1
|
Nihad M, Shenoy P S, Bose B. Spontaneous Efficient Differentiation of Human Pluripotent Stem Cells (hPSC) Upon Co-culture of hPSCs with Human Neonatal Foreskin Fibroblasts in 3D. Methods Mol Biol 2024. [PMID: 39316337 DOI: 10.1007/7651_2024_569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pluripotent stem cells (PSCs) form well-formed embryoid bodies (EBs) in 3D culture. These EBs are formed in culture media lacking leukemia inhibitory factor (LIF) or basic fibroblast growth factor (bFGF) in mouse and human PSCs, respectively. EBs are excellent technical tools for understanding developmental biology and inducing controlled differentiation in succeeding experimental steps. Technically speaking, EBs are spontaneously differentiated PSCs in 3D and exhibit all three lineages in a time-point/sequential manner. For example, ectoderm will form first, followed by mesoderm and endoderm. We have attempted to co-culture human neonatal foreskin-derived fibroblast cells in our laboratory with the PSCs first in 2D conditions followed by the induction of EBs (PSC+fibroblasts co-cultured) in low attachment dishes. We also performed spontaneous differentiation of such EBs (co-cultured with fibroblasts). We checked the presence of markers of various lineages, namely, ectoderm, mesoderm, and endoderm in days 6, 10, and 12 day EBs. We have also compared the fibroblast co-cultured EBs, along with control EBs (derived from only PSCs). This co-culture system mimics the natural conditions of uterine implantation and the role of the endometrial fibroblasts in the induction of further embryonic development. The fibroblast co-cultured iPSC EBs had better roundness scores than the normal iPSC EBs and had a higher expression of lineage-specific markers.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
| |
Collapse
|
2
|
Liu L, Manley JL. Non-canonical isoforms of the mRNA polyadenylation factor WDR33 regulate STING-mediated immune responses. Cell Rep 2024; 43:113886. [PMID: 38430516 PMCID: PMC11019558 DOI: 10.1016/j.celrep.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/04/2024] Open
Abstract
The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-β induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
3
|
Verhelst S, Van Puyvelde B, Willems S, Daled S, Cornelis S, Corveleyn L, Willems E, Deforce D, De Clerck L, Dhaenens M. A large scale mass spectrometry-based histone screening for assessing epigenetic developmental toxicity. Sci Rep 2022; 12:1256. [PMID: 35075221 PMCID: PMC8786925 DOI: 10.1038/s41598-022-05268-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Toxicoepigenetics is an emerging field that studies the toxicological impact of compounds on protein expression through heritable, non-genetic mechanisms, such as histone post-translational modifications (hPTMs). Due to substantial progress in the large-scale study of hPTMs, integration into the field of toxicology is promising and offers the opportunity to gain novel insights into toxicological phenomena. Moreover, there is a growing demand for high-throughput human-based in vitro assays for toxicity testing, especially for developmental toxicity. Consequently, we developed a mass spectrometry-based proof-of-concept to assess a histone code screening assay capable of simultaneously detecting multiple hPTM-changes in human embryonic stem cells. We first validated the untargeted workflow with valproic acid (VPA), a histone deacetylase inhibitor. These results demonstrate the capability of mapping the hPTM-dynamics, with a general increase in acetylations as an internal control. To illustrate the scalability, a dose–response study was performed on a proof-of-concept library of ten compounds (1) with a known effect on the hPTMs (BIX-01294, 3-Deazaneplanocin A, Trichostatin A, and VPA), (2) classified as highly embryotoxic by the European Centre for the Validation of Alternative Methods (ECVAM) (Methotrexate, and All-trans retinoic acid), (3) classified as non-embryotoxic by ECVAM (Penicillin G), and (4) compounds of abuse with a presumed developmental toxicity (ethanol, caffeine, and nicotine).
Collapse
Affiliation(s)
- Sigrid Verhelst
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Senne Cornelis
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura Corveleyn
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Ewoud Willems
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Laura De Clerck
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Sanabria NM, Gulumian M. The use of HRM shifts in qPCR to investigate a much neglected aspect of interference by intracellular nanoparticles. PLoS One 2021; 16:e0260207. [PMID: 34874941 PMCID: PMC8651142 DOI: 10.1371/journal.pone.0260207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic molecular studies used to understand potential risks of engineered nanomaterials (ENMs) are incomplete. Intracellular residual ENMs present in biological samples may cause assay interference. This report applies the high-resolution melt (HRM) feature of RT-qPCR to detect shifts caused by the presence of gold nanoparticles (AuNPs). A universal RNA standard (untreated control) sample was spiked with known amounts of AuNPs and reverse transcribed, where 10 reference genes were amplified. The amplification plots, dissociation assay (melt) profiles, electrophoretic profiles and HRM difference curves were analysed and detected interference caused by AuNPs, which differed according to the amount of AuNP present (i.e. semi-quantitative). Whether or not the assay interference was specific to the reverse transcription or the PCR amplification step was tested. The study was extended to a target gene-of-interest (GOI), Caspase 7. Also, the effect on in vitro cellular samples was assessed (for reference genes and Caspase 7). This method can screen for the presence of AuNPs in RNA samples, which were isolated from biological material in contact with the nanomaterials, i.e., during exposure and risk assessment studies. This is an important quality control procedure to be implemented when quantifying the expression of a GOI from samples that have been in contact with various ENMs. It is recommended to further examine 18S, PPIA and TBP since these were the most reliable for detecting shifts in the difference curves, irrespective of the source of the RNA, or, the point at which the different AuNPs interacted with the assay.
Collapse
Affiliation(s)
- Natasha M. Sanabria
- A Division of National Health Laboratory Services, National Institute for Occupational Health, Johannesburg, South Africa
| | - Mary Gulumian
- A Division of National Health Laboratory Services, National Institute for Occupational Health, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
5
|
Xu L, Gao Z, Yang Z, Qu M, Li H, Chen L, Lv Y, Fan Z, Yue W, Li C, Xie X, Pei X. Evaluation of Reliable Reference Genes for In Vitro Erythrocyte Generation from Cord Blood CD34 + Cells. DNA Cell Biol 2021; 40:1200-1210. [PMID: 34227876 DOI: 10.1089/dna.2021.0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro generation of red blood cells has the potential to circumvent shortfalls in the global demand for blood for transfusion applications. However, cell differentiation and proliferation are often regulated by precise changes in gene expression, but the underlying mechanisms and molecular changes remain unclear. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) can be used to evaluate multiple target genes. To make the results more reliable, suitable reference genes should be used to calibrate the error associated with qRT-PCR. In this study, we utilized bioinformatics to screen 3 novel candidate reference genes (calcium and integrin binding family member 2 [CIB2], olfactory receptor family 8 subfamily B member 8 [OR8B8], and zinc finger protein 425 [ZNF425]) along with eight traditional reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], β-actin [ACTB], 18S RNA, β2-microglobulin [β2-MG], peptidylprolyl isomerase A [PPIA], TATA box-binding protein [TBP], hydroxymethylbilane synthase [HMBS], and hypoxanthine phosphoribosyltransferase 1 [HPRT1]). Two software algorithms (geNorm and NormFinder) were used to evaluate the stability of expression of the 11 genes at different stages of erythrocyte development. Comprehensive analysis showed that expression of GAPDH and TBP was the most stable, whereas ZNF425 and OR8B8 were the least suitable candidate genes. These results suggest that appropriate reference genes should be selected before performing gene expression analysis during erythroid differentiation and that GAPDH and TBP are suitable reference genes for gene expression studies on erythropoiesis.
Collapse
Affiliation(s)
- Lei Xu
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Zhan Gao
- Clinical Medical College of Air Force, Anhui Medical University, Hefei, China.,Air Force Medical Center, PLA, Beijing, China
| | - Zhou Yang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Mingyi Qu
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Huilin Li
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Yang Lv
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Cuiying Li
- Clinical Medical College of Air Force, Anhui Medical University, Hefei, China.,Air Force Medical Center, PLA, Beijing, China
| | - Xiaoyan Xie
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|
6
|
Fredericks E, Theunissen R, Roux S. Short chain fatty acids and monocarboxylate transporters in irritable bowel syndrome. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:840-847. [PMID: 33625995 DOI: 10.5152/tjg.2020.19856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Gut microbiota ferments indigestible food that rests in the colon to produce short-chain fatty acids (SCFAs) acetate, propionate, and butyrate. Colonic SCFA stimulate the synthesis of serotonin which is central in irritable bowel syndrome (IBS) pathophysiology. Reduced SCFA have been linked to specific IBS symptoms like colonic hyperalgesia and hypersensitivity. SCFA enter the colonocyte mainly via 2 energy-dependent monocarboxylate transporters, MCT1 (SLC16A1) and SMCT1 (SLC5A8). We investigated specific gut microbiota, SCFA concentrations, and monocarboxylate transporter mRNA expression in patients with IBS. MATERIAL AND METHODS A total of 30 IBS patients-15 constipation-predominant (C-IBS) and 15 diarrhoea-predominant (D-IBS)-and 15 healthy controls were recruited. Bacteroidetes and Bifidobacterium species were analyzed using quantitative polymerase chain reaction (qPCR) on stool samples. SCFA concentrations were determined by gas chromatography/mass spectroscopy of stool samples. Monocarboxylate transporter mRNA was quantified by qPCR on colon biopsy specimens. RESULTS Bacteroides was significantly increased in the D-IBS group compared with the C-IBS group and healthy controls. Bifidobacterium was significantly reduced in both IBS groups. SCFA ratios were altered in both IBS groups with a reduction of all 3 measured SCFA in C-IBS and acetic acid in D-IBS. MCT1 and SMCT1 were significantly reduced in C-IBS and D-IBS. CONCLUSION In agreement with findings of previous studies, the microbiota assessed were significantly altered inferring dysbiosis in IBS. SCFA and their ratios were significantly altered in both IBS groups. SCFA transporters, MCT1 and SMCT1 were significantly reduced in both IBS groups, suggesting reduced colonocyte SCFA transfer. SCFA availability and transfer into the colonocytes may be important in IBS pathogenesis and should be prospectively studied.
Collapse
Affiliation(s)
- Ernst Fredericks
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Reza Theunissen
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| |
Collapse
|
7
|
Analysis of the stability of 70 housekeeping genes during iPS reprogramming. Sci Rep 2020; 10:21711. [PMID: 33303957 PMCID: PMC7728746 DOI: 10.1038/s41598-020-78863-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Studies on induced pluripotent stem (iPS) cells highly rely on the investigation of their gene expression which requires normalization by housekeeping genes. Whether the housekeeping genes are stable during the iPS reprogramming, a transition of cell state known to be associated with profound changes, has been overlooked. In this study we analyzed the expression patterns of the most comprehensive list to date of housekeeping genes during iPS reprogramming of a mouse neural stem cell line N31. Our results show that housekeeping genes' expression fluctuates significantly during the iPS reprogramming. Clustering analysis shows that ribosomal genes' expression is rising, while the expression of cell-specific genes, such as vimentin (Vim) or elastin (Eln), is decreasing. To ensure the robustness of the obtained data, we performed a correlative analysis of the genes. Overall, all 70 genes analyzed changed the expression more than two-fold during the reprogramming. The scale of this analysis, that takes into account 70 previously known and newly suggested genes, allowed us to choose the most stable of all genes. We highlight the fact of fluctuation of housekeeping genes during iPS reprogramming, and propose that, to ensure robustness of qPCR experiments in iPS cells, housekeeping genes should be used together in combination, and with a prior testing in a specific line used in each study. We suggest that the longest splice variants of Rpl13a, Rplp1 and Rps18 can be used as a starting point for such initial testing as the most stable candidates.
Collapse
|
8
|
Nakamura T, Morishige S, Ozawa H, Kuboyama K, Yamasaki Y, Oya S, Yamaguchi M, Aoyama K, Seki R, Mouri F, Osaki K, Okamura T, Mizuno S, Nagafuji K. Successful correction of factor V deficiency of patient-derived iPSCs by CRISPR/Cas9-mediated gene editing. Haemophilia 2020; 26:826-833. [PMID: 32700411 DOI: 10.1111/hae.14104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Factor V (FV) deficiency is a monogenic inherited coagulation disorder considered to be an ideal indication for gene therapy. To investigate the possibility of therapeutic application of genome editing, we generated induced pluripotent stem cells (iPSCs) from a FV-deficient patient and repaired the mutation of factor V gene (F5) using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9). METHODS The patient's peripheral blood mononuclear cells were reprogrammed for iPSCs. The targeting vector was designed with homology arms against F5 containing the corrected sequence. Cas9 ribonucleoprotein (RNP) complex and targeting vector were electroporated into iPSCs. Gene-edited iPSCs were differentiated into hepatocyte-like cells (HLCs). RESULTS The mutation of F5 in patient-derived iPSCs was repaired by CRISPR/Cas9. In concentrated culture supernatants of patient-derived iPS-HLCs, neither FV antigen nor activity was detected, while in those of gene-corrected iPS-HLCs, FV antigen and specific activity were 67.0 ± 13.1 ng/mL and 173.2 ± 41.1 U/mg, respectively. CONCLUSIONS We successfully repaired the mutation of F5 using the CRISPR/Cas9 and confirmed the recovery of FV activity with gene-corrected iPS-HLCs. Gene-edited iPSCs are promising for elucidating the pathophysiology as well as for a modality of gene therapy.
Collapse
Affiliation(s)
- Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hidetoshi Ozawa
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kenji Kuboyama
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Yoshitaka Yamasaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shuki Oya
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maki Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kazutoshi Aoyama
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ritsuko Seki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Fumihiko Mouri
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Osaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Okamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Center for Hematology and Oncology, St. Mary's Hospital, Kurume, Japan
| | - Shinichi Mizuno
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Division of Medical Sciences and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
9
|
A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A 2020; 117:18412-18423. [PMID: 32694205 PMCID: PMC7414136 DOI: 10.1073/pnas.2001906117] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We developed a label-free and noninvasive single-cell Raman microspectroscopy (SCRM)-based platform to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). Through large-scale Raman spectral analysis, we can distinguish hiPSCs and hiPSC-derived neural cells using their intrinsic biochemical profile. We identified glycogen as a Raman biomarker for neuronal differentiation and validated the results using conventional glycogen detection assays. The parameters obtained from SCRM were processed by a novel machine learning method based on t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, enabling highly accurate and robust cell classification. The platform and the proposed biomarker should also be applicable to other cell types and can shed light on developmental biology and glycogen metabolism disorders. Stem cells with the capability to self-renew and differentiate into multiple cell derivatives provide platforms for drug screening and promising treatment options for a wide variety of neural diseases. Nevertheless, clinical applications of stem cells have been hindered partly owing to a lack of standardized techniques to characterize cell molecular profiles noninvasively and comprehensively. Here, we demonstrate that a label-free and noninvasive single-cell Raman microspectroscopy (SCRM) platform was able to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). By analyzing the intrinsic biochemical profiles of single cells at a large scale (8,774 Raman spectra in total), iPSCs and iPSC-derived neural cells can be distinguished by their intrinsic phenotypic Raman spectra. We identified a Raman biomarker from glycogen to distinguish iPSCs from their neural derivatives, and the result was verified by the conventional glycogen detection assays. Further analysis with a machine learning classification model, utilizing t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, clearly categorized hiPSCs in different developmental stages with 97.5% accuracy. The present study demonstrates the capability of the SCRM-based platform to monitor cell development using high content screening with a noninvasive and label-free approach. This platform as well as our identified biomarker could be extensible to other cell types and can potentially have a high impact on neural stem cell therapy.
Collapse
|
10
|
Evaluation of the stability of standard reference genes of adipose-derived mesenchymal stem cells during in vitro proliferation and differentiation. Mol Biol Rep 2020; 47:2109-2122. [DOI: 10.1007/s11033-020-05311-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
|
11
|
TDP-43 regulates transcription at protein-coding genes and Alu retrotransposons. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194434. [PMID: 31655156 DOI: 10.1016/j.bbagrm.2019.194434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
The 43-kDa transactive response DNA-binding protein (TDP-43) is an example of an RNA-binding protein that regulates RNA metabolism at multiple levels from transcription and splicing to translation. Its role in post-transcriptional RNA processing has been a primary focus of recent research, but its role in regulating transcription has been studied for only a few human genes. We characterized the effects of TDP-43 on transcription genome-wide and found that TDP-43 broadly affects transcription of protein-coding and noncoding RNA genes. Among protein-coding genes, the effects of TDP-43 were greatest for genes <30 thousand base pairs in length. Surprisingly, we found that the loss of TDP-43 resulted in increased evidence for transcription activity near repetitive Alu elements found within expressed genes. The highest densities of affected Alu elements were found in the shorter genes, whose transcription was most affected by TDP-43. Thus, in addition to its role in post-transcriptional RNA processing, TDP-43 plays a critical role in maintaining the transcriptional stability of protein-coding genes and transposable DNA elements.
Collapse
|
12
|
Evaluating the applicability of mouse SINEs as an alternative normalization approach for RT-qPCR in brain tissue of the APP23 model for Alzheimer’s disease. J Neurosci Methods 2019; 320:128-137. [DOI: 10.1016/j.jneumeth.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
13
|
Reference Gene Validation via RT-qPCR for Human iPSC-Derived Neural Stem Cells and Neural Progenitors. Mol Neurobiol 2019; 56:6820-6832. [PMID: 30927132 PMCID: PMC6728297 DOI: 10.1007/s12035-019-1538-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Correct selection of the reference gene(s) is the most important step in gene expression analysis. The aims of this study were to identify and evaluate the panel of possible reference genes in neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP) obtained from human-induced pluripotent stem cells (hiPSC). The stability of expression of genes commonly used as the reference in cells during neural differentiation is variable and does not meet the criteria for reference genes. In the present work, we evaluated the stability of expression of 16 candidate reference genes using the four most popular algorithms: the ΔCt method, BestKeeper, geNorm and NormFinder. All data were analysed using the online tool RefFinder to obtain a comprehensive ranking. Our results indicate that NormFinder is the best tool for reference gene selection in early stages of hiPSC neural differentiation. None of the 16 tested genes is suitable as reference gene for all three stages of development. We recommend using different genes (panel of genes) to normalise RT–qPCR data for each of the neural differentiation stages.
Collapse
|
14
|
Crans RAJ, Janssens J, Daelemans S, Wouters E, Raedt R, Van Dam D, De Deyn PP, Van Craenenbroeck K, Stove CP. The validation of Short Interspersed Nuclear Elements (SINEs) as a RT-qPCR normalization strategy in a rodent model for temporal lobe epilepsy. PLoS One 2019; 14:e0210567. [PMID: 30629669 PMCID: PMC6328105 DOI: 10.1371/journal.pone.0210567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023] Open
Abstract
Background In gene expression studies via RT-qPCR many conclusions are inferred by using reference genes. However, it is generally known that also reference genes could be differentially expressed between various tissue types, experimental conditions and animal models. An increasing amount of studies have been performed to validate the stability of reference genes. In this study, two rodent-specific Short Interspersed Nuclear Elements (SINEs), which are located throughout the transcriptome, were validated and assessed against nine reference genes in a model of Temporal Lobe Epilepsy (TLE). Two different brain regions (i.e. hippocampus and cortex) and two different disease stages (i.e. acute phase and chronic phase) of the systemic kainic acid rat model for TLE were analyzed by performing expression analyses with the geNorm and NormFinder algorithms. Finally, we performed a rank aggregation analysis and validated the reference genes and the rodent-specific SINEs (i.e. B elements) individually via Gfap gene expression. Results GeNorm ranked Hprt1, Pgk1 and Ywhaz as the most stable genes in the acute phase, while Gusb and B2m were ranked as the most unstable, being significantly upregulated. The two B elements were ranked as most stable for both brain regions in the chronic phase by geNorm. In contrast, NormFinder ranked the B1 element only once as second best in cortical tissue for the chronic phase. Interestingly, using only one of the two algorithms would have led to skewed conclusions. Finally, the rank aggregation method indicated the use of the B1 element as the best option to normalize target genes, independent of the disease progression and brain region. This result was supported by the expression profile of Gfap. Conclusion In this study, we demonstrate the potential of implementing SINEs -notably the B1 element- as a stable normalization factor in a rodent model of TLE, independent of brain region or disease progression.
Collapse
Affiliation(s)
- René A. J. Crans
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Jana Janssens
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sofie Daelemans
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elise Wouters
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Peter P. De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, the Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe P. Stove
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
15
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
16
|
β-Catenin Regulation in Sporadic Colorectal Carcinogenesis: Not as Simple as APC. Can J Gastroenterol Hepatol 2018; 2018:4379673. [PMID: 30186819 PMCID: PMC6116401 DOI: 10.1155/2018/4379673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The wnt/APC/β-catenin pathway is a critical initiator in colorectal carcinogenesis in both hereditary and sporadic colorectal cancer (CRC). The progression of this process remains incompletely understood, although inflammation is pivotal. Drivers of inflammation are elevated in malignant tissue and have been shown to regulate β-catenin expression. Interleukin-17A (IL-17A) is protumorigenic at elevated levels via COX-2 stimulation. Elevated peroxisome proliferator-activated receptor γ (PPARγ) expression has reduced risk of carcinogenesis and good overall prognosis in established CRC. Activation of PPARγ has inhibitory effect on β-catenin. METHODS Using qPCR and IHC, we compared β-catenin, PPARγ, COX-2, and IL-17A in the colonic mucosa of patients with sporadic CRC, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS), against a normal control population. RESULTS β-catenin mRNA and protein expression progressively increased from the Normal group, through IBS and IBD reaching statistical significance in CRC. COX-2 mRNA levels increased similarly with statistical significance in IBD and CRC. However, COX-2 protein expression was inverted with significant expression in the Normal and IBS groups and reduced levels in IBD and CRC. PPARγ mRNA expression was unchanged in IBD and CRC but was significantly elevated in the IBS. IL-17A mRNA was significantly reduced in IBS and CRC but unchanged in IBD. There were no differences in all parameters tested in the Normal and IBS groups. CONCLUSION β-catenin is confirmed as a major driver of colorectal carcinogenesis but is controlled by many more players other than APC. Elevated levels of PPARγ may have an anticarcinogenic effect. The role of COX-2 expression, especially its posttranscriptional regulation in colorectal cancer, needs further elucidation.
Collapse
|
17
|
Expressed repetitive elements are broadly applicable reference targets for normalization of reverse transcription-qPCR data in mice. Sci Rep 2018; 8:7642. [PMID: 29769563 PMCID: PMC5955877 DOI: 10.1038/s41598-018-25389-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is the gold standard method for gene expression analysis on mRNA level. To remove experimental variation, expression levels of the gene of interest are typically normalized to the expression level of stably expressed endogenous reference genes. Identifying suitable reference genes and determining the optimal number of reference genes should precede each quantification study. Popular reference genes are not necessarily stably expressed in the examined conditions, possibly leading to inaccurate results. Stably and universally expressed repetitive elements (ERE) have previously been shown to be an excellent alternative for normalization using classic reference genes in human and zebrafish samples. Here, we confirm that in mouse tissues, EREs are broadly applicable reference targets for RT-qPCR normalization, provided that the RNA samples undergo a thorough DNase treatment. We identified Orr1a0, Rltr2aiap, and Rltr13a3 as the most stably expressed mouse EREs across six different experimental conditions. Therefore, we propose this set of ERE reference targets as good candidates for normalization of RT-qPCR data in a plethora of conditions. The identification of widely applicable stable mouse RT-qPCR reference targets for normalization has great potential to facilitate future murine gene expression studies and improve the validity of RT-qPCR data.
Collapse
|
18
|
Selection of Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Human Stem Cell Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:151-168. [PMID: 30267307 DOI: 10.1007/5584_2018_277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely utilized method for evaluating the gene expressions in stem cell research. This method enables researchers to obtain fast and precise results, but the accuracy of the data depends on certain factors, such as those associated with biological sample preparation and PCR efficiency. In order to achieve accurate and reliable results, it is of utmost importance to designate the reference genes, the expressions of which are suitable to all kinds of experimental conditions. Hence it is vital to normalize the qRT-PCR data by using the reference genes. In recent years, it has been found that the expression levels of reference genes widely used in stem cell research present a substantial amount of variation and are not necessarily suitable for normalization. This chapter at hand stresses the significance of selecting suitable reference genes from the point view of human stem cell research.
Collapse
|
19
|
Sanabria NM, Gulumian M. The presence of residual gold nanoparticles in samples interferes with the RT-qPCR assay used for gene expression profiling. J Nanobiotechnology 2017. [PMID: 29017502 DOI: 10.1186/s12951-017-0299-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RT-qPCR is routinely used in expression profiling of toxicity pathway genes. However, genetic and molecular level studies used to determine, understand and clarify potential risks of engineered nanomaterials (ENMs) are still incomplete. Concerns regarding possible interference caused by intracellular ENMs during analyses have been raised. The aim of this study was to verify a qPCR procedure for gene expression assays, which can be used in toxicity and exposure assessments. RESULTS Amplification of ten reference genes was performed to test the expression stability. A preliminary study was performed on RNA from BEAS-2B cells that had been treated with AuNPs. Also, a reference total RNA standard from ten cell lines was spiked with various amounts of the same AuNP. This treatment mimics exposure assessment studies, where assay-interference may be caused by intracellular residual ENMs still being present in the biological samples (during and after isolation/purification procedures). Both types of RNA samples were reverse transcribed and then amplified by qPCR. The qPCR-related software and statistical programs used included BestKeeper, NormFinder, REST and qBase+. These results proved that using standard qPCR analysis and statistical programs should not be the only procedure applied to verify the assay for gene expression assessment related to ENMs. A comparison of SYBR Green to EVA Green was discussed, in addition to a comparison to the latest reports regarding the influence of ENM thermal conductivity, surface interactions with ENMs, effects of ENM size and charge, as well as, the limit of detection in a qPCR assay. CONCLUSIONS AuNPs have the potential to interfere with the assay mechanism of RT-qPCR, thus, assay verification is required for AuNP-related gene expression studies used to evaluate toxicity. It is recommended to use HSP90 and YWHAZ as reference genes, i.e. these were the most stable in our study, irrespective of the source of the RNA, or, the point at which the AuNPs interacted with the assay. This report describes steps that can be utilised to generate a suitable method for gene expression studies associated with toxicity testing of various ENMs. For example, RNA standards that have been spiked with known amounts of ENMs should be run in conjunction with the unknown samples, in order to verify any RT-qPCR assay and determine the degree of error.
Collapse
Affiliation(s)
| | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa. .,Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
20
|
Sanabria NM, Gulumian M. The presence of residual gold nanoparticles in samples interferes with the RT-qPCR assay used for gene expression profiling. J Nanobiotechnology 2017; 15:72. [PMID: 29017502 PMCID: PMC5633869 DOI: 10.1186/s12951-017-0299-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/23/2017] [Indexed: 12/29/2022] Open
Abstract
Background RT-qPCR is routinely used in expression profiling of toxicity pathway genes. However, genetic and molecular level studies used to determine, understand and clarify potential risks of engineered nanomaterials (ENMs) are still incomplete. Concerns regarding possible interference caused by intracellular ENMs during analyses have been raised. The aim of this study was to verify a qPCR procedure for gene expression assays, which can be used in toxicity and exposure assessments. Results Amplification of ten reference genes was performed to test the expression stability. A preliminary study was performed on RNA from BEAS-2B cells that had been treated with AuNPs. Also, a reference total RNA standard from ten cell lines was spiked with various amounts of the same AuNP. This treatment mimics exposure assessment studies, where assay-interference may be caused by intracellular residual ENMs still being present in the biological samples (during and after isolation/purification procedures). Both types of RNA samples were reverse transcribed and then amplified by qPCR. The qPCR-related software and statistical programs used included BestKeeper, NormFinder, REST and qBase+. These results proved that using standard qPCR analysis and statistical programs should not be the only procedure applied to verify the assay for gene expression assessment related to ENMs. A comparison of SYBR Green to EVA Green was discussed, in addition to a comparison to the latest reports regarding the influence of ENM thermal conductivity, surface interactions with ENMs, effects of ENM size and charge, as well as, the limit of detection in a qPCR assay. Conclusions AuNPs have the potential to interfere with the assay mechanism of RT-qPCR, thus, assay verification is required for AuNP-related gene expression studies used to evaluate toxicity. It is recommended to use HSP90 and YWHAZ as reference genes, i.e. these were the most stable in our study, irrespective of the source of the RNA, or, the point at which the AuNPs interacted with the assay. This report describes steps that can be utilised to generate a suitable method for gene expression studies associated with toxicity testing of various ENMs. For example, RNA standards that have been spiked with known amounts of ENMs should be run in conjunction with the unknown samples, in order to verify any RT-qPCR assay and determine the degree of error. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mary Gulumian
- National Institute for Occupational Health, Johannesburg, South Africa. .,Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
21
|
Augustyniak J, Lenart J, Zychowicz M, Stepien PP, Buzanska L. Mitochondrial biogenesis and neural differentiation of human iPSC is modulated by idebenone in a developmental stage-dependent manner. Biogerontology 2017. [PMID: 28643190 PMCID: PMC5514205 DOI: 10.1007/s10522-017-9718-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idebenone, the synthetic analog of coenzyme Q10 can improve electron transport in mitochondria. Therefore, it is used in the treatment of Alzheimer’s disease and other cognitive impairments. However, the mechanism of its action on neurodevelopment is still to be elucidated. Here we demonstrate that the cellular response of human induced pluripotent stem cells (hiPSC) to idebenone depends on the stage of neural differentiation. When: neural stem cells (NSC), early neural progenitors (eNP) and advanced neural progenitors (NP) have been studied a significant stimulation of mitochondrial biogenesis was observed only at the eNP stage of development. This coexists with the enhancement of cell viability and increase in total cell number. In addition, we report novel idebenone properties in a possible regulation of neural stem cells fate decision: only eNP stage responded with up-regulation of both neuronal (MAP2), astrocytic (GFAP) markers, while at NSC and NP stages significant down-regulation of MAP2 expression was observed, promoting astrocyte differentiation. Thus, idebenone targets specific stages of hiPSC differentiation and may influence the neural stem cell fate decision.
Collapse
Affiliation(s)
- J Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - J Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - P P Stepien
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - L Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
Augustyniak J, Lenart J, Zychowicz M, Lipka G, Gaj P, Kolanowska M, Stepien PP, Buzanska L. Sensitivity of hiPSC-derived neural stem cells (NSC) to Pyrroloquinoline quinone depends on their developmental stage. Toxicol In Vitro 2017; 45:434-444. [PMID: 28578007 DOI: 10.1016/j.tiv.2017.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 11/27/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is a factor influencing on the mitochondrial biogenesis. In this study the PQQ effect on viability, total cell number, antioxidant capacity, mitochondrial biogenesis and differentiation potential was investigated in human induced Pluripotent Stem Cells (iPSC) - derived: neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP). Here we demonstrated that sensitivity to PQQ is dependent upon its dose and neural stage of development. Induction of the mitochondrial biogenesis by PQQ at three stages of neural differentiation was evaluated at mtDNA, mRNA and protein level. Changes in NRF1, TFAM and PPARGC1A gene expression were observed at all developmental stages, but only at eNP were correlated with the statistically significant increase in the mtDNA copy numbers and enhancement of SDHA, COX-1 protein level. Thus, the "developmental window" of eNP for PQQ-evoked mitochondrial biogenesis is proposed. This effect was independent of high antioxidant capacity of PQQ, which was confirmed in all tested cell populations, regardless of the stage of hiPSC neural differentiation. Furthermore, a strong induction of GFAP, with down regulation of MAP2 gene expression upon PQQ treatment was observed. This indicates a possibility of shifting the balance of cell differentiation in the favor of astroglia, but more research is needed at this point.
Collapse
Affiliation(s)
- J Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
| | - J Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
| | - M Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
| | - G Lipka
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland
| | - P Gaj
- Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT, University of Warsaw, Warsaw, Poland
| | - M Kolanowska
- Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT, University of Warsaw, Warsaw, Poland; Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - P P Stepien
- Department of Genetics, Faculty of Biology, University of Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw; Centre for New Technologies, University of Warsaw, Poland
| | - L Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Poland.
| |
Collapse
|
23
|
Xie J, Liu X, Li Y, Liu Y, Su G. Validation of RT-qPCR reference genes and determination of Robo4 expression levels in human retinal endothelial cells under hypoxia and/or hyperglycemia. Gene 2016; 585:135-142. [PMID: 27041242 DOI: 10.1016/j.gene.2016.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/13/2016] [Accepted: 03/26/2016] [Indexed: 12/17/2022]
Abstract
Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) has become the most common technique to investigate mRNA expression levels of target genes. In order to obtain accurate results, stable reference genes need to be selected for normalization in an experimental study. Human retinal endothelial cells (HREC) cultured in a hypoxic and hyperglycemic environment is a potential cell model to study diabetic retinopathy (DR), but the proper reference genes for RNA analysis have not yet been determined. In the present study, we evaluated the expression levels of 14 candidate housekeeping genes and selected the most suitable reference genes for RT-qPCR for HREC under hypoxic and/or hyperglycemic conditions. The results of the analyses using GeNorm, NormFinder, and BestKeeper software showed that a combination of TBP, PUM1, and ALAS1 was most suitable for this research. Based on these results, mRNA expression levels of Roundabout4 (Robo4) in HREC were determined. The RT-qPCR analysis showed that there was a significant increase in Robo4 expression under hyperglycemic conditions, while there was a decrease in expression under hypoxic and combined hypoxic and hyperglycemic conditions, suggesting that Robo4 might play different roles in various stages of DR.
Collapse
Affiliation(s)
- Jia'nan Xie
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130021, China
| | - Xin Liu
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130021, China
| | - Ying Li
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130021, China
| | - Guanfang Su
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
24
|
Tsuruya K, Chikada H, Ida K, Anzai K, Kagawa T, Inagaki Y, Mine T, Kamiya A. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells. Stem Cells Dev 2015; 24:1691-702. [PMID: 25808356 DOI: 10.1089/scd.2014.0479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Collapse
Affiliation(s)
- Kota Tsuruya
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan .,2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Hiromi Chikada
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| | - Kinuyo Ida
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| | - Kazuya Anzai
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan .,2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Tatehiro Kagawa
- 2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Yutaka Inagaki
- 3 Department of Regenerative Medicine, School of Medicine and Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University , Isehara, Japan
| | - Tetsuya Mine
- 2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Akihide Kamiya
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| |
Collapse
|
25
|
Holmgren G, Ghosheh N, Zeng X, Bogestål Y, Sartipy P, Synnergren J. Identification of stable reference genes in differentiating human pluripotent stem cells. Physiol Genomics 2015; 47:232-9. [PMID: 25852171 DOI: 10.1152/physiolgenomics.00130.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nidal Ghosheh
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Buck Institute, Novato, California; and
| | - Yalda Bogestål
- Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Peter Sartipy
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; AstraZeneca Research and Development, Global Medicines Development, Cardiovascular and Metabolic Diseases Global Medicines Development Unit, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden;
| |
Collapse
|
26
|
Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle. PLoS One 2015; 10:e0121280. [PMID: 25794179 PMCID: PMC4368700 DOI: 10.1371/journal.pone.0121280] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.
Collapse
|
27
|
Vanhauwaert S, Van Peer G, Rihani A, Janssens E, Rondou P, Lefever S, De Paepe A, Coucke PJ, Speleman F, Vandesompele J, Willaert A. Expressed repeat elements improve RT-qPCR normalization across a wide range of zebrafish gene expression studies. PLoS One 2014; 9:e109091. [PMID: 25310091 PMCID: PMC4195698 DOI: 10.1371/journal.pone.0109091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022] Open
Abstract
The selection and validation of stably expressed reference genes is a critical issue for proper RT-qPCR data normalization. In zebrafish expression studies, many commonly used reference genes are not generally applicable given their variability in expression levels under a variety of experimental conditions. Inappropriate use of these reference genes may lead to false interpretation of expression data and unreliable conclusions. In this study, we evaluated a novel normalization method in zebrafish using expressed repetitive elements (ERE) as reference targets, instead of specific protein coding mRNA targets. We assessed and compared the expression stability of a number of EREs to that of commonly used zebrafish reference genes in a diverse set of experimental conditions including a developmental time series, a set of different organs from adult fish and different treatments of zebrafish embryos including morpholino injections and administration of chemicals. Using geNorm and rank aggregation analysis we demonstrated that EREs have a higher overall expression stability compared to the commonly used reference genes. Moreover, we propose a limited set of ERE reference targets (hatn10, dna15ta1 and loopern4), that show stable expression throughout the wide range of experiments in this study, as strong candidates for inclusion as reference targets for qPCR normalization in future zebrafish expression studies. Our applied strategy to find and evaluate candidate expressed repeat elements for RT-qPCR data normalization has high potential to be used also for other species.
Collapse
Affiliation(s)
| | - Gert Van Peer
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Ali Rihani
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Els Janssens
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Pieter Rondou
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Anne De Paepe
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Paul J. Coucke
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center of Medical Genetics, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
28
|
Malaisse J, Hermant M, Hayez A, Poumay Y, Lambert de Rouvroit C. Meaning of relative gene expression in multilayered cultures of epidermal keratinocytes. Exp Dermatol 2014; 23:754-6. [DOI: 10.1111/exd.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Jérémy Malaisse
- Cell and Tissue Laboratory; URPHYM-NARILIS; University of Namur; Namur Belgium
| | - Maryse Hermant
- Cell and Tissue Laboratory; URPHYM-NARILIS; University of Namur; Namur Belgium
| | - Aurélie Hayez
- Cell and Tissue Laboratory; URPHYM-NARILIS; University of Namur; Namur Belgium
| | - Yves Poumay
- Cell and Tissue Laboratory; URPHYM-NARILIS; University of Namur; Namur Belgium
| | | |
Collapse
|
29
|
Vossaert L, Meert P, Scheerlinck E, Glibert P, Van Roy N, Heindryckx B, De Sutter P, Dhaenens M, Deforce D. Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Res 2014; 13:123-34. [PMID: 24874291 DOI: 10.1016/j.scr.2014.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/17/2023] Open
Abstract
Posttranslational histone modifications are essential features in epigenetic regulatory networks. One of these modifications has remained largely understudied: regulated histone proteolysis. In analogy to the histone H3 clipping during early mouse embryonic stem cell differentiation, we report for the first time that also in human embryonic stem cells this phenomenon takes place in the two different analyzed cell lines. Employing complementary techniques, different cleavage sites could be identified, namely A21, R26 and residue 31. The enzyme responsible for this cleavage is found to be a serine protease. The formation of cleaved H3 follows a considerably variable pattern, depending on the timeframe, culture conditions and culture media applied. Contrary to earlier findings on H3 clipping, our results disconnect the link between declining Oct4 expression and H3 cleavage.
Collapse
Affiliation(s)
- Liesbeth Vossaert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Paulien Meert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Ellen Scheerlinck
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter Glibert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Department of Medical Genetics, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|