1
|
Shrestha S, Tieu T, Wojnilowicz M, Voelcker NH, Forsythe JS, Frith JE. Delivery of miRNAs Using Porous Silicon Nanoparticles Incorporated into 3D Hydrogels Enhances MSC Osteogenesis by Modulation of Fatty Acid Signaling and Silicon Degradation. Adv Healthc Mater 2024; 13:e2400171. [PMID: 38657207 DOI: 10.1002/adhm.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.
Collapse
Affiliation(s)
- Surakshya Shrestha
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Terence Tieu
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Marcin Wojnilowicz
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
2
|
Zhang S, Wang S, Chen J, Cui Y, Lu X, Xiong S, Yue C, Yang B. Human dental pulp stem cell-derived exosomes decorated titanium scaffolds for promoting bone regeneration. Colloids Surf B Biointerfaces 2024; 235:113775. [PMID: 38330688 DOI: 10.1016/j.colsurfb.2024.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation. After purification, these exosomes were loaded onto anodized titanium scaffolds. Notably, the scaffolds loaded with exosomes deriving from osteogenic differentiated hDPSCs demonstrated superior bone tissue regeneration compared to those loaded with exosomes deriving from hDPSCs within 10-week. RNA-sequencing analysis shed light on the underlying mechanism, revealing that the osteogenic exosomes carried specific cargo, which is due to upregulated miRNAs (Hsa-miR-29c-5p, Hsa-miR-378a-5p, Hsa-miR-10b-5p and Hsa-miR-9-3p) associated with osteogenesis. And down-regulated anti-osteogenic miRNA (Hsa-miR-31-3p, Hsa-miR-221-3p, Hsa-miR-183-5p and Hsa-miR-503-5p). In conclusion, the identification and utilization of exosomes derived from osteogenic differentiated stem cells offer a novel and promising strategy for achieving cell-free bone regeneration.
Collapse
Affiliation(s)
- Siqi Zhang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Simeng Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jun Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Cui
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongxia Yue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China; National Engineering Research Center for Biomaterials, Chengdu 610064, People's Republic of China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
3
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
4
|
Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, Dunne NJ, McCarthy HO. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release 2023; 362:489-501. [PMID: 37673308 DOI: 10.1016/j.jconrel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.
Collapse
Affiliation(s)
- Phillip Chambers
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
7
|
Brommage R, Liu J, Powell DR. Skeletal phenotypes in secreted frizzled-related protein 4 gene knockout mice mimic skeletal architectural abnormalities in subjects with Pyle's disease from SFRP4 mutations. Bone Res 2023; 11:9. [PMID: 36808149 PMCID: PMC9941579 DOI: 10.1038/s41413-022-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 02/22/2023] Open
Abstract
Mutations in SFRP4 cause Pyle's bone disease with wide metaphyses and increased skeletal fragility. The WNT signaling pathway plays important roles in determining skeletal architecture and SFRP4 is a secreted Frizzled decoy receptor that inhibits WNT signaling. Seven cohorts of male and female Sfrp4 gene knockout mice, examined through 2 years of age, had a normal lifespan but showed cortical and trabecular bone phenotypes. Mimicking human Erlenmeyer flask deformities, bone cross-sectional areas were elevated 2-fold in the distal femur and proximal tibia but only 30% in femur and tibia shafts. Reduced cortical bone thickness was observed in the vertebral body, midshaft femur and distal tibia. Elevated trabecular bone mass and numbers were observed in the vertebral body, distal femur metaphysis and proximal tibia metaphysis. Midshaft femurs retained extensive trabecular bone through 2 years of age. Vertebral bodies had increased compressive strength, but femur shafts had reduced bending strength. Trabecular, but not cortical, bone parameters in heterozygous Sfrp4 mice were modestly affected. Ovariectomy resulted in similar declines in both cortical and trabecular bone mass in wild-type and Sfrp4 KO mice. SFRP4 is critical for metaphyseal bone modeling involved in determining bone width. Sfrp4 KO mice show similar skeletal architecture and bone fragility deficits observed in patients with Pyle's disease with SFRP4 mutations.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- BoneGenomics, The Woodlands, TX, USA.
| | - Jeff Liu
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- Biogen, Cambridge, MA, USA.
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
| |
Collapse
|
8
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ, Fang YX. Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett 2022; 526:76-90. [PMID: 34801597 DOI: 10.1016/j.canlet.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
Most prostate cancer (PCa)-related deaths are caused by progression to bone metastasis. Recently, the importance of extracellular vesicles (EVs) in pre-metastatic niche formation has been reported. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and induce pre-metastatic niche formation for PCa bone metastasis remain unclear. Our in vitro and in vivo functional and mechanistic assays revealed that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa, maintaining low intracellular miR-378a-3p concentration to promote proliferation and MAOA-mediated epithelial-to-mesenchymal transition. Moreover, miR-378a-3p enrichment in tumor-derived EVs was induced by hnRNPA2B1 (a transfer chaperone) overexpression. After tumor-derived EVs were taken in by BMMs, enriched miR-378a-3p promoted osteolytic progression by inhibiting Dyrk1a to improve Nfatc1 (an osteolysis-related transcription factor) nuclear translocation, to activate the expression of downstream target gene Angptl2. As a feedback, increased Angptl2 secretion into the tumor environment promoted PCa progression. In conclusion, tumor-derived miR-378a-3p-containing EVs play a significant role in PCa bone metastasis by activating the Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, making miR-378a-3p a potential predictor of metastatic PCa. Reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into EVs can be a therapeutic strategy against PCa metastasis.
Collapse
Affiliation(s)
- Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Wang Q, Miao Y, Qian Z, Chen L, Lu T, Xu Y, Jiang X, Shen Y. MicroRNA-15a-5p plays a role in osteogenic MC3T3-E1 cells differentiation by targeting PDCD4 (programmed cell death 4) via Wnt/β-catenin dependent signaling pathway. Bioengineered 2021; 12:8173-8185. [PMID: 34672248 PMCID: PMC8806754 DOI: 10.1080/21655979.2021.1977766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is defined as a bone condition characterized by bone mass reduction, bone micro-architectural and quality deterioration, leading to compromised strength and increased chances of fracture. Evidence have shown an essential role of microRNAs (miRNAs) in various osteogenic differentiation processes. However, the function of miR-15a-5p in the differentiation of osteogenic cells and possible mechanisms remains unclear. The present study explored the expression of miR-15a-5p in human osteoporosis specimens and during the osteogenic differentiation of MC3T3-E1 cells. Functions of miR-15a-5p were determined using miR-15a-5p mimics and inhibitors. Luciferase assay was used to verify the binding of miR-15a-5p and PDCD4 3ʹUTR. Alizarin Red Staining (ARS) and Alkaline phosphatase (ALP) activity were used to determine the miR-15a-5p role in osteogenic differentiation. Finally, Wnt pathway inhibitor was used to determine the miR-15a-5p/PDCD4/Wnt signaling pathway in regulating osteogenic differentiation. We found miR-15a-5p expression was increased in human osteoporosis specimens and during differentiation of MC3T3-E1 cells. PDCD4 was also identified as a target of miR-15a-5p and was found to be involved in osteogenic differentiation. Further, miR-15a-5p mimics attenuated the effects of PDCD4 overexpression. Finally, use of XAV939 (Wnt pathway inhibitor) downregulated osteogenic differentiation in miR-15a5p/PDCD4/Wnt-dependent signaling pathway. In conclusion, miR-15a-5p induced differentiation of osteoblasts and mineralization by modulating osteoblast differentiation factors, mainly OSX, ALP, OCN, and RUNX2, by inhibiting PDCD4 and Wnt signaling pathways. This study provides a modality for the future use of miR-15a-5p in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yiming Miao
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Zhiyuan Qian
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Lidong Chen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Tong Lu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yue Xu
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| | - Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu City, Jiangsu Province, China
| |
Collapse
|
11
|
Nan K, Zhang Y, Zhang X, Li D, Zhao Y, Jing Z, Liu K, Shang D, Geng Z, Fan L. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu). Stem Cell Res Ther 2021; 12:331. [PMID: 34099038 PMCID: PMC8186190 DOI: 10.1186/s13287-021-02390-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background Local ischemia and defective osteogenesis are implicated in the progression of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Recent studies have revealed that exosomes released from adipose-derived stem cells (ASCs) play important roles in ONFH therapy. The present study aimed to investigate whether exosomes derived from miR-378-overexpressing ASCs (miR-378-ASCs-Exos) could promote angiogenesis and osteogenesis in GC-induced ONFH. Methods In vitro, we investigated the osteogenic potential of miR-378-ASCs-Exos on bone marrow stromal cells (BMSCs) by alkaline phosphatase staining and western blotting. The angiogenic effects of miR-378-ASCs-Exos on human umbilical vein endothelial cells (HUVECs) were examined by evaluating their proliferation, migration, and tube-forming analyses. We identified the underlying mechanisms of miR-378 in osteogenic and angiogenic regulation. In addition, an ONFH rat model was established to explore the effects of miR-378-ASCs-Exos through histological and immunohistochemical staining and micro-CT in vivo. Results Administration of miR-378-ASCs-Exos improved the osteogenic and angiogenic potentials of BMSCs and HUVECs. miR-378 negatively regulated the suppressor of fused (Sufu) and activated Sonic Hedgehog (Shh) signaling pathway, and recombinant Sufu protein reduced the effects triggered by miR-378-ASCs-Exos. In vivo experiments indicated that miR-378-ASCs-Exos markedly accelerated bone regeneration and angiogenesis, which inhibited the progression of ONFH. Conclusion Our study indicated that miR-378-ASCs-Exos enhances osteogenesis and angiogenesis by targeting Sufu to upregulate the Shh signaling pathway, thereby attenuating GC-induced ONFH development.
Collapse
Affiliation(s)
- Kai Nan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Dong Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Yan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China.
| |
Collapse
|
12
|
Yang C, Luo M, Chen Y, You M, Chen Q. MicroRNAs as Important Regulators Mediate the Multiple Differentiation of Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:619842. [PMID: 34164391 PMCID: PMC8215576 DOI: 10.3389/fcell.2021.619842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-encoding RNAs which play a critical role on the output of the proteins, and influence multiple biological characteristics of the cells and physiological processes in the body. Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells and characterized by self-renewal and multidifferentiation and have been widely used for disease treatment and regenerative medicine. Meanwhile, MSCs play a critical role in maintaining homeostasis in the body, and dysfunction of MSC differentiation leads to many diseases. The differentiation of MSCs is a complex physiological process and is the result of programmed expression of a series of genes. It has been extensively proven that the differentiation process or programmed gene expression is also regulated accurately by miRNAs. The differentiation of MSCs regulated by miRNAs is also a complex, interdependent, and dynamic process, and a full understanding of the role of miRNAs will provide clues on the appropriate upregulation or downregulation of corresponding miRNAs to mediate the differentiation efficiency. This review summarizes the roles and associated signaling pathways of miRNAs in adipogenesis, chondrogenesis, and osteogenesis of MSCs, which may provide new hints on MSCs or miRNAs as therapeutic strategies for regenerative medicine and biotherapy for related diseases.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| |
Collapse
|
13
|
Kang M, Huang CC, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S, Cooper LF. Bone regeneration is mediated by macrophage extracellular vesicles. Bone 2020; 141:115627. [PMID: 32891867 PMCID: PMC8107826 DOI: 10.1016/j.bone.2020.115627] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Multiple local and systemic factors including inflammation influence bone regeneration. Several lines of evidence demonstrate that macrophages contribute to the immunological regulation of MSC and osteoblast function during bone regeneration. Recent studies demonstrate that macrophage polarization influences this regulatory process. In this manuscript, we investigated the paracrine functional role of naïve (M0), M1 and M2 polarized macrophage derived EVs in bone repair. Treatment of rat calvaria defects with no EVs, M0 EVs, M1 EVs, or M2 EVs revealed polarization-specific control of bone regeneration by macrophage EVs at 3 and 6 weeks. M0 and M2 EVs promoted repair/regeneration and M1 EVs inhibited bone repair. Pathway-specific studies conducted in cell culture showed that M1 EVs negatively regulated the BMP signaling pathway, specifically BMP2 and BMP9. In parallel, miRNA sequencing studies showed similar miRNA cargo in M0 and M2 EVs and different miRNA cargo in M1 EVs. Functional examination of M1 macrophage EV-enriched miR-155 demonstrated that miR-155 mimic treatment reduced MSC osteogenic differentiation as measured by reduced BMP2, BMP9 and RUNX2 expression when compared to controls. Conversely, treatment of MSCs with the M2 macrophage EV-enriched miR-378a mimic increased MSC osteoinductive gene expression when compared to controls. These functional studies implicate polarized macrophage EV miRNAs in the positive or negative regulation of bone regeneration that was observed in vivo. Overall, the results presented in this study indicate that macrophage polarization influences EV cargo and related EV function in the paracrine regulation of bone regeneration.
Collapse
Affiliation(s)
- Miya Kang
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Chun-Chieh Huang
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Yu Lu
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Sajjad Shirazi
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Praveen Gajendrareddy
- Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Sriram Ravindran
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Lyndon F Cooper
- Departments of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States of America.
| |
Collapse
|
14
|
Zhang X, Chen K, Chen X, Kourkoumelis N, Li G, Wang B, Zhu C. Integrative Analysis of Genomics and Transcriptome Data to Identify Regulation Networks in Female Osteoporosis. Front Genet 2020; 11:600097. [PMID: 33329745 PMCID: PMC7734180 DOI: 10.3389/fgene.2020.600097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Osteoporosis is a highly heritable skeletal muscle disease. However, the genetic mechanisms mediating the pathogenesis of osteoporosis remain unclear. Accordingly, in this study, we aimed to clarify the transcriptional regulation and heritability underlying the onset of osteoporosis. Methods: Transcriptome gene expression data were obtained from the Gene Expression Omnibus database. Microarray data from peripheral blood monocytes of 73 Caucasian women with high and low bone mineral density (BMD) were analyzed. Differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) were identified. Differences in BMD were then attributed to several gene modules using weighted gene co-expression network analysis (WGCNA). LncRNA/mRNA regulatory networks were constructed based on the WGCNA and subjected to functional enrichment analysis. Results: In total, 3,355 mRNAs and 999 lncRNAs were identified as differentially expressed genes between patients with high and low BMD. The WGCNA yielded three gene modules, including 26 lncRNAs and 55 mRNAs as hub genes in the blue module, 36 lncRNAs and 31 mRNAs as hub genes in the turquoise module, and 56 mRNAs and 30 lncRNAs as hub genes in the brown module. JUN and ACSL5 were subsequently identified in the modular gene network. After functional pathway enrichment, 40 lncRNAs and 16 mRNAs were found to be related to differences in BMD. All three modules were enriched in metabolic pathways. Finally, mRNA/lncRNA/pathway networks were constructed using the identified regulatory networks of lncRNAs/mRNAs and pathway enrichment relationships. Conclusion: The mRNAs and lncRNAs identified in this WGCNA could be novel clinical targets in the diagnosis and management of osteoporosis. Our findings may help elucidate the complex interactions between transcripts and non-coding RNAs and provide novel perspectives on the regulatory mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoxuan Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bing Wang
- School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Liu S, Wang C, Bai J, Li X, Yuan J, Shi Z, Mao N. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis. Cell Biol Int 2020; 45:447-455. [PMID: 33200464 DOI: 10.1002/cbin.11502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Increasing evidence suggests that postmenopausal osteoporosis (PMO), a severe disturbance, imposes heavy physical, psychosocial, and financial burdens and dramatically influences the quality of life of postmenopausal women. Circular RNAs (circRNAs) and microRNAs (miRs) play important roles in the occurrence and development of PMO. However, the roles of circRNAs and miRs in osteoporosis regulation still need to be further investigated. circRNAs with different expression levels in patients with PMO were screened via RNA-seq and bioinformatics analysis. We found that circ_0007059 was upregulated in patients with PMO and during osteoclastogenesis of human bone marrow stromal cells (hBMSCs). Next, we investigated the effect of circ_0007059 overexpression during osteoclastogenesis of hBMSCs. circ_0007059 overexpression attenuated hBMSC differentiation into osteoclasts in vitro. This was demonstrated by downregulated bone morphogenetic protein 2 (BMP-2) expression, upregulated osteoclast-specific gene expression, and TRAP staining. circ_0007059 was demonstrated to directly target miR-378, which in turn targeted BMP-2 via bioinformatics analysis and the dual-luciferase reporter assay. Transfection of the miR-378 mimic reversed the effect of circ_0007059 on the osteoclastogenesis of hBMSCs. These results suggest that circ_0007059 plays an important role in osteoclastogenesis via the miR-378/BMP-2 signaling pathway. Targeting the circ_0007059/miR-378/BMP-2 axis is possibly a novel idea in osteoporosis treatment.
Collapse
Affiliation(s)
- Shu Liu
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chao Wang
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jinyi Bai
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoming Li
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiabin Yuan
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhicai Shi
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ningfang Mao
- Department of Spinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Feng L, Zhang JF, Shi L, Yang ZM, Wu TY, Wang HX, Lin WP, Lu YF, Lo JHT, Zhu DH, Li G. MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/β-Catenin Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:1017-1028. [PMID: 32829178 PMCID: PMC7452050 DOI: 10.1016/j.omtn.2020.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/23/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) have been reported to serve as silencers to repress gene expression at post-transcriptional levels. Multiple miRNAs have been demonstrated to play important roles in osteogenesis. MicroRNA (miR)-378, a conserved miRNA, was reported to mediate bone metabolism and influence bone development, but the detailed function and underlying mechanism remain obscure. In this study, the miR-378 transgenic (TG) mouse was developed to study the role of miR-378 in osteogenic differentiation as well as bone formation. The abnormal bone tissues and impaired bone quality were displayed in the miR-378 TG mice, and a delayed healing effect was observed during bone fracture of the miR-378 TG mice. The osteogenic differentiation of mesenchymal stem cells (MSCs) derived from this TG mouse was also inhibited. We also found that miR-378 mimics suppressed, whereas anti-miR-378 promoted osteogenesis of human MSCs. Two Wnt family members, Wnt6 and Wnt10a, were identified as bona fide targets of miR-378, and their expression was decreased by this miRNA, which eventually induced the inactivation of Wnt/β-catenin signaling. Finally, the short hairpin (sh)-miR-378-modified MSCs were locally injected into the fracture sites in an established mouse fracture model. The results indicated that miR-378 inhibitor therapy could promote bone formation and stimulate the healing process in vivo. In conclusion, miR-378 suppressed osteogenesis and bone formation via inactivating Wnt/β-catenin signaling, suggesting that miR-378 may be a potential therapeutic target for bone diseases.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Liu Shi
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, P.R. China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, P.R. China
| | - Zheng-Meng Yang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China
| | - Tian-Yi Wu
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China; Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Hai-Xing Wang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China
| | - Wei-Ping Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China
| | - Ying-Fei Lu
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China; Central Laboratory, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China
| | - Da-Hai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, P.R. China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
17
|
Zhao J, Zhang Y, Liu B. MicroRNA‑204‑5p inhibits the osteogenic differentiation of ankylosing spondylitis fibroblasts by regulating the Notch2 signaling pathway. Mol Med Rep 2020; 22:2537-2544. [PMID: 32705191 PMCID: PMC7411397 DOI: 10.3892/mmr.2020.11303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory systemic disease and is difficult to detect in the early stages. The present study aimed to investigate the role of microRNA (miR)-204-5p in osteogenic differentiation of AS fibroblasts. Bone morphogenetic protein 2 (BMP-2) was used to induce osteogenic differentiation. Cells were divided into the following groups: AS group, AS + BMP-2 group, AS + BMP-2 + miR-negative control group, AS + BMP-2 + miR-204-5p mimics group and AS + BMP-2 + miR-204-5p mimics + pcDNA-Notch2 group. The expression levels of miR-204-5p, Notch2, runt-related transcription factor 2 (RUNX2) and osteocalcin were detected via reverse transcription-quantitative PCR analysis. The binding site between Notch2 and miR-204-5p was predicted using TargetScan software and verified via the dual-luciferase reporter assay. Alkaline phosphatase (ALP) activity was assessed via the ALP assay, while the mineralized nodules area was determined via the Alizarin Red S staining assay. The results demonstrated that Notch2 is a target gene of miR-204-5p. Furthermore, treatment with BMP-2 significantly decreased miR-204-5p expression, and significantly increased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Conversely, transfection with miR-204-5p mimics significantly increased miR-204-5p expression, and significantly decreased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Notably, transfection with pcDNA-Notch2 significantly reversed the inhibitory effects induced by miR-204-5p mimics on the osteogenic differentiation of ligament fibroblasts (all P<0.05). Furthermore, miR-204-5p inhibited the osteogenic differentiation of ligament fibroblasts in patients with AS by targeting Notch2. Thus, miR-204-5p may negatively regulate Notch2 expression and may be a potential therapeutic target for AS. Collectively, the results of the present study provide a theoretical basis for the effective treatment of patients with AS.
Collapse
Affiliation(s)
- Jianjun Zhao
- Department of Joint Surgery and Traumatic Orthopedics, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Yanyan Zhang
- Department of General Surgery, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Bo Liu
- Department of Trauma Orthopedics, The No. 4 Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
18
|
Gautvik KM, Günther CC, Prijatelj V, Medina-Gomez C, Shevroja E, Rad LH, Yazdani M, Lindalen E, Valland H, Gautvik VT, Olstad OK, Holden M, Rivadeneira F, Utheim TP, Reppe S. Distinct Subsets of Noncoding RNAs Are Strongly Associated With BMD and Fracture, Studied in Weight-Bearing and Non-Weight-Bearing Human Bone. J Bone Miner Res 2020; 35:1065-1076. [PMID: 32017184 DOI: 10.1002/jbmr.3974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kaare M Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Vid Prijatelj
- Department of Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Enisa Shevroja
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Heidary Rad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Einar Lindalen
- Orthopaedic Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Haldor Valland
- Department of Surgery, Diakonhjemmet Hospital, Oslo, Norway
| | - Vigdis T Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital, Arendal, Norway
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
20
|
Ito K, Tomoki R, Ogura N, Takahashi K, Eda T, Yamazaki F, Kato Y, Goss A, Kondoh T. MicroRNA-204 regulates osteogenic induction in dental follicle cells. J Dent Sci 2020; 15:457-465. [PMID: 33505617 PMCID: PMC7816036 DOI: 10.1016/j.jds.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
The dental follicle is an ectomesenchymal tissue surrounding developing tooth germ that contains osteoblastic-lineage-committed stem/progenitor cells. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression during stem cell growth, proliferation, and differentiation. The aim of this study was to investigate the key regulators of miRNA during osteogenic differentiation in human dental follicle cells (hDFC). We analyzed miRNA expression profiles in hDFC during osteoblastic differentiation. Expression of miR-204 was decreased in hDFC during osteogenic induction on microarray analysis. Real-time and RT-PCR analysis also showed that the expression of miR-204 was decreased in all three hDFC during osteogenic differentiation. To investigate whether miR-204 has an effect on osteogenic differentiation, miR-204 was predicted to target alkaline phosphatase (ALP), secreted protein acidic and rich in cysteine (SPARC), and Runx2 in the in the 3'-UTRs by in silico analysis. When miR-204 was transfected into hDFC, the activity of ALP and protein levels of SPARC and Runx2 were decreased. mRNA levels of ALP, SPARC and Runx2 were also decreased by miR-204 transfection. Our data suggest that miR-204 negatively regulates the osteogenic differentiation of hDFC by targeting the bone-specific transcription factor Runx2, the mineralization maker ALP and the bone extracellular matrix protein SPARC.
Collapse
Affiliation(s)
- Ko Ito
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Risa Tomoki
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Naomi Ogura
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Kosuke Takahashi
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takashi Eda
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Fumie Yamazaki
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yugo Kato
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Alastair Goss
- Oral and Maxillofacial Surgery Unit, Faculty of Health Science, University of Adelaide, South Australia, Australia
| | - Toshirou Kondoh
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
21
|
Xu Y, Ren C, Zhao X, Wang W, Zhang N. microRNA-132 inhibits osteogenic differentiation of periodontal ligament stem cells via GDF5 and the NF-κB signaling pathway. Pathol Res Pract 2019; 215:152722. [PMID: 31718857 DOI: 10.1016/j.prp.2019.152722] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) could differentiate into osteoblasts and have a great prospect in treating bone diseases. microRNAs (miRs) and nuclear factor kappa-B (NF-κB) signaling pathway have proved pivotal in regulating osteogenic differentiation. This study intended to discuss the mechanism of miR-132 and NF-κB in PDLSC osteogenesis. METHODS PDLSCs were firstly cultured, induced, and identified by detecting the surface markers and observing cell morphology. Levels of osteogenic markers alkaline phosphatase (ALP), bone morphogenetic proteins 2 (BMP2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN), along with miR-132 expression were measured. The osteoblast activity and mineral deposition were detected by ALP and alizarin red S (ARS) stainings. The targeting relationship between miR-132 and growth differentiation factor 5 (GDF5) was verified. The gain-and loss-of-function was performed to discuss roles of miR-132 and GDF5 in osteogenic differentiation of PDLSCs. Besides, levels of NF-κB signaling pathway-related proteins were measured. RESULTS In osteogenic differentiation of PDLSCs, levels of ALP, BMP2, Runx2 and OCN were upregulated while miR-132 was downregulated. Overexpressing miR-132 reduced levels of osteogenic markers, osteoblast activity, ALP and ARS intensity and the activation of NF-κB axis. GDF5 is a target of miR-132 and GDF5 overexpression reversed the inhibitory effects of overexpressed miR-132 on PDLSC osteogenesis. CONCLUSION Together, miR-132 could inhibit PDLSC osteogenesis via targeting GDF5 and activating NF-κB axis. These data provide useful information for PDLSC application in periodontal therapy.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Chaochao Ren
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Xiang Zhao
- Department of General Dentistry, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Wei Wang
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China
| | - Ning Zhang
- Department of Orthodontics, Beijing Stomotological Hospital, Capital Medical University, Beijing 100006, PR China.
| |
Collapse
|
22
|
Bracey DN, Jinnah AH, Willey JS, Seyler TM, Hutchinson ID, Whitlock PW, Smith TL, Danelson KA, Emory CL, Kerr BA. Investigating the Osteoinductive Potential of a Decellularized Xenograft Bone Substitute. Cells Tissues Organs 2019; 207:97-113. [PMID: 31655811 PMCID: PMC6935535 DOI: 10.1159/000503280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Bone grafting is the second most common tissue transplantation procedure worldwide. One of the alternative methods for bone repair under investigation is a tissue-engineered bone substitute. An ideal property of tissue-engineered bone substitutes is osteoinductivity, defined as the ability to stimulate primitive cells to differentiate into a bone-forming lineage. In the current study, we use a decellularization and oxidation protocol to produce a porcine bone scaffold and examine whether it possesses osteoinductive potential and can be used to create a tissue-engineered bone microenvironment. The decellularization protocol was patented by our lab and consists of chemical decellularization and oxidation steps using combinations of deionized water, trypsin, antimicrobials, peracetic acid, and triton-X100. To test if the bone scaffold was a viable host, preosteoblasts were seeded and analyzed for markers of osteogenic differentiation. The osteoinductive potential was observed in vitro with similar osteogenic markers being expressed in preosteoblasts seeded on the scaffolds and demineralized bone matrix. To assess these properties in vivo, scaffolds with and without preosteoblasts preseeded were subcutaneously implanted in mice for 4 weeks. MicroCT scanning revealed 1.6-fold increased bone volume to total volume ratio and 1.4-fold increase in trabecular thickness in scaffolds after implantation. The histological analysis demonstrates new bone formation and blood vessel formation with pentachrome staining demonstrating osteogenesis and angiogenesis, respectively, within the scaffold. Furthermore, CD31+ staining confirmed the endothelial lining of the blood vessels. These results demonstrate that porcine bone maintains its osteoinductive properties after the application of a patented decellularization and oxidation protocol developed in our laboratory. Future work must be performed to definitively prove osteogenesis of human mesenchymal stem cells, biocompatibility in large animal models, and osteoinduction/osseointegration in a relevant clinical model in vivo. The ability to create a functional bone microenvironment using decellularized xenografts will impact regenerative medicine, orthopedic reconstruction, and could be used in the research of multiple diseases.
Collapse
Affiliation(s)
- Daniel N. Bracey
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Alexander H. Jinnah
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Jeffrey S. Willey
- Wake Forest Baptist Medical Center, Radiation Oncology, Winston Salem, NC, USA
| | | | | | | | - Thomas L. Smith
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Kerry A. Danelson
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Cynthia L. Emory
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
| | - Bethany A. Kerr
- Wake Forest Baptist Medical Center, Orthopaedic Surgery, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School for Bioengineering and Sciences, Winston Salem, NC, USA
- Wake Forest School of Medicine, Cancer Biology, Winston Salem, NC, USA
| |
Collapse
|
23
|
Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, Long T, Tang W, Tian W, Long J. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019; 44:857-870. [PMID: 31257525 PMCID: PMC6658005 DOI: 10.3892/ijmm.2019.4249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although miRNAs have been implicated in the osteogenic differentiation of stem cells, their role in bone repair and reconstruction in tissue‑engineered bone grafts remains unclear. We previously reported that microRNA (miR)‑26a‑5p inhibited the osteogenic differentiation of adipose‑derived mesenchymal stem cells (ADSCs), and that antimiR‑26a‑5p exerted the opposite effect. In the present study, the role of miR‑26a‑5p‑ and antimiR‑26a‑5p‑modified ADSCs combined with biphasic calcium phosphate (BCP) scaffolds was evaluated in a rat femur defect model. The aim of the present study was to improve the understanding of the role of miR‑26a‑5p in bone regeneration in vivo, as well as to provide a new method to optimize the osteogenic ability of BCPs. ADSCs were infected with Lv‑miR‑26a‑5p, Lv‑miR‑NC, Lv‑antimiR‑26a‑5p or Lv‑antimiR‑NC respectively, and then combined with BCP scaffolds to repair rat femoral defects. Using X‑rays, micro‑computed tomography and histology at 2, 4, and 8 weeks postoperatively, the quantity and rate of bone regeneration were analyzed, revealing that they were the highest in animals treated with antimiR‑26a‑5p and the lowest in the miR‑26a‑5p treatment group. The expression levels of osteocalcin, collagen I, Runt‑related transcription factor 2, Wnt family member 5A and calmodulin‑dependent protein kinase II proteins were positively correlated with the bone formation rate. Taken together, the present results demonstrated that miR‑26a‑5p inhibited bone formation while antimiR‑26a‑5p accelerated bone formation via the Wnt/Ca2+ signaling pathway. Therefore, antimiR‑26a‑5p‑modified ADSCs combined with BCP scaffolds may be used to construct an effective tissue‑engineering bone graft for bone repair and reconstruction.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Aesthetic Medicine, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Shasha Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Weidong Tian
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
24
|
Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F, Xiao H. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett 2019; 24:51. [PMID: 31410089 PMCID: PMC6686269 DOI: 10.1186/s11658-019-0177-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) serve crucial roles in the progression of osteoporosis. This study investigated the role and specific molecular mechanism of miR-135-5p in regulating osteoblast differentiation and calcification. Methods Bone morphogenetic protein 2 (BMP2) was employed to interfere with the differentiation of MC3T3-E1. Then, miR-135-5p mimic or miR-135-5p inhibitor was transfected into MC3T3-E1, and quantitative RT-PCR was used to measure the expression of miR-135-5p. The expressions of runt-related transcription factor 2 (Runx2), osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) were determined using western blot. Alkaline phosphatase (ALP) activity was measured using an appropriate kit assay. Calcium nodule staining was evaluated with alizarin red staining. A luciferase reporter assay was used to verify the target of miR-135-5p. Hypoxia-inducible factor 1 α inhibitor (HIF1AN) overexpression was applied to investigate its own role in the mechanism and a miR-135-5p rescue experiment was also performed. Results Overexpression of miR-135-5p promoted osteogenic differentiation and calcification, as shown by the increase in ALP activity, calcification and osteogenic marker levels, including Runx2, OSX, OPN and OCN. Knockdown of miR-135-5p yielded the opposite results. HIF1AN was confirmed as a direct target of miR-135-5p. HIF1AN overexpression inhibited osteogenic differentiation and calcification while miR-135-5p reversed these effects. Conclusions These results indicate that miR-135-5p might have a therapeutic application related to its promotion of bone formation through the targeting of HIF1AN.
Collapse
Affiliation(s)
- Nuo Yin
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Longzhang Zhu
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Junjie Yuan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Li Du
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Haijun Xiao
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| |
Collapse
|
25
|
Physical Exercise Modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p Expression in Progenitor Cells Promoting Osteogenesis. Cells 2019; 8:cells8070742. [PMID: 31330975 PMCID: PMC6678390 DOI: 10.3390/cells8070742] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Physical exercise is known to promote beneficial effects on overall health, counteracting risks related to degenerative diseases. MicroRNAs (miRNAs), short non-coding RNAs affecting the expression of a cell’s transcriptome, can be modulated by different stimuli. Yet, the molecular effects on osteogenic differentiation triggered by miRNAs upon physical exercise are not completely understood. In this study, we recruited 20 male amateur runners participating in a half marathon. Runners’ sera, collected before (PRE RUN) and after (POST RUN) the run, were added to cultured human mesenchymal stromal cells. We then investigated their effects on the modulation of selected miRNAs and the consequential effects on osteogenic differentiation. Our results showed an increased expression of miRNAs promoting osteogenic differentiation (miR-21-5p, miR-129-5p, and miR-378-5p) and a reduced expression of miRNAs involved in the adipogenic differentiation of progenitor cells (miR-188-5p). In addition, we observed the downregulation of PTEN and SMAD7 expression along with increased AKT/pAKT and SMAD4 protein levels in MSCs treated with POST RUN sera. The consequent upregulation of RUNX2 expression was also proven, highlighting the molecular mechanisms by which miR-21-5p promotes osteogenic differentiation. In conclusion, our work proposes novel data, which demonstrate how miRNAs may regulate the osteogenic commitment of progenitor cells in response to physical exercise.
Collapse
|
26
|
Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Mirahmadi M, Neshati Z, Kerachian MA. Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC MEDICAL GENETICS 2019; 20:117. [PMID: 31262253 PMCID: PMC6604430 DOI: 10.1186/s12881-019-0854-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/24/2019] [Indexed: 12/23/2022]
Abstract
Background Mesenchymal stem cells (MSCs) are attractive choices in regenerative medicine and can be genetically modified to obtain better results in therapeutics. Bone development and metabolism are controlled by various factors including microRNAs (miRs) interference, which are small non-coding endogenous RNAs. Methods In the current study, the effects of forced miR-148b expression was evaluated on osteogenic activity. Human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transduced with bicistronic lentiviral vector encoding hsa-miR-148b-3p or -5p and the enhanced green fluorescent protein. Fourteen days post-transduction, immunostaining as well as Western blotting were used to analyze osteogenesis. Results Overexpression of miR-148b-3p increased the osteogenic differentiation of human BM-MSCs as demonstrated by anenhancement of mineralized nodular formation and an increase in the levels of osteoblastic differentiation biomarkers, alkaline phosphatase and collagen type I. Conclusions Since lentivirally overexpressed miR-148b-3p increased osteogenic differentiation capability of BM-MSCs, this miR could be applied as a therapeutic modulator to optimize bone function. Electronic supplementary material The online version of this article (10.1186/s12881-019-0854-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Neshati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Majid Mojarad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
28
|
Kuznetsova VS, Vasilyev AV, Buharova TB, Goldshtein DV, Kulakov AA. [Safety and efficacy of BMP-2 and BMP-7 use in dentistry]. STOMATOLOGII︠A︡ 2019; 98:64-69. [PMID: 30830096 DOI: 10.17116/stomat20199801164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article deals with bone morphogenetic proteins BMP-2 and BMP-7 with high osteoinductive potential. The materials containing these proteins are considered. Their safety and efficacy for regeneration of maxillofacial bone defects are evaluated. The prospects of bone tissue regeneration technologies development based on the use of bone morphogenetic proteins are described.
Collapse
Affiliation(s)
- V S Kuznetsova
- Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - A V Vasilyev
- Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia; Research Centre for Medical Genetics, Moscow, Russia
| | - T B Buharova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - A A Kulakov
- Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
29
|
Faraldi M, Gomarasca M, Sansoni V, Perego S, Banfi G, Lombardi G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep 2019; 9:1584. [PMID: 30733582 PMCID: PMC6367481 DOI: 10.1038/s41598-019-38505-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are fine regulators of the whole-body adaptive response but their use as biomarkers is limited by the lack of standardized pre- and post-analytical procedures. This work aimed to compare different normalization approaches for RT-qPCR data analyses, in order to identify the most reliable and reproducible method to analyze circulating miRNA expression profiles in sedentary and highly-trained subjects. As the physically active status is known to affect miRNA expression, they could be effective biomarkers of the homeostatic response. Following RNA extraction from plasma, a panel of 179 miRNAs was assayed by RT-qPCR and quantified by applying different normalization strategies based on endogenous miRNAs and exogenous oligonucleotides. hsa-miR-320d was found as the most appropriate reference miRNA in reducing the technical variability among the experimental replicates and, hence, in highlighting the inter-cohorts differences. Our data showed an association between the physically active status and specific skeletal muscle- and bone-associated circulating miRNAs profiles, revealing that established epigenetic modifications affect the baseline physiological status of these tissues. Since different normalization strategies led to different outputs, in order to avoid misleading interpretation of data, we remark the importance of the accurate choice of the most reliable normalization method in every experimental setting.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Gdańsk University of Physical Education & Sport, Gdańsk, Poland
| |
Collapse
|
30
|
Brommage R, Liu J, Vogel P, Mseeh F, Thompson AY, Potter DG, Shadoan MK, Hansen GM, Jeter-Jones S, Cui J, Bright D, Bardenhagen JP, Doree DD, Movérare-Skrtic S, Nilsson KH, Henning P, Lerner UH, Ohlsson C, Sands AT, Tarver JE, Powell DR, Zambrowicz B, Liu Q. NOTUM inhibition increases endocortical bone formation and bone strength. Bone Res 2019; 7:2. [PMID: 30622831 PMCID: PMC6323125 DOI: 10.1038/s41413-018-0038-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
The disability, mortality and costs caused by non-vertebral osteoporotic fractures are enormous. Existing osteoporosis therapies are highly effective at reducing vertebral but not non-vertebral fractures. Cortical bone is a major determinant of non-vertebral bone strength. To identify novel osteoporosis drug targets, we phenotyped cortical bone of 3 366 viable mouse strains with global knockouts of druggable genes. Cortical bone thickness was substantially elevated in Notum−/− mice. NOTUM is a secreted WNT lipase and we observed high NOTUM expression in cortical bone and osteoblasts but not osteoclasts. Three orally active small molecules and a neutralizing antibody inhibiting NOTUM lipase activity were developed. They increased cortical bone thickness and strength at multiple skeletal sites in both gonadal intact and ovariectomized rodents by stimulating endocortical bone formation. Thus, inhibition of NOTUM activity is a potential novel anabolic therapy for strengthening cortical bone and preventing non-vertebral fractures. NOTUM is an enzyme that inactivates WNT proteins (which play a key role in early tissue development), and inhibiting NOTUM has been found to increase the formation of endocortical bone (within the cortex, the hard exterior of bone) and enhance bone strength. Existing therapies for osteoporosis (condition causing bone to become weak and brittle) are effective in reducing vertebral, but not non-vertebral, fractures. A team headed by Robert Brommage at Lexicon Pharmaceuticals, Texas aimed to identify novel osteoporosis drug targets in mice. Following inhibition of NOTUM activity, the authors observed increased cortical bone thickness and strength at multiple skeletal sites through stimulation of endocortical bone formation. The team concluded that inhibiting NOTUM activity has good potential as a new therapeutic strategy and could be beneficial in preventing non-vertebral osteoporotic fractures.
Collapse
Affiliation(s)
- Robert Brommage
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,3Present Address: Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Jeff Liu
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,4Present Address: Biogen, Cambridge, MA, USA
| | - Peter Vogel
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,5Present Address: St. Jude Children's Research Hospital, Memphis, TN USA
| | - Faika Mseeh
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,6Present Address: MD Anderson Cancer Center, Houston, TX USA
| | | | - David G Potter
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,Present Address: Bethyl Laboratories, Montgomery, TX USA
| | - Melanie K Shadoan
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,8Present Address: Merck, Rahway, NJ USA
| | - Gwenn M Hansen
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,Present Address: Nurix, San Francisco, CA USA
| | - Sabrina Jeter-Jones
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,6Present Address: MD Anderson Cancer Center, Houston, TX USA
| | - Jie Cui
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,Present Address: Wntrix, Houston, TX USA
| | - Dawn Bright
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA
| | - Jennifer P Bardenhagen
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,6Present Address: MD Anderson Cancer Center, Houston, TX USA
| | - Deon D Doree
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,11Present Address: PRA Health Sciences, Raleigh, NC USA
| | - Sofia Movérare-Skrtic
- 2Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- 2Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- 2Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulf H Lerner
- 2Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- 2Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arthur T Sands
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,Present Address: Nurix, San Francisco, CA USA
| | - James E Tarver
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,12Present Address: University of Pennsylvania, Philadelphia, PA USA
| | | | - Brian Zambrowicz
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,13Present Address: Regeneron Pharmaceuticals, Tarrytown, NY USA
| | - Qingyun Liu
- 1Lexicon Pharmaceuticals, The Woodlands, TX USA.,14Present Address: University of Texas, Houston, TX USA
| |
Collapse
|
31
|
Lu Z, Du L, Liu R, Di R, Zhang L, Ma Y, Li Q, Liu E, Chu M, Wei C. MiR-378 and BMP-Smad can influence the proliferation of sheep myoblast. Gene 2018; 674:143-150. [PMID: 29908283 DOI: 10.1016/j.gene.2018.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023]
Abstract
MicroRNA (miRNA) is a sort of endogenous ~20-25 nt non-coding RNAs, and it can regulate a variety of biological events. We found the miR-378 may involve in regulating the muscle development of sheep during our previous research. However, the molecular mechanism of miR-378 regulating myoblast proliferation is still unclear. In this research, we predicted that BMP2 (Bone morphogenetic protein 2) was the target gene of miR-378 and the BMP-Smad signal pathway that BMP2 participated in playing an important role in the muscle development. Therefore, we tried to determine whether miR-378 influence myoblast proliferation of sheep through the BMP-Smad signal pathway. The results indicated that inhibit BMP-Smad signal pathway by interfering Smad4 to promote proliferation of sheep myoblasts; promote BMP-Smad signal pathway by interfering Smad7 to inhibit proliferation of sheep myoblasts; over-expression miR-378 promotes BMP-Smad signal pathway and myoblast proliferation in sheep; interfering miR-378 inhibits BMP-Smad signal pathway and myoblast proliferation in sheep. However, when both of which functioned at the myoblast, miR-378 could not fully depend on BMP-Smad signal pathway to regulate myoblast proliferation. In sum, both miR-378 and BMP-Smad can influence the proliferation of myoblast, but miR-378 does not target the 3' UTR of sheep BMP2.
Collapse
Affiliation(s)
- Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
32
|
Chai J, Chen L, Luo Z, Zhang T, Chen L, Lou P, Sun W, Long X, Lan J, Wang J, Pu H, Qiu J, Shuai S, Guo Z. Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration. Biosci Biotechnol Biochem 2018; 82:1081-1089. [PMID: 29658390 DOI: 10.1080/09168451.2018.1459175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence variation in a microRNA (miRNA) seed region can influence its biogenesis and effects on target mRNAs; however, in mammals, few seed region mutations leading to functional alterations have been reported to date. Here, we report the identification of a single nucleotide polymorphism (SNP) with functional consequence located in the seed region of porcine miR-378. In vitro analysis of this rs331295049 A17G SNP showed significantly up-regulated expression of the mature miR-378 (miR-378/G). In silico target prediction indicated that the SNP would modulate secondary structure and result in functional loss affecting >85% of the known target genes of the wild-type miR-378 (miR-378/A), and functional gain affecting >700 new target genes, and dual-luciferase reporter assay verified this result. This report of a SNP in the seed region of miR-378 leads to functional alteration and indicates the potential for substantive functional consequences to the molecular physiology of a mammalian organism.
Collapse
Affiliation(s)
- Jie Chai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Lei Chen
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Zonggang Luo
- c Department of Animal Science , Southwest University , Chongqing , China
| | - Tinghuan Zhang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Li Chen
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Pengbo Lou
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Wenyang Sun
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Xi Long
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Jing Lan
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Jinyong Wang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Hongzhou Pu
- d Agricultural Bureau of Nanjiang , Nanjiang , China
| | - Jinjie Qiu
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Surong Shuai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Zongyi Guo
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| |
Collapse
|
33
|
Tong H, Jiang R, Liu T, Wei Y, Li S, Yan Y. bta-miR-378 promote the differentiation of bovine skeletal muscle-derived satellite cells. Gene 2018; 668:246-251. [PMID: 29621587 DOI: 10.1016/j.gene.2018.03.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
The mechanism by which bta-miR-378 regulates bovine skeletal muscle-derived satellite cell (bMDSC) myogenesis remains unknown. In this study, stem-loop RT-PCR was used to assess bta-miR-378 expression during the proliferation and differentiation of bMDSCs. The results showed that bta-miR-378 expression did not obviously change during bMDSC proliferation but increased significantly when bMDSCs began to differentiate. Then, a bta-miR-378 mimic (bta-miR-378-M) and bta-miR-378 inhibitor (bta-miR-378-I) were transfected into bMDSCs to explore the effect of bta-miR-378 on bMDSC differentiation. Cell differentiation was detected using myosin heavy chain 3 immunofluorescence, myotube formation, and desmin and myogenin western blotting analyses. As expected, bta-miR-378-M enhanced bMDSC differentiation, whereas bta-miR-378-I had the opposite effect. Moreover, luciferase reporter and western blotting assays showed that bta-miR-378 directly targeted the 3'-untranslated regions of DNA polymerase alpha subunit B (POLA2) to regulate its protein expression. In summary, these data indicate that bta-miR-378 targets POLA2 to promote the differentiation of bMDSCs, which provides further insight into the biological functions of bta-miR-378 in bovines.
Collapse
Affiliation(s)
- HuiLi Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - RunYing Jiang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - TingTing Liu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yao Wei
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - ShuFeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - YunQin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
34
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018; 9:17220-17237. [PMID: 29682218 PMCID: PMC5908319 DOI: 10.18632/oncotarget.24991] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Ho CS, Noor SM, Nagoor NH. MiR-378 and MiR-1827 Regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, Respectively. J Cancer 2018; 9:331-345. [PMID: 29344280 PMCID: PMC5771341 DOI: 10.7150/jca.18188] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been extensively studied over the decades and have been proposed as potential molecular targets for cancer treatment. Studies have shown that miR-378 participates in numerous biological processes in various cancers; whereas miR-1827 has only been reported in pediatric glioma. The mechanism of how miRNAs modulate lung cancer metastasis remains unclear. Our previous study demonstrated that miR-378 is up-regulated while miR-1827 is down-regulated in high invasive lung cancer sub-cell lines, and their biological functions have been described. Here, we report that miR-378 and miR-1827 modulate lung cancer cell invasion and migration via epithelial-mesenchymal transition (EMT). We also demonstrated that cells treated with miR-378 inhibitors or miR-1827 mimics had reduced number of metastases and ectopic vessels in the zebrafish embryo model. We then showed that miR-378 promoted invasion and miR-1827 suppressed migration by targeting RBX1 and CRKL, respectively. Restored protein expression in miRNA-overexpressed/ miRNA-suppressed cells attenuated the inhibitory/ inducing effect of the miRNA on lung cancer cells. Collectively, our findings highlight that miR-378 and miR-1827 could serve as novel therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Chai San Ho
- Institute of Biological Sciences, Division of Genetics and Molecular Biology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences, Division of Genetics and Molecular Biology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Liu Y, Li G, Zhang JF. The role of long non-coding RNA H19 in musculoskeletal system: A new player in an old game. Exp Cell Res 2017; 360:61-65. [DOI: 10.1016/j.yexcr.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
37
|
The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 2017; 22:1084-1091. [DOI: 10.1016/j.drudis.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
38
|
Yin J, Zhuang G, Zhu Y, Hu X, Zhao H, Zhang R, Guo H, Fan X, Cao Y. MiR-615-3p inhibits the osteogenic differentiation of human lumbar ligamentum flavum cells via suppression of osteogenic regulators GDF5 and FOXO1. Cell Biol Int 2017; 41:779-786. [PMID: 28460412 DOI: 10.1002/cbin.10780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jichao Yin
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
| | - Yi Zhu
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xinglv Hu
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Hongmou Zhao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Rongqiang Zhang
- Department of Public Health; Shaanxi University of Chinese Medicine; Xi'an China
| | - Hao Guo
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xiaochen Fan
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Yi Cao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| |
Collapse
|
39
|
Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X, Chen H. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol 2016; 13:1300-1309. [PMID: 27661135 DOI: 10.1080/15476286.2016.1239008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle development, or myogenesis, is a highly regulated, complex process. A subset of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. Recently, miR-378a was found to be involved in myogenesis, but the mechanism of how miR-378a regulates the proliferation and differentiation of myoblasts has not been determined. We found that miR-378a-3p expression in muscle was significantly higher than in other tissues, suggesting an important effect on muscle development. Overexpression of miR-378a-3p increased the expression of MyoD and MHC in C2C12 myoblasts both at the level of mRNA and protein, confirming that miR-378a-3p promoted muscle cell differentiation. The forced expression of miR-378a-3p promoted apoptosis of C2C12 cells as evidenced by CCK-8 assay and Annexin V-FITC/PI staining results. Through TargetScan, histone acetylation enzyme 4 (HDAC4) was identified as a potential target of miR-378a-3p. We confirmed targeting of HDAC4 by miR-378a-3p using a dual luciferase assay and western blotting. Our RNAi analysis results also showed that HDAC4 significantly promoted differentiation of C2C12 cells and inhibited cell survival through Bcl-2. Therefore, we conclude that miR-378a-3p regulates skeletal muscle growth and promotes the differentiation of myoblasts through the post-transcriptional down-regulation of HDAC4.
Collapse
Affiliation(s)
- Xuefeng Wei
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Hui Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Bowen Zhang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Caixia Li
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Dong Dong
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Xianyong Lan
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yongzhen Huang
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Yueyu Bai
- b Animal Health Supervision in Henan Province , Zhengzhou , Henan , China
| | - Fengpeng Lin
- c Bureau of Animal Husbandry of Biyang County , Biyang , Henan , China
| | - Xue Zhao
- d Bureau of Animal Husbandry of Suibin County , Suibin , Heilongjiang , China
| | - Hong Chen
- a Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
40
|
MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 2016; 368:229-238. [DOI: 10.1007/s00441-016-2462-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
|
41
|
Chiabotto G, Bruno S, Collino F, Camussi G. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles. PLoS One 2016; 11:e0159163. [PMID: 27409796 PMCID: PMC4943710 DOI: 10.1371/journal.pone.0159163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Collino
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
- * E-mail:
| |
Collapse
|
42
|
Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 2016; 14:623-9. [PMID: 27222009 PMCID: PMC4918597 DOI: 10.3892/mmr.2016.5335] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.
Collapse
Affiliation(s)
- Shuping Peng
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Gao
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| | - Pingpin Wei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Man Niu
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
43
|
Mi W, Shi Q, Chen X, Wu T, Huang H. miR-33a-5p modulates TNF-α-inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs. FEBS Lett 2016; 590:396-407. [PMID: 26785690 DOI: 10.1002/1873-3468.12064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
miRNAs play a number of roles in bone, including mediating the pathological effects of inflammation. Here, we found that miR-33a-5p expression was significantly increased after TNF-α treatment during BMP-2-induced osteogenic differentiation of hBMSCs. Luciferase reporter assays and western blotting demonstrated that special AT-rich sequence-binding protein 2 (SATB2) is a target of miR-33a-5p. Moreover, we show that BMP-2 induces SATB2 expression by interacting with SATB2 directly via the BMP-2-RUNX2 pathway. However, TNF-α first decreases SATB2 expression by inhibiting miR-33a-5p degradation. We thus conclude that miR-33a-5p plays a central role in this complex regulatory network. These findings will help to understand the regulatory role of miR-33a-5p in the inflammatory process.
Collapse
Affiliation(s)
- Wenxiang Mi
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Qiongling Shi
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xipeng Chen
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Tingting Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Functional Reconstruction, Capital Medical University School of Stomatology, China
| | - Hui Huang
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| |
Collapse
|
44
|
Ju H, Yang Y, Sheng A, Qi Y. MicroRNA-378 promotes myogenic differentiation by targeting BMP4. Mol Med Rep 2016; 13:2194-200. [PMID: 26782975 DOI: 10.3892/mmr.2016.4764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-378 (miRNA-378) has been reported to have a crucial role in skeletal muscle differentiation; however, the underlying mechanisms have largely remained to be elucidated. The present study employed high‑throughput RNA sequencing to investigate the transcriptome following transfection of miRNA‑378 mimics or control RNAs into C2C12 myoblast cells. By sequencing and annotation, 2,802 transcripts that were changed by >1.5 fold were obtained and then subjected to signaling pathway enrichment and gene ontology analysis. Eight genes associated with development were subsequently selected for validation by quantitative qPCR, the results of which were highly consistent with those of the high‑throughput RNA sequencing. The protein levels of bone morphogenetic protein 4 (BMP4), which was among the differentially expressed genes, were decreased following ectopic expression of miRNA‑378. BMP4 was further confirmed to be a direct target of miRNA‑378 by using a dual luciferase assay. Finally, treatment with miRNA‑378 or small interfering RNA against BMP4 induced myogenic differentiation in C2C12 cells. In conclusion, the present study suggested that miRNA‑378 is critical for the promotion of myoblast differentiation by targeting BMP4.
Collapse
Affiliation(s)
- Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuefei Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Anzhi Sheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuyu Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
45
|
Huang Y, Liu X, Wang Y. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression. Biochem Biophys Res Commun 2015; 466:214-20. [PMID: 26361139 DOI: 10.1016/j.bbrc.2015.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Department of Rehabilitation, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xiaoguai Liu
- The 3rd Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yaping Wang
- Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
46
|
Wang XL, Zhang T, Wang J, Zhang DB, Zhao F, Lin XW, Wang Z, Shi P, Pang XN. MiR-378b Promotes Differentiation of Keratinocytes through NKX3.1. PLoS One 2015; 10:e0136049. [PMID: 26313654 PMCID: PMC4551849 DOI: 10.1371/journal.pone.0136049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) is a kind of short non-coding RNA, involved in various cellular processes. During keratinocyte differentiation, miRNAs act as important regulators. In this study, we demonstrated by microarray assay that the expression of miR-378b significantly increased during keratinocytes differentiation. Our findings showed that miR-378b could inhibit proliferation, migration and differentiation in keratinocytes. Luciferase reporter assays showed that miR-378b directly target NKX3.1. Silencing of NKX3.1 could coincide with the effects of miR-24 overexpression. In conclusion, our results demonstrate miR-378b promote keratinocytes differentiation by targeting NKX3.1. Manipulation of miR-378b may afford a new strategy to clinic treatment of skin injury and repair.
Collapse
Affiliation(s)
- Xi-liang Wang
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
| | - Tao Zhang
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
| | - Jing Wang
- Department of Anus and Intestine Surgery, the First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Dian-bao Zhang
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
| | - Feng Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
| | - Xue-wen Lin
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
| | - Zhe Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Shi
- Department of General Practice, the First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Xi-ning Pang
- Key Laboratory of Cell Biology, Ministry of Public Health of China, Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110122, China
- * E-mail:
| |
Collapse
|
47
|
Wei B, Wei W. Identification of aberrantly expressed of serum microRNAs in patients with hormone-induced non-traumatic osteonecrosis of the femoral head. Biomed Pharmacother 2015; 75:191-5. [PMID: 26298803 PMCID: PMC7127261 DOI: 10.1016/j.biopha.2015.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/26/2015] [Indexed: 02/09/2023] Open
Abstract
Objective The non-translation RNA-microRNA (miRNA) has been demonstrated to correlate to various disease occurrence in body. Serum miRNA was gradually considered as molecular markers for disease diagnosis. This study was designed to analyze differential serum miRNAs level in hormone-induced non-traumatic osteonecrosis of the femoral head (hormone-NOFH) patients. Methods We selected 30 patients with hormone-NOFH as case group, and 30 healthy volunteers were recruited as control group. miRCURYTM LNA miRNA chip and quantitative RT-PCR were used to examine differential miRNAs expression. Correlation assay was performed between miRNAs and NOFH trait. Results We found that 9 miRNAs were upregulated while 3 miRNAs were downregulated in hormone-TOFH patient serum by result of miRNA chip. QRT-PCR assay revealed that the level of miR-423-5p was significantly increased and miR-10a-5p was significantly decreased. Using Spearman correlation analysis, we observed that miR-423-5p serum level is positive association to FHC levels whereas miR-10a-5p has no association with FHC levels. Furthermore, miR-423-5p is negatively correlated to its downstream molecule-adiponectin. Conclusion We report a miRNA profile of hormone-NOFH and provide a new perspective to understand this intricate disease. This novel information suggests the potential roles of miR-423-5p in the diagnosis, prognosis biomarkers, or therapy targets of hormone-NOFH.
Collapse
Affiliation(s)
- Biaofang Wei
- Department of Orthopaedic, Linyi People's Hospital, Linyi 276000, China
| | - Wei Wei
- Department of Orthopaedic, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, No. 16 Jichang Rd., Guangzhou 510405, China.
| |
Collapse
|
48
|
Abstract
Preclinical Research Bone is a rigid and dynamic organ that undergoes continuous turnover. Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The interruption of this balance can cause various diseases, including osteoporosis a public health issue due to the rate of hip fracture, the most serious outcome of osteoporosis. The bone loss in osteoporosis results from an increase in bone resorption versus bone formation. Thus, regulation of osteoblast and osteoclast activity is a main focus in the treatment of osteoporosis. MicroRNAs (miRNAs) are a class of single stranded noncoding RNAs consisting of 18-22 nucleotides that have an important role in cell differentiation, cell fate, apoptosis, and pathogenesis in various disease states. The potential therapeutic and biomarker function of miRNAs in treating bone disorders is receiving more attention. The current review summarizes the role of miRNAs in bone function at a cellular level in the context of their therapeutic potential.
Collapse
Affiliation(s)
- Junying Chen
- Department of Pathology, 324 Hospital of People's Liberation Army, Chongqing, China
| | - Min Qiu
- Department of Pathology, 324 Hospital of People's Liberation Army, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| |
Collapse
|
49
|
Fang S, Deng Y, Gu P, Fan X. MicroRNAs regulate bone development and regeneration. Int J Mol Sci 2015; 16:8227-53. [PMID: 25872144 PMCID: PMC4425078 DOI: 10.3390/ijms16048227] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
50
|
Peng J, Xie Z, Cheng L, Zhang Y, Chen J, Yu H, Li Z, Kang H. Paired design study by real-time PCR: miR-378* and miR-145 are potent early diagnostic biomarkers of human colorectal cancer. BMC Cancer 2015; 15:158. [PMID: 25896668 PMCID: PMC4436811 DOI: 10.1186/s12885-015-1123-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although microRNAs offer great potential as cancer biomarkers, effective clinical dignostics and tumor maker have not been verified to diagnose with colorectal cancer (CRC). The purpose of our study is to systematically assess the expression of miRNAs in matched cancer and normal tissue samples to identify promising diagnostic microRNA (miRNA) biomarkers for CRC. METHODS In our study, we examined by Real-Time PCR the expression levels of 96 mature miRNA in 32 CRC patients with differently expressed tumors versus normal colon tissues. Using enter and stepwise variable selection methods separately, conditional logistic regression was conducted to identify miRNAs associated with CRC. The classification performance of these indicators was assessed under the Fisher discriminant analysis. Receiver operating characteristic curve analyses were applied to obtain diagnostic utility of the differentially expressed miRNAs. RESULTS In this study, we confirmed 11 overexpressed miRNAs with no less than twofold difference, and 85 downexpressed miRNAs with up to 0.5-fold difference in CRC from 96 aberrantly expressed miRNAs being identified by real-time PCR. Conditional logistic regression results confirmed that miRNA-378 and miRNA-145 expression profile was statistically significant. The error diagnosis rate of these two miRNAs are 0.194 and 0.113, separeately, showing by discriminant analysis. CONCLUSIONS MiRNA-145 and miRNA-378* are potential biomarkers for early detection of CRC, which may help in diagnosing CRC in early period.
Collapse
Affiliation(s)
- Juan Peng
- Guilin Medical College, Huang Cheng North 2 Road 109, Qixing District, Guilin, Guangxi, China.
| | - Zhengyong Xie
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| | - Liyang Cheng
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| | - Yuxin Zhang
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| | - Junyong Chen
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| | - Hongping Yu
- Guilin Medical College, Huang Cheng North 2 Road 109, Qixing District, Guilin, Guangxi, China.
| | - Zehang Li
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| | - Huixing Kang
- General Hospital of Guangzhou Military Command of PLA, Liuhua Road 111, Guangzhou, Guangdong, China.
| |
Collapse
|