1
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Abstract
This overview describes the considerations involved in the preparation and use of a herpes simplex virus type 1 (HSV-1) amplicon as a vector for gene transfer into neurons. Strategies for gene delivery into neurons, either to study the molecular biology of brain function or for gene therapy, must utilize vectors that persist stably in postmitotic cells and that can be targeted both spatially and temporally in the nervous system in vivo. This unit describes the biology of HSV-1 along with a discussion covering development of amplicon and genomic HSV-1 vectors. Advantages and disadvantages of current HSV-1 vectors are presented, and HSV-1 vectors are compared with other vectors for gene transfer into neurons.
Collapse
Affiliation(s)
- Rachael L Neve
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Zhang GR, Zhao H, Cao H, Geller AI. Overexpression of either lysine-specific demethylase-1 or CLOCK, but not Co-Rest, improves long-term expression from a modified neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Res 2012; 1436:157-67. [PMID: 22208646 PMCID: PMC3287058 DOI: 10.1016/j.brainres.2011.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Long-term expression from helper virus-free Herpes Simplex Virus (HSV-1) vectors is required for many specific neural gene therapies and studies on neuronal physiology. We previously developed a promoter that supports long-term, neuron-specific expression by fusing the chicken ß-globin insulator (INS), followed by an upstream enhancer from the rat tyrosine hydroxylase (TH) promoter, to a neurofilament heavy gene (NFH) promoter. Here, we examined the capability of specific transcription factors to further improve long-term expression from this promoter. Following a HSV-1 virus infection, the virus genome is localized to promyelocytic leukemia protein (PML) nuclear bodies (NB). At these sites, specific cellular transcription factors interact with HSV-1 encoded transcription factors, and together regulate HSV-1 gene expression. Importantly, lysine-specific demethylase-1 (LSD1), CLOCK, and Co-Rest each activate HSV-1 gene expression. However, gene expression from HSV-1 vectors differs in a number of important aspects from the virus, including no HSV-1 genes are expressed. Nonetheless, these observations raise the possibility that specific transcription factors may improve long-term expression from specific promoters in HSV-1 vectors. Here, we show that overexpression of either LSD1 or CLOCK improves long-term expression from the INS-TH-NFH promoter, but overexpression of Co-Rest supports levels of long-term expression similar to those supported by a control vector. Further, overexpression of LSD1 is compatible with neuron-specific expression. Thus, overexpressing specific transcription factors can improve long-term expression from specific cellular promoters in HSV-1 vectors, and the chromatin structure of the vector has an important role in enabling expression.
Collapse
Affiliation(s)
- Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Hua Zhao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Alfred I. Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| |
Collapse
|
4
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits. Brain Res 2011; 1415:127-35. [PMID: 21885042 PMCID: PMC3176983 DOI: 10.1016/j.brainres.2011.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
Abstract
Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | | | | |
Collapse
|
5
|
Zhang GR, Li X, Cao H, Zhao H, Geller AI. The vesicular glutamate transporter-1 upstream promoter and first intron each support glutamatergic-specific expression in rat postrhinal cortex. Brain Res 2010; 1377:1-12. [PMID: 21172319 DOI: 10.1016/j.brainres.2010.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/28/2010] [Accepted: 12/13/2010] [Indexed: 12/26/2022]
Abstract
Multiple applications of direct gene transfer into neurons require restricting expression to glutamatergic neurons, or specific subclasses of glutamatergic neurons. Thus, it is desirable to develop and analyze promoters that support glutamatergic-specific expression. The three vesicular glutamate transporters (VGLUTs) are found in different populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. We previously reported on a plasmid (amplicon) Herpes Simplex Virus vector that contains a VGLUT1 promoter. This vector supports long-term expression in VGLUT1-containing glutamatergic neurons in rat postrhinal (POR) cortex, but does not support expression in VGLUT2-containing glutamatergic neurons in the ventral medial hypothalamus. This VGLUT1 promoter contains both the VGLUT1 upstream promoter and the VGLUT1 first intron. In this study, we begin to isolate and analyze the glutamatergic-specific regulatory elements in this VGLUT1 promoter. We show that the VGLUT1 upstream promoter and first intron each support glutamatergic-specific expression. We isolated a small, basal VGLUT1 promoter that does not support glutamatergic-specific expression. Next, we fused either the VGLUT1 upstream promoter or the first intron to this basal promoter. The VGLUT1 upstream promoter or the first intron, fused to the basal promoter, each supported glutamatergic-specific expression in POR cortex.
Collapse
Affiliation(s)
- Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | | | | | | | | |
Collapse
|
6
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C-staphylococcus A protein. Brain Res 2010; 1351:1-12. [PMID: 20599821 PMCID: PMC2929402 DOI: 10.1016/j.brainres.2010.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/16/2022]
Abstract
Because of the heterogeneous cellular composition of the brain, and especially the forebrain, cell type-specific expression will benefit many potential applications of direct gene transfer. The two prevalent approaches for achieving cell type-specific expression are using a cell type-specific promoter or targeting gene transfer to a specific cell type. Targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors modifies glycoprotein C (gC) to replace the heparin binding domain, which binds to many cell types, with a binding activity for a specific cell surface protein. We previously reported targeted gene transfer to nigrostriatal neurons using chimeric gC-glial cell line-derived neurotrophic factor or gC-brain-derived neurotrophic factor protein. Unfortunately, this approach is limited to cells that express the cognate receptor for either neurotrophic factor. Thus, a general strategy for targeting gene transfer to many different types of neurons is desirable. Antibody-mediated targeted gene transfer has been developed for targeting specific virus vectors to specific peripheral cell types; a specific vector particle protein is modified to contain the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. Here, we report antibody-mediated targeted gene transfer of HSV-1 vectors to a specific type of forebrain neuron. We constructed a chimeric gC-ZZ protein, and showed this protein is incorporated into vector particles and binds Ig G. Complexes of these vector particles and an antibody to the NMDA receptor NR1 subunit supported targeted gene transfer to NR1-containing neocortical neurons in the rat brain, with long-term (2 months) expression.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Guo-Rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Alfred I Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA.
| |
Collapse
|