1
|
Chen Y, Chen Y, Zhang Y, Sun Z, Li Y, Ding J, Zhang G, Du E, Zi X, Tian C, Zhao W, Gui F. Role of Enterococcus mundtii in gut of the tomato leaf miner (Tuta absoluta) to detoxification of Chlorantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106060. [PMID: 39277378 DOI: 10.1016/j.pestbp.2024.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
Chlorantraniliprole (CAP) is applied worldwide for the control of caterpillars (Lepidoptera). However, with the overuse of CAP, the resistance problem in pest control is becoming increasingly serious. Recent studies have indicated a central role of the gut symbiont in insect pest resistance to pesticides and these may apply to the tomato leaf miner Tuta absoluta, is one of the most destructive insects worldwide. Here, we successfully isolated seven strains of tolerant CAP bacterium from the CAP-resistant T. absoluta gut, of which Enterococcus mundtii E14 showed the highest CAP tolerance, with a minimum inhibitory concentration (MIC) of 1.6 g/L and CAP degradation rate of 42.4%. Through transcriptomics and metabolism analysis, we studied the detoxification process of CAP by the E. mundtii E14, and found that CAP can be degraded by E. mundtii E14 into non-toxic compounds, such as 3,4-dihydroxy-2-(5-hydroxy-3,7-dimethylocta-2,6-dien-1-yl) benzoic acid and 2-pyridylacetic acid. Additionally, 2-pyridylacetic acid was detected both intracellular and extracellular in E. mundtii E14 treated with CAP. Meanwhile, we identified 52 up-regulated genes, including those associated with CAP degradation, such as RS11670 and RS19130. Transcriptome results annotated using KEGG indicated significant enrichment in up-regulated genes related to the glyoxylate cycle, nitrogen metabolism, and biosynthesis of secondary metabolites. Additionally, we observed that reinfection with E. mundtii E14 may effectively enhance resistance of T. absoluta to CAP. The LC50 values of the antibiotic treatment population of T. absoluta reinfection with E. mundtii E14 is 0.6122 mg/L, which was 18.27 folds higher than before reinfection. These findings offer new insights into T. absoluta resistance to CAP and contribute to a better understanding of the relationship between insecticide resistance and gut symbionts of T. absoluta, which may play a pivotal role in pest management.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Jiasheng Ding
- Plant Protection and Quarantine Station, Dehong Prefecture, Mangshi 678400, Yunnan Province, China
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Invasive Alien Species Control of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ewei Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyan Zi
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Chaoxin Tian
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Wenyuan Zhao
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Parmentier T, Molero-Baltanás R, Valdivia C, Gaju-Ricart M, Boeckx P, Łukasik P, Wybouw N. Co-habiting ants and silverfish display a converging feeding ecology. BMC Biol 2024; 22:123. [PMID: 38807209 PMCID: PMC11134936 DOI: 10.1186/s12915-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.
Collapse
Affiliation(s)
- Thomas Parmentier
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | | | - Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Miquel Gaju-Ricart
- Depto. de Biología Animal (Zoología), University of Córdoba, Córdoba, Spain
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Nicky Wybouw
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Dong AZ, Cokcetin N, Carter DA, Fernandes KE. Unique antimicrobial activity in honey from the Australian honeypot ant ( Camponotus inflatus). PeerJ 2023; 11:e15645. [PMID: 37520253 PMCID: PMC10386826 DOI: 10.7717/peerj.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Honey produced by the Australian honeypot ant (Camponotus inflatus) is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against Staphylococcus aureus but not against other bacteria, and strong non-peroxide activity against Cryptococcus and Aspergillus sp. When compared with therapeutic-grade jarrah and manuka honey produced by honey bees, we found HPAH to have a markedly different antimicrobial activity and chemical properties, suggesting HPAH has a unique mode of antimicrobial action. We found the bacterial microbiome of honeypot ants to be dominated by the known endosymbiont genus Candidatus Blochmannia (99.75%), and the fungal microbiome to be dominated by the plant-associated genus Neocelosporium (92.77%). This study demonstrates that HPAH has unique antimicrobial characteristics that validate its therapeutic use by Indigenous peoples and may provide a lead for the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Andrew Z. Dong
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Nural Cokcetin
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, NSW, Australia
| | - Dee A. Carter
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Camperdown, NSW, Australia
| | - Kenya E. Fernandes
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
5
|
Jackson R, Patapiou PA, Golding G, Helanterä H, Economou CK, Chapuisat M, Henry LM. Evidence of phylosymbiosis in Formica ants. Front Microbiol 2023; 14:1044286. [PMID: 37213490 PMCID: PMC10196114 DOI: 10.3389/fmicb.2023.1044286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Insects share intimate relationships with microbes that play important roles in their biology. Yet our understanding of how host-bound microbial communities assemble and perpetuate over evolutionary time is limited. Ants host a wide range of microbes with diverse functions and are an emerging model for studying the evolution of insect microbiomes. Here, we ask whether phylogenetically related ant species have formed distinct and stable microbiomes. Methods To answer this question, we investigated the microbial communities associated with queens of 14 Formica species from five clades, using deep coverage 16S rRNA amplicon sequencing. Results We reveal that Formica species and clades harbor highly defined microbial communities that are dominated by four bacteria genera: Wolbachia, Lactobacillus, Liliensternia, and Spiroplasma. Our analysis reveals that the composition of Formica microbiomes mirrors the phylogeny of the host, i.e., phylosymbiosis, in that related hosts harbor more similar microbial communities. In addition, we find there are significant correlations between microbe co-occurrences. Discussion Our results demonstrate Formica ants carry microbial communities that recapitulate the phylogeny of their hosts. Our data suggests that the co-occurrence of different bacteria genera may at least in part be due to synergistic and antagonistic interactions between microbes. Additional factors potentially contributing to the phylosymbiotic signal are discussed, including host phylogenetic relatedness, host-microbe genetic compatibility, modes of transmission, and similarities in host ecologies (e.g., diets). Overall, our results support the growing body of evidence that microbial community composition closely depends on the phylogeny of their hosts, despite bacteria having diverse modes of transmission and localization within the host.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Patapios A. Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Chloe K. Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Lee M. Henry,
| |
Collapse
|
6
|
Dong ZX, Tang QH, Li WL, Wang ZW, Li XJ, Fu CM, Li D, Qian K, Tian WL, Guo J. Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120340. [PMID: 36208825 DOI: 10.1016/j.envpol.2022.120340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of the First People's Hospital of Yunnan Province, Kunming, China; Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Li Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
8
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Balakrishnan B, Wu H, Cao L, Zhang Y, Li W, Han R. Immune Response and Hemolymph Microbiota of Apis mellifera and Apis cerana After the Challenge With Recombinant Varroa Toxic Protein. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1310-1320. [PMID: 33822096 DOI: 10.1093/jee/toab047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 06/12/2023]
Abstract
The honey bee is a significant crop pollinator and key model insect for understanding social behavior, disease transmission, and development. The ectoparasitic Varroa destructor mite put threats on the honey bee industry. A Varroa toxic protein (VTP) from the saliva of Varroa mites contributes to the toxicity toward Apis cerana and the deformed wing virus elevation in Apis mellifera. However, the immune response and hemolymph microbiota of honey bee species after the injection of recombinant VTP has not yet been reported. In this study, both A. cerana and A. mellifera worker larvae were injected with the recombinant VTP. Then the expressions of the honey bee immune genes abaecin, defensin, and domeless at three time points were determined by qRT-PCR, and hemolymph microbial community were analyzed by culture-dependent method, after recombinant VTP injection. The mortality rates of A. cerana larvae were much higher than those of A. mellifera larvae after VTP challenge. VTP injection induced the upregulation of defensin gene expression in A. mellifera larvae, and higher levels of abaecin and domeless mRNAs response in A. cerana larvae, compared with the control (without any injection). Phosphate buffer saline (PBS) injection also upregulated the expression levels of abaecin, defensin, and domeless in A. mellifera and A. cerana larvae. Three bacterial species (Enterococcus faecalis, Staphylococcus cohnii, and Bacillus cereus) were isolated from the hemolymph of A. cerana larvae after VTP injection and at 48 h after PBS injections. Two bacterial species (Stenotrophomonas maltophilia and Staphylococcus aureus) were isolated from A. mellifera larvae after VTP challenge. No bacterial colonies were detected from the larval hemolymph of both honey bee species treated by injection only and the control. The result indicates that abaecin, defensin, and domeless genes and hemolymph microbiota respond to the VTP challenge. VTP injection might induce the dramatic growth of different bacterial species in the hemolymph of the injected larvae of A. mellifera and A. cerana, which provide cues for further studying the interactions among the honey bee, VTP, and hemolymph bacteria.
Collapse
Affiliation(s)
- Balachandar Balakrishnan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Hua Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| |
Collapse
|
10
|
Mankowski ME, Morrell JJ, Lebow PK. Effects on Brood Development in the Carpenter Ant Camponotus vicinus Mayr after Exposure to the Yeast Associate Schwanniomyces polymorphus Kloecker. INSECTS 2021; 12:520. [PMID: 34199749 PMCID: PMC8229963 DOI: 10.3390/insects12060520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/03/2022]
Abstract
The yeast Schwanniomyces polymorphus is associated with the infrabuccal pocket in the carpenter ant Camponotus vicinus (Hymenoptera: Formicidae), but its role in ant development is poorly defined. The potential effects of this yeast on brood development were examined on sets of larval groups and workers over a 12 week period. Worker-larval sets were fed variations of a completely artificial, holidic diet and exposed or not exposed to live S. polymorphus. Worker-larval sets in half of the experiment were defaunated using a two-step heat and chemical process. Brood development and number of adult ants produced were significantly affected by the heat/chemical defaunation process. Compared to worker-larval groups fed a basal, complete diet, all treatments resulted in no or deleterious larval development. Brood weights and number of worker ants produced from the original larval sets at initiation were significantly higher in non-defaunated ant groups fed a diet lacking both B vitamins and cholesterol and exposed to live S. polymorphus. We propose that this yeast may help ants to more efficiently assimilate nutrients when fed nutrient-deficient diets, particularly those deficient in sterols.
Collapse
Affiliation(s)
- Mark E. Mankowski
- Forest Products Laboratory Starkville, USDA Forest Service, Starkville, MS 39759, USA
| | - Jeffrey J. Morrell
- Centre Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, QLD 4102, Australia;
| | - Patricia K. Lebow
- Forest Products Laboratory Madison, USDA Forest Service, Madison, WI 53726, USA;
| |
Collapse
|
11
|
Park J, Xi H, Park J. Complete Genome Sequence of a Blochmannia Endosymbiont of Colobopsis nipponica. Microbiol Resour Announc 2021; 10:e01195-20. [PMID: 33927044 PMCID: PMC8086219 DOI: 10.1128/mra.01195-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Blochmannia endosymbionts (Gammaproteobacteria) live in bacteriocytes, which are specialized cells found in the genus Camponotus and its neighbor genera. In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Colobopsis nipponica, which originated from a colony collected in the Republic of Korea.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
12
|
Gonçalves WG, Fernandes KM, Silva APA, Gonçalves DG, Fiaz M, Serrão JE. Ultrastructure of the Bacteriocytes in the Midgut of the Carpenter ant Camponotus rufipes: Endosymbiont Control by Autophagy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1236-1244. [PMID: 32924896 DOI: 10.1017/s1431927620024484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The carpenter ant Camponotus rufipes has intracellular bacteria in bacteriocytes scattered in the midgut epithelium, which have different amounts of endosymbionts, according to the developmental stages. However, there are no detailed data about the midgut cells in adult workers. The present work aimed to evaluate the morphology and cellular events that coordinate the abundance of endosymbionts in the midgut cells in C. rufipes workers. The midgut epithelium has digestive cells, bacteriocytes, and cells with intermediate morphology. The latter is similar to bacteriocytes, due to the abundance of endosymbionts, and similar to digestive cells, due to their microvilli. The digestive and intermediate cells are rich in autophagosomes and autolysosomes, both with bacteria debris in the lumen. These findings suggest that midgut cells of C. rufipes control the endosymbiont level by the autophagy pathway.
Collapse
Affiliation(s)
- Wagner G Gonçalves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Kenner M Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ana Paula A Silva
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Danilo G Gonçalves
- Department of Basic and Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Muhammad Fiaz
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Origin and elaboration of a major evolutionary transition in individuality. Nature 2020; 585:239-244. [DOI: 10.1038/s41586-020-2653-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/03/2020] [Indexed: 11/09/2022]
|
14
|
High Prevalence of Pantoea in Diaphorina citri (Hemiptera: Liviidae): Vector of Citrus Huanglongbing Disease. Curr Microbiol 2020; 77:1525-1531. [DOI: 10.1007/s00284-020-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
|
15
|
Complete Genome Sequence of the Blochmannia Endosymbiont of Camponotus nipponensis. Microbiol Resour Announc 2020; 9:9/29/e00703-20. [PMID: 32675189 PMCID: PMC7365800 DOI: 10.1128/mra.00703-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Blochmannia endosymbionts, belonging to Gammaproteobacteria, live in bacteriocytes, which are specialized cells for these bacterial species in the Camponotus genus (carpenter ants). In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Camponotus nipponensis, which originated from a C. nipponensis colony collected in the Republic of Korea. Blochmannia endosymbionts, belonging to Gammaproteobacteria, live in bacteriocytes, which are specialized cells for these bacterial species in the Camponotus genus (carpenter ants). In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Camponotus nipponensis, which originated from a C. nipponensis colony collected in the Republic of Korea.
Collapse
|
16
|
Mathuru AS, Libersat F, Vyas A, Teseo S. Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neurosci Biobehav Rev 2020; 116:130-141. [PMID: 32565172 DOI: 10.1016/j.neubiorev.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022]
Abstract
In the past few decades, a substantial portion of neuroscience research has moved from studies conducted across a spectrum of animals to reliance on a few species. While this undoubtedly promotes consistency, in-depth analysis, and a better claim to unraveling molecular mechanisms, investing heavily in a subset of species also restricts the type of questions that can be asked, and impacts the generalizability of findings. A conspicuous body of literature has long advocated the need to expand the diversity of animal systems used in neuroscience research. Part of this need is utilitarian with respect to translation, but the remaining is the knowledge that historically, a diverse set of species were instrumental in obtaining transformative understanding. We argue that diversifying matters also because the current approach limits the scope of what can be discovered. Technological advancements are already bridging several practical gaps separating these two worlds. What remains is a wholehearted embrace by the community that has benefitted from past history. We suggest the time for it is now.
Collapse
Affiliation(s)
- Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore; Institute of Molecular and Cell Biology, A⁎STAR, 61 Biopolis Drive, Singapore; Dept. of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Frédéric Libersat
- Dept. of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Ben Gurion University, Beer Sheva 8410501 Israel
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
17
|
Wu Y, Zheng Y, Chen Y, Chen G, Zheng H, Hu F. Apis cerana gut microbiota contribute to host health though stimulating host immune system and strengthening host resistance to Nosema ceranae. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192100. [PMID: 32537206 PMCID: PMC7277281 DOI: 10.1098/rsos.192100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 05/26/2023]
Abstract
Gut microbial communities play vital roles in the modulation of many insects' immunity, including Apis mellifera. However, little is known about the interaction of Apis cerana gut bacteria and A. cerana immune system. Here in this study, we conducted a comparison between germ-free gut microbiota deficient (GD) workers and conventional gut community (CV) workers, to reveal the possible impact of gut microbiota on the expression of A. cerana antimicrobial peptides and immune regulate pathways. We also test whether A. cerana gut microbiota can strengthen host resistance to Nosema ceranae. We find that the expression of apidaecin, abaecin and hymenoptaecin were significantly upregulated with the presence of gut bacteria, and JNK pathway was activated; in the meanwhile, the existence of gut bacteria inhibited the proliferation of Nosema ceranae. These demonstrated the essential role of A. cerana gut microbiota to host health and provided critical insight into the honeybee host-microbiome interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Reeves DD, Price SL, Ramalho MO, Moreau CS. The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae). NEOTROPICAL ENTOMOLOGY 2020; 49:52-60. [PMID: 31912447 DOI: 10.1007/s13744-019-00735-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Ants are an ecologically and evolutionarily diverse group, and they harbor a wide range of symbiotic microbial communities that often greatly affect their biology. Turtle ants (genus Cephalotes) engage in mutualistic relationships with gut bacteria and are exploited by microbial parasites. Studies have shown that associations among these microbial lineages and the turtle ant hosts vary geographically. However, these studies have been limited, and thorough within-species analyses of the variation and structure of these microbial communities have yet to be conducted. The giant turtle ant, Cephalotes atratus (Linnaeus 1758), is a geographically widespread, genetically diverse Neotropical species that has been sampled extensively across its geographic range, making it ideal for analysis of microbial associations. In this study, we verified the presence, genetic variation, and geographic patterns at the individual, colony, and population level of three microbial groups associated with the giant turtle ant: Wolbachia, a genus of facultative bacteria which are often parasitic, affecting host reproduction; Rhizobiales, a mutualistic order of bacteria hypothesized to be an obligate nutritional symbiont in turtle ants; and Ophiocordyceps, a genus of endoparasitic fungi infecting many arthropod species by manipulating their behavior for fungal reproduction. In this study, we found varying degrees of prevalence for two distantly related genotypes (haplogroups) of Wolbachia and high degree of prevalence of Rhizobiales across colonies with little genetic variation. In addition, we found low occurrence of Ophiocordyceps. This study highlights a key first step in understanding the diversity, distribution, and prevalence of the microbial community of C. atratus.
Collapse
Affiliation(s)
- D D Reeves
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - S L Price
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - M O Ramalho
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - C S Moreau
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Amaral KD, Gandra LC, de Oliveira MA, de Souza DJ, Della Lucia TMC. Effect of azadirachtin on mortality and immune response of leaf-cutting ants. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1190-1197. [PMID: 31696443 DOI: 10.1007/s10646-019-02124-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Leaf-cutting ants are difficult pests to control because they have numerous defense strategies and are highly selective in their plant harvesting choices. The search for effective pest control methods that have minimal negative effects on the environment has been continuous. Azadirachtin, a compound extracted from the neem tree (Azadirachta indica), is a promising alternative for the control of various pests, as it is toxic to some insects but readily degrades in the environment. In this study, we evaluated the effects of azadirachtin on the mortality, through topical exposure to the compound, and immune response, by introducing an artificial antigen into leaf-cutting ants Atta sexdens and Acromyrmex subterraneus subterraneus. Azadirachtin caused death to minor and major workers of both species in a concentration-dependent manner. Topical application of the compound did not diminish the immune response of ants in a microfilament encapsulation assay. Azadirachtin showed no effect on the immune response of workers but increased worker mortality, which indicates its potential as an ant control agent.
Collapse
Affiliation(s)
- Karina D Amaral
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lailla C Gandra
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | | |
Collapse
|
20
|
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Paight C, Slamovits CH, Saffo MB, Lane CE. Nephromyces Encodes a Urate Metabolism Pathway and Predicted Peroxisomes, Demonstrating That These Are Not Ancient Losses of Apicomplexans. Genome Biol Evol 2019; 11:41-53. [PMID: 30500900 PMCID: PMC6320678 DOI: 10.1093/gbe/evy251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.
Collapse
Affiliation(s)
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Beth Saffo
- Department of Biological Sciences, University of Rhode Island
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | | |
Collapse
|
22
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
23
|
Lenoir A, Devers S. Alkaloid secretion inhibited by antibiotics in Aphaenogaster ants. C R Biol 2018; 341:358-361. [PMID: 30032781 DOI: 10.1016/j.crvi.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
Although alkaloids are frequent in the poison glands of ants of the genus Aphaenogaster, this is not the case for A. iberica. Hypothesizing that in the genus Aphaenogaster, alkaloids are produced by symbiotic bacteria, except for A. iberica, we treated an experimental lot of both A. iberica and a 'classical' Aphaenogaster species, A. senilis, with an antibiotic. Compared to workers from a control lot, this treatment reduced considerably alkaloid production in A. senilis, whereas A. iberica did not react to the treatment. Furthermore, the treatment induced an increase in cuticular hydrocarbon quantities in A. senilis, but not in A. iberica. An analysis of the ant microbiota will be the next step to confirm our hypothesis.
Collapse
Affiliation(s)
- Alain Lenoir
- IRBI, Institut de recherche sur la biologie de l'insecte, Université de Tours, Faculté des sciences, parc de Grandmont, 37200 Tours, France.
| | - Séverine Devers
- IRBI, Institut de recherche sur la biologie de l'insecte, Université de Tours, Faculté des sciences, parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
24
|
Sinotte VM, Freedman SN, Ugelvig LV, Seid MA. Camponotusfloridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia. INSECTS 2018; 9:E58. [PMID: 29857577 PMCID: PMC6023366 DOI: 10.3390/insects9020058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022]
Abstract
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum, suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.
Collapse
Affiliation(s)
- Veronica M Sinotte
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Samantha N Freedman
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Department of Pathology, University of Iowa, 1080 Medical Laboratories, 500 Newton Road, Iowa City, IA 52242-8205, USA.
| | - Line V Ugelvig
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Marc A Seid
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
| |
Collapse
|
25
|
Moreau CS, Rubin BER. Diversity and Persistence of the Gut Microbiome of the Giant Neotropical Bullet Ant. Integr Comp Biol 2018; 57:682-689. [PMID: 28655188 DOI: 10.1093/icb/icx037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the factors that structure host-associated microbiota is critical to understand the role these microbes may play in host ecology and evolutionary history. To begin to address this question we investigate the diversity and persistence of the bacterial community of the giant Neotropical bullet ant, Paraponera clavata. We included samples from four widely dispersed locations to address the role geography plays in shaping these communities. To understand how the digestive tract can filter bacterial communities, we sampled mouth and gut communities. To investigate the stability of community members we sampled wild caught and individuals kept on a sterile diet. Only a single bacterial taxon in the Firmicutes is consistently present across individuals, indicating a remarkably simple "core" bacterial community for the giant Neotropical bullet ant. Geography did not explain host bacterial diversity, but we did find significant reductions in diversity between the mouth and the gut tract. Lastly, our diet manipulations highlight the importance of controlled experiments to tease apart persistent microbial communities from environmental transients.
Collapse
Affiliation(s)
- Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Integrative Research Center, 1400?S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Benjamin E R Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS One 2018. [PMID: 29518170 PMCID: PMC5843337 DOI: 10.1371/journal.pone.0194131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas.
Collapse
|
27
|
Matarrita-Carranza B, Moreira-Soto RD, Murillo-Cruz C, Mora M, Currie CR, Pinto-Tomas AA. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria. Front Microbiol 2017; 8:2016. [PMID: 29089938 PMCID: PMC5651009 DOI: 10.3389/fmicb.2017.02016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and ranging from the American temperate to the Neotropical region. Our work thus provides important insights into the widespread distribution of Actinobacteria and hymenopteran insects associations, while also pointing at novel resources that could be targeted for the discovery of active natural products with great potential in medical and biotechnological applications.
Collapse
Affiliation(s)
- Bernal Matarrita-Carranza
- La Selva Biological Station, Organization for Tropical Studies, Heredia, Costa Rica
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
| | - Rolando D. Moreira-Soto
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
| | - Marielos Mora
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Adrián A. Pinto-Tomas
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
28
|
Wernegreen JJ. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry. Exp Cell Res 2017; 358:427-432. [DOI: 10.1016/j.yexcr.2017.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
29
|
Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:1-13. [PMID: 28595898 DOI: 10.1016/j.ibmb.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here.
Collapse
Affiliation(s)
- Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - David A Galbraith
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - Christina M Grozinger
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| |
Collapse
|
30
|
Ramalho MO, Bueno OC, Moreau CS. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evol Biol 2017; 17:96. [PMID: 28381207 PMCID: PMC5382451 DOI: 10.1186/s12862-017-0945-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Symbiotic relationships between insects and bacteria are found across almost all insect orders, including Hymenoptera. However there are still many remaining questions about these associations including what factors drive host-associated bacterial composition. To better understand the evolutionary significance of this association in nature, further studies addressing a diversity of hosts across locations and evolutionary history are necessary. Ants of the genus Polyrhachis (spiny ants) are distributed across the Old World and exhibit generalist diets and habits. Using Next Generation Sequencing (NGS) and bioinformatics tools, this study explores the microbial community of >80 species of Polyrhachis distributed across the Old World and compares the microbiota of samples and related hosts across different biogeographic locations and in the context of their phylogenetic history. Results The predominant bacteria across samples were Enterobacteriaceae (Blochmannia - with likely many new strains), followed by Wolbachia (with multiple strains), Lactobacillus, Thiotrichaceae, Acinetobacter, Nocardia, Sodalis, and others. We recovered some exclusive strains of Enterobacteriaceae as specific to some subgenera of Polyrhachis, corroborating the idea of coevolution between host and bacteria for this bacterial group. Our correlation results (partial mantel and mantel tests) found that host phylogeny can influence the overall bacterial community, but that geographic location had no effect. Conclusions Our work is revealing important aspects of the biology of hosts in structuring the diversity and abundance of these host-associated bacterial communities including the role of host phylogeny and shared evolutionary history. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0945-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Oliveira Ramalho
- Universidade Estadual Paulista "Júlio de Mesquita Filho" UNESP - Campus Rio Claro, Biologia, CEIS. Av. 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Field Museum of Natural History, Department of Science and Education, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA.
| | - Odair Correa Bueno
- Universidade Estadual Paulista "Júlio de Mesquita Filho" UNESP - Campus Rio Claro, Biologia, CEIS. Av. 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Corrie Saux Moreau
- Field Museum of Natural History, Department of Science and Education, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
31
|
Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity (Edinb) 2016; 118:10-20. [PMID: 27703153 DOI: 10.1038/hdy.2016.71] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont-host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont-host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction.
Collapse
Affiliation(s)
- C Corbin
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - E R Heyworth
- Department of Biology, University of York, York, UK
| | - J Ferrari
- Department of Biology, University of York, York, UK
| | - G D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
32
|
|
33
|
Braquart-Varnier C, Altinli M, Pigeault R, Chevalier FD, Grève P, Bouchon D, Sicard M. The Mutualistic Side of Wolbachia-Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Front Microbiol 2015; 6:1388. [PMID: 26733946 PMCID: PMC4679875 DOI: 10.3389/fmicb.2015.01388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.
Collapse
Affiliation(s)
- Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mine Altinli
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| | - Romain Pigeault
- IRD 224-Université de Montpellier, Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Équipe Interaction Parasitaires et Adaptation Montpellier, France
| | | | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions - Equipe Écologie, Évolution, Symbiose - UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Mathieu Sicard
- Institut des Sciences de l'Évolution, CNRS-Université de Montpellier-IRD (UMR 5554) Montpellier, France
| |
Collapse
|
34
|
Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential. Appl Environ Microbiol 2015; 81:5527-37. [PMID: 26048932 DOI: 10.1128/aem.00961-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022] Open
Abstract
Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves.
Collapse
|
35
|
Dossi FCA, da Silva EP, Cônsoli FL. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny. MICROBIAL ECOLOGY 2014; 68:881-9. [PMID: 25037159 DOI: 10.1007/s00248-014-0463-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/04/2014] [Indexed: 05/26/2023]
Abstract
The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.
Collapse
Affiliation(s)
- Fabio Cleisto Alda Dossi
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil,
| | | | | |
Collapse
|
36
|
Mankowski ME, Morrell JJ. Effects of B vitamin deletion in chemically defined diets on brood development in Camponotus vicinus (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2014; 107:1299-1306. [PMID: 25195415 DOI: 10.1603/ec13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The potential contributions of B vitamins by a yeast associate to the nutrition of the carpenter ant Camponotus vicinus Mayr was examined as part of an effort to develop a chemically defined diet. This diet was used to test the effects of individual B vitamin and other nutrient deletions on larval development. The chemically defined diet contained amino acids, vitamins, minerals, and other growth factors in a liquid sucrose matrix. C. vicinus worker colonies with third- and fourth-instar larvae were fed a complete artificial diet or that diet with a component deleted for a 12-wk period. There was a significant effect of diet on larval growth and number of adult worker ants produced in the overall nutrient deletion test, but ant development was often better on incomplete diets with one B vitamin deleted compared with the complete holidic basal diet. Thiamine deletion resulted in significantly higher brood weights compared with the complete diet. Diets of sugar water plus all B vitamins, sugar water only, or a diet minus all B vitamins and cholesterol were associated with significantly lower brood weights. Significantly more adult worker ants were produced by worker colonies fed diets minus cholesterol, choline, thiamine, or riboflavin compared with the complete basal diet. The results suggest that the diet, while suitable for rearing, could benefit from further study to better define component levels. The potential relationship of C. vicinus with yeast associates is discussed in relation to further studies.
Collapse
|
37
|
Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant-plant symbioses. THE NEW PHYTOLOGIST 2014; 202:749-764. [PMID: 24444030 DOI: 10.1111/nph.12690] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Ant-plant symbioses involve plants that provide hollow structures specialized for housing ants and often food to ants. In return, the inhabiting ants protect plants against herbivores and sometimes provide them with nutrients. Here, we review recent advances in ant-plant symbioses, focusing on three areas. First, the nutritional ecology of plant-ants, which is based not only on plant-derived food rewards, but also on inputs from other symbiotic partners, in particular fungi and possibly bacteria. Food and protection are the most important 'currencies' exchanged between partners and they drive the nature and evolution of the relationships. Secondly, studies of conflict and cooperation in ant-plant symbioses have contributed key insights into the evolution and maintenance of mutualism, particularly how partner-mediated feedbacks affect the specificity and stability of mutualisms. There is little evidence that mutualistic ants or plants are under selection to cheat, but the costs and benefits of ant-plant interactions do vary with environmental factors, making them vulnerable to natural or anthropogenic environmental change. Thus, thirdly, ant-plant symbioses should be considered good models for investigating the effects of global change on the outcome of mutualistic interactions.
Collapse
Affiliation(s)
- Veronika E Mayer
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030, Wien, Austria
| | - Megan E Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, M5S 3G5, Canada
| | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, Université Montpellier 2, 1919 route de Mende, 34293, Montpellier Cedex 5, France
- Institut Universitaire de France, Université Montpellier 2, Montpellier Cedex 5, France
| | - Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, CNRS, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
38
|
He H, Wei C, Wheeler DE. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae). Curr Microbiol 2014; 69:292-302. [PMID: 24748441 DOI: 10.1007/s00284-014-0586-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.
Collapse
Affiliation(s)
- Hong He
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China,
| | | | | |
Collapse
|
39
|
Mony R, Dejean A, Bilong CFB, Kenne M, Rouland-Lefèvre C. Melissotarsus ants are likely able to digest plant polysaccharides. C R Biol 2013; 336:500-4. [DOI: 10.1016/j.crvi.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
40
|
Fan Y, Wernegreen JJ. Can't take the heat: high temperature depletes bacterial endosymbionts of ants. MICROBIAL ECOLOGY 2013; 66:727-33. [PMID: 23872930 PMCID: PMC3905736 DOI: 10.1007/s00248-013-0264-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/01/2013] [Indexed: 05/22/2023]
Abstract
Members of the ant tribe Camponotini have coevolved with Blochmannia, an obligate intracellular bacterial mutualist. This endosymbiont lives within host bacteriocyte cells that line the ant midgut, undergoes maternal transmission from host queens to offspring, and contributes to host nutrition via nitrogen recycling and nutrient biosynthesis. While elevated temperature has been shown to disrupt obligate bacterial mutualists of some insects, its impact on the ant-Blochmannia partnership is less clear. Here, we test the effect of heat on the density of Blochmannia in two related Camponotus species in the lab. Transcriptionally active Blochmannia were quantified using RT-qPCR as the ratio of Blochmannia 16S rRNA to ant host elongation factor 1-α transcripts. Our results showed that 4 weeks of heat treatment depleted active Blochmannia by >99 % in minor workers and unmated queens. However, complete elimination of Blochmannia transcripts rarely occurred, even after 16 weeks of heat treatment. Possible mechanisms of observed thermal sensitivity may include extreme AT-richness and related features of Blochmannia genomes, as well as host stress responses. Broadly, the observed depletion of an essential microbial mutualist in heat-treated ants is analogous to the loss of zooanthellae during coral bleaching. While the ecological relevance of Blochmannia's thermal sensitivity is uncertain, our results argue that symbiont dynamics should be part of models predicting how ants and other animals will respond and adapt to a warming climate.
Collapse
Affiliation(s)
- Yongliang Fan
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| |
Collapse
|
42
|
Abstract
Associations with symbiotic organisms can serve as a strategy for social insects to resist pathogens. Antibiotics produced by attine ectosymbionts (Actinobacteria) suppress the growth of Escovopsis spp., the specialized parasite of attine fungus gardens. Our objective was to evaluate whether the presence or absence of symbiotic actinobacteria covering the whole ant cuticle is related to differential immunocompetence, respiratory rate and cuticular hydrocarbons (CHs). We evaluated these parameters in three worker groups of Acromyrmex subterraneus subterraneus: External workers (EXT), internal workers with actinobacteria covering the whole body (INB) and internal workers without actinobacteria covering the whole body (INØ). We also eliminated the actinobacteria by antibiotic treatment and examined worker encapsulation response. INB ants showed lower rates of encapsulation and respiration than did the EXT and INØ ants. The lower encapsulation rate did not seem to be a cost imposed by actinomycetes because the elimination of the actinomycetes did not increase the encapsulation rate. Instead, we propose that actinobacteria confer protection to young workers until the maturation of their immune system. Actinobacteria do not seem to change nestmate recognition in these colonies. Although it is known that actinobacteria have a specific action against Escovopsis spp., our studies, along with other independent studies, indicate that actinomycetes may also be important for the individual health of the workers.
Collapse
|
43
|
Koehler S, Doubský J, Kaltenpoth M. Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring. Front Zool 2013; 10:3. [PMID: 23369509 PMCID: PMC3599432 DOI: 10.1186/1742-9994-10-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Insects have evolved a wide range of mechanisms to defend themselves and their offspring against antagonists. One of these strategies involves the utilization of antimicrobial compounds provided by symbiotic bacteria to protect the host or its nutritional resources from pathogens and parasites. In the symbiosis of the solitary digger wasp, Philanthus triangulum (Hymenoptera, Crabronidae), the bacterial symbiont ‘Candidatus Streptomyces philanthi’ defends the developing larvae against pathogens by producing a mixture of at least nine antimicrobial substances on the cocoon surface. This antibiotic cocktail inhibits the growth of a broad range of detrimental fungi and bacteria, thereby significantly enhancing the offspring’s survival probability. Results Here we show that the production of antimicrobial compounds by the beewolf symbionts is confined to the first two weeks after cocoon spinning, leading to a high concentration of piericidins and streptochlorin on the cocoon surface. Expression profiling of housekeeping, sporulation, and antibiotic biosynthesis genes indicates that antibiotic production coincides with morphological differentiation that enables the symbionts to survive the nutrient-limited conditions on the beewolf cocoon. The antibiotic substances remain stable on the cocoon surface for the entire duration of the beewolf’s hibernation period, demonstrating that the compounds are resistant against environmental influences. Conclusions The antibiotic production by the beewolf symbionts serves as a reliable protection for the wasp offspring against pathogenic microorganisms during the long and unpredictable developmental phase in the subterranean brood cells. Thus, the beewolf-Streptomyces symbiosis provides one of the rare examples of antibiotics serving as an efficient defense in the natural environment and may aid in devising new strategies for the utilization of antibiotic combination therapies in human medicine against increasingly resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Sabrina Koehler
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knoell-Str, 8, 07745, Jena, Germany.
| | | | | |
Collapse
|
44
|
Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res 2012. [PMID: 23205679 DOI: 10.1021/pr3007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.
Collapse
Affiliation(s)
- Yongliang Fan
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
45
|
Vigneron A, Charif D, Vincent-Monégat C, Vallier A, Gavory F, Wincker P, Heddi A. Host gene response to endosymbiont and pathogen in the cereal weevil Sitophilus oryzae. BMC Microbiol 2012; 12 Suppl 1:S14. [PMID: 22375912 PMCID: PMC3287511 DOI: 10.1186/1471-2180-12-s1-s14] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Insects thriving on nutritionally poor habitats have integrated mutualistic intracellular symbiotic bacteria (endosymbionts) in a bacteria-bearing tissue (the bacteriome) that isolates the endosymbionts and protects them against a host systemic immune response. Whilst the metabolic and physiological features of long-term insect associations have been investigated in detail over the past decades, cellular and immune regulations that determine the host response to endosymbionts and pathogens have attracted interest more recently. Results To investigate bacteriome cellular specificities and weevil immune responses to bacteria, we have constructed and sequenced 7 cDNA libraries from Sitophilus oryzae whole larvae and bacteriomes. Bioinformatic analysis of 26,886 ESTs led to the generation of 8,941 weevil unigenes. Based on in silico analysis and on the examination of genes involved in the cellular pathways of potential interest to intracellular symbiosis (i.e. cell growth and apoptosis, autophagy, immunity), we have selected and analyzed 29 genes using qRT-PCR, taking into consideration bacteriome specificity and symbiosis impact on the host response to pathogens. We show that the bacteriome tissue accumulates transcripts from genes involved in cellular development and survival, such as the apoptotic inhibitors iap2 and iap3, and endosomal fusion and trafficking, such as Rab7, Hrs, and SNARE. As regards our investigation into immunity, we first strengthen the bacteriome immunomodulation previously reported in S. zeamais. We show that the sarcotoxin, the c-type lysozyme, and the wpgrp2 genes are downregulated in the S. oryzae bacteriome, when compared to aposymbiotic insects and insects challenged with E. coli. Secondly, transcript level comparison between symbiotic and aposymbiotic larvae provides evidence that the immune systemic response to pathogens is decreased in symbiotic insects, as shown by the relatively high expression of wpgrp2, wpgrp3, coleoptericin-B, diptericin, and sarcotoxin genes in aposymbiotic insects. Conclusions Library sequencing significantly increased the number of unigenes, allowing for improved functional and genetic investigations in the cereal weevil S. oryzae. Transcriptomic analyses support selective and local immune gene expression in the bacteriome tissue and uncover cellular pathways that are of potential interest to bacteriocyte survival and homeostasis. Bacterial challenge experiments have revealed that the systemic immune response would be less induced in a symbiotic insect, thus highlighting new perspectives on host immunity in long-term invertebrate co-evolutionary associations.
Collapse
|
46
|
José de Souza D, Devers S, Lenoir A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C R Biol 2011; 334:737-41. [PMID: 21943523 DOI: 10.1016/j.crvi.2011.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/16/2022]
Abstract
Carpenter ants (genus Camponotus) have mutualistic, endosymbiotic bacteria of the genus Blochmannia whose main contribution to their hosts is alimentary. It was also recently demonstrated that they play a role in improving immune function as well. In this study, we show that treatment with an antibiotic produces a physiological response inducing an increase in both the quantity of cuticular hydrocarbons and in the melanization of the cuticle probably due to a nutritive and immunological deficit. We suggest that this is because it enhances the protection the cuticle provides from desiccation and also from invasions by pathogens and parasites. Nevertheless, the cuticular hydrocarbon profile is not modified by the antibiotic treatment, which indicates that nestmate recognition is not modified.
Collapse
Affiliation(s)
- Danival José de Souza
- IRBI, institut de recherche sur la biologie de l'insecte, université François-Rabelais, Tours, France
| | | | | |
Collapse
|
47
|
Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci 2011; 366:1389-400. [PMID: 21444313 DOI: 10.1098/rstb.2010.0226] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.
Collapse
Affiliation(s)
- Julia Ferrari
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK.
| | | |
Collapse
|
48
|
Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. MICROBIAL ECOLOGY 2011; 61:821-831. [PMID: 21243351 DOI: 10.1007/s00248-010-9793-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
Social insects harbor diverse assemblages of bacterial microbes, which may play a crucial role in the success or failure of biological invasions. The invasive fire ant Solenopsis invicta (Formicidae, Hymenoptera) is a model system for understanding the dynamics of invasive social insects and their biological control. However, little is known about microbes as biotic factors influencing the success or failure of ant invasions. This pilot study is the first attempt to characterize and compare microbial communities associated with the introduced S. invicta and the native Solenopsis geminata in the USA. Using 16S amplicon 454 pyrosequencing, bacterial communities of workers, brood, and soil from nest walls were compared between neighboring S. invicta and S. geminata colonies at Brackenridge Field Laboratory, Austin, Texas, with the aim of identifying potential pathogenic, commensal, or mutualistic microbial associates. Two samples of S. geminata workers showed high counts of Spiroplasma bacteria, a known pathogen or mutualist of other insects. A subsequent analysis using PCR and sequencing confirmed the presence of Spiroplasma in additional colonies of both Solenopsis species. Wolbachia was found in one alate sample of S. geminata, while one brood sample of S. invicta had a high count of Lactococcus. As expected, ant samples from both species showed much lower microbial diversity than the surrounding soil. Both ant species had similar overall bacterial diversities, although little overlap in specific microbes. To properly characterize a single bacterial community associated with a Solenopsis ant sample, rarefaction analyses indicate that it is necessary to obtain 5,000-10,000 sequences. Overall, 16S amplicon 454 pyrosequencing appears to be a cost-effective approach to screen whole microbial diversity associated with invasive ant species.
Collapse
Affiliation(s)
- Heather D Ishak
- Section of Integrative Biology, University of Texas at Austin, 2401 Speedway Drive C0930, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
MEDINA RF, NACHAPPA P, TAMBORINDEGUY C. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 2011; 24:761-71. [DOI: 10.1111/j.1420-9101.2010.02215.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J Virol 2010; 85:2148-66. [PMID: 21159868 DOI: 10.1128/jvi.01504-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission.
Collapse
|