection of sunlight. By our exhaustive simulations, we were able to identify single-gene knock-out mutants, which show an increased production of dimethyl sulfide. In addition to the single-gene knock-out simulations we studied the effect of plasmid loss on the metabolism. Moreover, we explored the possible use of a functioning phosphofructokinase for D. shibae. The oceans are home to a large variety of microorganisms, which interact in several ways with world-wide metabolic cycles. A representative of an important group of marine bacteria called the Roseobacter clade is Dinoroseobacter shibae. This organism is known to use a variant of photosynthesis to obtain energy from light. Another feature of D. shibae and many other Roseobacters is the ability to degrade an abundant compound in the ocean called dimethylsulfoniopropionate. Importantly, one degradation pathway of dimethylsulfoniopropionate releases a side product, which affects climate by seeding cloud formation. In this work, we constructed a genome-scale metabolic model of D. shibae and carried out a detailed computational analysis of its metabolism. Our model simulates the light-harvesting capabilities of D. shibae and also accounts for the energy needed to swim. Thanks to our exhaustive simulations we were able to elucidate the effect of light on the growth of D. shibae, to study the consequences of genetic perturbations, and to identify mutants which produce more cloud-seeding compounds. Foremost, our computational results help to understand an important part of the complex processes in the ocean in greater detail. Besides, they can be a valuable guide for future wet-lab experiments.
Collapse
Affiliation(s)
- Rene Rex
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nelli Bill
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kerstin Schmidt-Hohagen
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
26
|
Transposon mutagenesis identified chromosomal and plasmid genes essential for adaptation of the marine bacterium Dinoroseobacter shibae to anaerobic conditions. J Bacteriol 2013; 195:4769-77. [PMID: 23974024 DOI: 10.1128/jb.00860-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anaerobic growth and survival are integral parts of the life cycle of many marine bacteria. To identify genes essential for the anoxic life of Dinoroseobacter shibae, a transposon library was screened for strains impaired in anaerobic denitrifying growth. Transposon insertions in 35 chromosomal and 18 plasmid genes were detected. The essential contribution of plasmid genes to anaerobic growth was confirmed with plasmid-cured D. shibae strains. A combined transcriptome and proteome approach identified oxygen tension-regulated genes. Transposon insertion sites of a total of 1,527 mutants without an anaerobic growth phenotype were determined to identify anaerobically induced but not essential genes. A surprisingly small overlap of only three genes (napA, phaA, and the Na(+)/Pi antiporter gene Dshi_0543) between anaerobically essential and induced genes was found. Interestingly, transposon mutations in genes involved in dissimilatory and assimilatory nitrate reduction (napA, nasA) and corresponding cofactor biosynthesis (genomic moaB, moeB, and dsbC and plasmid-carried dsbD and ccmH) were found to cause anaerobic growth defects. In contrast, mutation of anaerobically induced genes encoding proteins required for the later denitrification steps (nirS, nirJ, nosD), dimethyl sulfoxide reduction (dmsA1), and fermentation (pdhB1, arcA, aceE, pta, acs) did not result in decreased anaerobic growth under the conditions tested. Additional essential components (ferredoxin, cccA) of the anaerobic electron transfer chain and central metabolism (pdhB) were identified. Another surprise was the importance of sodium gradient-dependent membrane processes and genomic rearrangements via viruses, transposons, and insertion sequence elements for anaerobic growth. These processes and the observed contributions of cell envelope restructuring (lysM, mipA, fadK), C4-dicarboxylate transport (dctM1, dctM3), and protease functions to anaerobic growth require further investigation to unravel the novel underlying adaptation strategies.
Collapse
|
27
|
Riedel T, Teshima H, Petersen J, Fiebig A, Davenport K, Daligault H, Erkkila T, Gu W, Munk C, Xu Y, Chen A, Pati A, Ivanova N, Goodwin LA, Chain P, Detter JC, Rohde M, Gronow S, Kyrpides NC, Woyke T, Göker M, Brinkhoff T, Klenk HP. Genome sequence of the Leisingera aquimarina type strain (DSM 24565(T)), a member of the marine Roseobacter clade rich in extrachromosomal elements. Stand Genomic Sci 2013; 8:389-402. [PMID: 24501625 PMCID: PMC3910692 DOI: 10.4056/sigs.3858183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565(T) together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).
Collapse
Affiliation(s)
- Thomas Riedel
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hazuki Teshima
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne Fiebig
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Karen Davenport
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Hajnalka Daligault
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tracy Erkkila
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Wei Gu
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Christine Munk
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Yan Xu
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Lynne A. Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C. Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
28
|
Becker J, Reinefeld J, Stellmacher R, Schäfer R, Lange A, Meyer H, Lalk M, Zelder O, von Abendroth G, Schröder H, Haefner S, Wittmann C. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 2013; 110:3013-23. [PMID: 23832568 DOI: 10.1002/bit.24963] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/03/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Basfia succiniciproducens has been recently isolated as novel producer for succinate, an important platform chemical. In batch culture, the wild type exhibited a high natural yield of 0.75 mol succinate (mol glucose)⁻¹. Systems-wide ¹³C metabolic flux analysis identified undesired fluxes through pyruvate-formate lyase (PflD) and lactate dehydrogenase (LdhA). The double deletion strain B. succiniciproducens ΔldhA ΔpflD revealed a 45% improved product yield of 1.08 mol mol⁻¹. In addition, metabolic flux analysis unraveled the parallel in vivo activity of the oxidative and reductive branch of the TCA cycle in B. succiniciproducens, whereby the oxidative part mainly served for anabolism. The wild type re-directed surplus NADH via a cycle involving malic enzyme or via transhydrogenase, respectively, to supply NADPH for anabolism, because the fluxes through the oxidative PPP and isocitrate dehydrogenase, that also provide this cofactor, were not sufficient. This was not observed for the deletion mutants, B. succiniciproducens ΔpflD and ΔldhA ΔpflD, where PPP and isocitrate dehydrogenase flux alone matched with the reduced anabolic NADPH demand. The integration of the production performance into the theoretical flux space, computed by elementary flux mode analysis, revealed that B. succiniciproducens ΔldhA ΔpflD reached 62% of the theoretical maximum yield.
Collapse
Affiliation(s)
- Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, Braunschweig, D-38106, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zech H, Hensler M, Koßmehl S, Drüppel K, Wöhlbrand L, Trautwein K, Hulsch R, Maschmann U, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R. Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients. Proteomics 2013; 13:2851-68. [PMID: 23613352 DOI: 10.1002/pmic.201200513] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/06/2013] [Accepted: 02/23/2013] [Indexed: 12/19/2022]
Abstract
Phaeobacter inhibens DSM 17395, a member of the Roseobacter clade, was studied for its adaptive strategies to complex and excess nutrient supply, here mimicked by cultivation with Marine Broth (MB). During growth in process-controlled fermenters, P. inhibens DSM 17395 grew faster (3.6-fold higher μmax ) and reached higher optical densities (2.2-fold) with MB medium, as compared to the reference condition of glucose-containing mineral medium. Apparently, in the presence of MB medium, metabolism was tuned to maximize growth rate at the expense of efficiency. Comprehensive proteomic analysis of cells harvested at ½ ODmax identified 1783 (2D DIGE, membrane and extracellular protein-enriched fractions, shotgun) different proteins (50.5% coverage), 315 (based on 2D DIGE) of which displayed differential abundance profiles. Moreover, 145 different metabolites (intra- and extracellular combined) were identified, almost all of which (140) showed abundance changes. During growth with MB medium, P. inhibens DSM 17395 specifically formed the various proteins required for utilization of phospholipids and several amino acids, as well as for gluconeogenesis. Metabolic tuning on amino acid utilization is also reflected by massive discharge of urea to dispose the cell of excess ammonia. Apparently, P. inhibens DSM 17395 modulated its metabolism to simultaneously utilize diverse substrates from the complex nutrient supply.
Collapse
Affiliation(s)
- Hajo Zech
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bondarev V, Richter M, Romano S, Piel J, Schwedt A, Schulz-Vogt HN. The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol 2013; 15:2095-113. [PMID: 23601235 PMCID: PMC3806328 DOI: 10.1111/1462-2920.12123] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The majority of strains belonging to the genus Pseudovibrio have been isolated from marine invertebrates such as tunicates, corals and particularly sponges, but the physiology of these bacteria is poorly understood. In this study, we analyse for the first time the genomes of two Pseudovibrio strains – FO-BEG1 and JE062. The strain FO-BEG1 is a required symbiont of a cultivated Beggiatoa strain, a sulfide-oxidizing, autotrophic bacterium, which was initially isolated from a coral. Strain JE062 was isolated from a sponge. The presented data show that both strains are generalistic bacteria capable of importing and oxidizing a wide range of organic and inorganic compounds to meet their carbon, nitrogen, phosphorous and energy requirements under both, oxic and anoxic conditions. Several physiological traits encoded in the analysed genomes were verified in laboratory experiments with both isolates. Besides the versatile metabolic abilities of both Pseudovibrio strains, our study reveals a number of open reading frames and gene clusters in the genomes that seem to be involved in symbiont–host interactions. Both Pseudovibrio strains have the genomic potential to attach to host cells, interact with the eukaryotic cell machinery, produce secondary metabolites and supply the host with cofactors.
Collapse
Affiliation(s)
- Vladimir Bondarev
- Max Planck Institute for Marine Microbiology, Ecophysiology Group, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Zong R, Jiao N. Proteomic responses of Roseobacter litoralis OCh149 to starvation and light regimen. Microbes Environ 2012; 27:430-42. [PMID: 23047149 PMCID: PMC4103551 DOI: 10.1264/jsme2.me12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Roseobacter litoralis OCh149 is a type strain of aerobic anoxygenic phototrophic bacteria in marine Roseobacter clade. Its full genome has been sequenced; however, proteomic research, which will give deeper insights into the environmental stimuli on gene expression networks, has yet to be performed. In the present study, a proteomic approach was employed to analyze the status of R. litoralis OCh149 in carbon starvation during the stationary phase and its responses to a dark/light regimen (12 h:12 h) in both exponential and stationary phases. LC-MS/MS-based analysis of highly abundant proteins under carbon starvation revealed that proteins involved in transport, the transcription/translation process and carbohydrate metabolism were the major functional categories, while poly-β-hydroxyalkanoate (PHA), previously accumulated in cells, was remobilized after stress. Glucose, as the sole carbon source in the defined medium, was broken down by Entner-Doudoroff and reductive pentose phosphate (PP) pathways. Carbohydrate catabolism-related proteins were down-regulated under light regardless of the growth phase, probably due to inhibition of respiration by light. In contrast, responses of amino acid metabolisms to light regimen varied among different proteins during growth phases depending on cellular requirements for proliferation, growth or survival. Fluorescence induction and relaxation measurements suggested that functional absorption cross-sections of the photosynthetic complexes decreased during the dark period and always recovered to about the previous level during the light period. Although the photosynthetic genes in R. litoralis OCh149 are located on the plasmid, these data indicate the regulatory mechanism of photoheterotroph metabolism by both carbon and light availability.
Collapse
Affiliation(s)
- Rui Zong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, PR China
| | | |
Collapse
|
32
|
Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 2012; 10:849-880. [PMID: 22690147 PMCID: PMC3366679 DOI: 10.3390/md10040849] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/13/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023] Open
Abstract
Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated.
Collapse
Affiliation(s)
- Sophie Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29680 Roscoff, France
| | - Philippe Potin
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UMR 7139 Marine Plants and Biomolecules, UPMC Univ Paris 6, Station Biologique, 29680 Roscoff, France; (P.P.); (T.T.)
- UMR 7139 Marine Plants and Biomolecules, CNRS, Station Biologique, 29680 Roscoff, France
| |
Collapse
|
33
|
Toya Y, Kono N, Arakawa K, Tomita M. Metabolic flux analysis and visualization. J Proteome Res 2012; 10:3313-23. [PMID: 21815690 DOI: 10.1021/pr2002885] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the ultimate goals of systems biology research is to obtain a comprehensive understanding of the control mechanisms of complex cellular metabolisms. Metabolic Flux Analysis (MFA) is a important method for the quantitative estimation of intracellular metabolic flows through metabolic pathways and the elucidation of cellular physiology. The primary challenge in the use of MFA is that many biological networks are underdetermined systems; it is therefore difficult to narrow down the solution space from the stoichiometric constraints alone. In this tutorial, we present an overview of Flux Balance Analysis (FBA) and (13)C-Metabolic Flux Analysis ((13)C-MFA), both of which are frequently used to solve such underdetermined systems, and we demonstrate FBA and (13)C-MFA using the genome-scale model and the central carbon metabolism model, respectively. Furthermore, because such comprehensive study of intracellular fluxes is inherently complex, we subsequently introduce various pathway mapping and visualization tools to facilitate understanding of these data in the context of the pathways. Specific visualization of MFA results using the BioCyc Omics Viewer and Pathway Projector are shown as illustrative examples.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
Microbes are the "unseen majority" of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute of Biology and Chemistry of the Marine Environment (ICBM), University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
35
|
Xiao N, Jiao N. Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol 2011; 77:7445-50. [PMID: 21908634 PMCID: PMC3209146 DOI: 10.1128/aem.05955-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12(T), Labrenzia alexandrii DFL 11(T), and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and (1)H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
36
|
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2011; 2:165. [PMID: 21866228 PMCID: PMC3149686 DOI: 10.3389/fmicb.2011.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Yinjie J. Tang
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. LouisSt. Louis, MO, USA
| | - Robert Eugene Blankenship
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
37
|
Winder CL, Dunn WB, Goodacre R. TARDIS-based microbial metabolomics: time and relative differences in systems. Trends Microbiol 2011; 19:315-22. [DOI: 10.1016/j.tim.2011.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 01/30/2023]
|
38
|
Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, Daniel R, Simon M, Brinkhoff T. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 2011; 12:324. [PMID: 21693016 PMCID: PMC3141670 DOI: 10.1186/1471-2164-12-324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Collapse
Affiliation(s)
- Daniela Kalhoefer
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sonja Voget
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rüdiger Lehmann
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Heiko Liesegang
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Antje Wollher
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
39
|
Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME JOURNAL 2011; 5:1957-68. [PMID: 21654848 DOI: 10.1038/ismej.2011.68] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO(2) fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation.
Collapse
|
40
|
Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 2010; 88:1065-75. [PMID: 20821203 DOI: 10.1007/s00253-010-2854-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 01/10/2023]
Abstract
The recent years have seen tremendous progress towards the understanding of microbial metabolism on a higher level of the entire functional system. Hereby, huge achievements including the sequencing of complete genomes and efficient post-genomic approaches provide the basis for a new, fascinating era of research-analysis of metabolic and regulatory properties on a global scale. Metabolic flux (fluxome) analysis displays the first systems oriented approach to unravel the physiology of microorganisms since it combines experimental data with metabolic network models and allows determining absolute fluxes through larger networks of central carbon metabolism. Hereby, fluxes are of central importance for systems level understanding because they fundamentally represent the cellular phenotype as integrated output of the cellular components, i.e. genes, transcripts, proteins, and metabolites. A currently emerging and promising area of research in systems biology and systems metabolic engineering is therefore the integration of fluxome data in multi-omics studies to unravel the multiple layers of control that superimpose the flux network and enable its optimal operation under different environmental conditions.
Collapse
|
41
|
Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 2009; 9:3677-97. [PMID: 19639587 DOI: 10.1002/pmic.200900120] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The marine heterotrophic roseobacter Phaeobacter gallaeciensis DSM 17395 was grown with glucose in defined mineral medium. Relative abundance changes of global protein (2-D DIGE) and metabolite (GC-MS) profiles were determined across five different time points of growth. In total, 215 proteins were identified and 147 metabolites detected (101 structurally identified), among which 60 proteins and 87 metabolites displayed changed abundances upon entry into stationary growth phase. Glucose breakdown to pyruvate apparently proceeds via the Entner-Doudoroff (ED) pathway, since phosphofructokinase of the Embden-Meyerhof-Parnas pathway is missing and the key metabolite of the ED-pathway, 2-keto-3-desoxygluconate, was detected. The absence of pfk in other genome-sequenced roseobacters suggests that the use of the ED pathway is an important physiological property among these heterotrophic marine bacteria. Upon entry into stationary growth phase (due to glucose starvation), sulfur assimilation (including cysteine biosynthesis) and parts of cell envelope synthesis (e.g. the lipid precursor 1-monooleoylglycerol) were down-regulated and cadaverine formation up-regulated. In contrast, central carbon catabolism remained essentially unchanged, pointing to a metabolic "stand-by" modus as an ecophysiological adaptation strategy. Stationary phase response of P. gallaeciensis differs markedly from that of standard organisms such as Escherichia coli, as evident e.g. by the absence of an rpoS gene.
Collapse
Affiliation(s)
- Hajo Zech
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME JOURNAL 2009; 4:61-77. [DOI: 10.1038/ismej.2009.94] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|