1
|
Wu JK, Lee YY, Hung H, Chang YP, Tai MH, Fan HF. Binding Behavior of Human Hepatoma-Derived Growth Factor on SMYD1. J Phys Chem B 2024; 128:7722-7735. [PMID: 39091133 PMCID: PMC11331505 DOI: 10.1021/acs.jpcb.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.
Collapse
Affiliation(s)
- Jan-Kai Wu
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ying-ying Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsin Hung
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Yuan-Ping Chang
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ming-Hong Tai
- Institute
of Biomedical Science, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Voelkl K, Gutiérrez-Ángel S, Keeling S, Koyuncu S, da Silva Padilha M, Feigenbutz D, Arzberger T, Vilchez D, Klein R, Dudanova I. Neuroprotective effects of hepatoma-derived growth factor in models of Huntington's disease. Life Sci Alliance 2023; 6:e202302018. [PMID: 37580082 PMCID: PMC10427761 DOI: 10.26508/lsa.202302018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
Huntington's disease (HD) is a movement disorder caused by a mutation in the Huntingtin gene that leads to severe neurodegeneration. Molecular mechanisms of HD are not sufficiently understood, and no cure is currently available. Here, we demonstrate neuroprotective effects of hepatoma-derived growth factor (HDGF) in cellular and mouse HD models. We show that HD-vulnerable neurons in the striatum and cortex express lower levels of HDGF than resistant ones. Moreover, lack of endogenous HDGF exacerbated motor impairments and reduced the life span of R6/2 Huntington's disease mice. AAV-mediated delivery of HDGF into the brain reduced mutant Huntingtin inclusion load, but had no significant effect on motor behavior or life span. Interestingly, both nuclear and cytoplasmic versions of HDGF were efficient in rescuing mutant Huntingtin toxicity in cellular HD models. Moreover, extracellular application of recombinant HDGF improved viability of mutant Huntingtin-expressing primary neurons and reduced mutant Huntingtin aggregation in neural progenitor cells differentiated from human patient-derived induced pluripotent stem cells. Our findings provide new insights into the pathomechanisms of HD and demonstrate neuroprotective potential of HDGF in neurodegeneration.
Collapse
Affiliation(s)
- Kerstin Voelkl
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Sara Gutiérrez-Ángel
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Sophie Keeling
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Miguel da Silva Padilha
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dennis Feigenbutz
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Munich, Munich, Germany
| | - David Vilchez
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Irina Dudanova
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Wistner SC, MacDonald IA, Stanley KA, Hathaway NA. Characterization of Hepatoma-Derived Growth Factor-Related Protein 2 Interactions with Heterochromatin. Cells 2023; 12:325. [PMID: 36672260 PMCID: PMC9856275 DOI: 10.3390/cells12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many different tissues in higher organisms from a fixed genomic template. Here we identify and characterize the interactions of two related heterochromatin regulatory proteins, heterochromatin protein 1 alpha (HP1α) and M-phase phosphoprotein 8 (MPP8), with hepatoma-derived growth factor-related protein 2 (HRP2). We find in biochemical experiments that HRP2 copurifies and co-sediments with heterochromatin-associated proteins, including HP1α and MPP8. Using the Chromatin in vivo Assay in multiple cell types, we demonstrate that HP1α-mediated gene repression dynamics are altered by the presence of HRP2. Furthermore, the knockout of HRP2 in MDA-MB-231 cells results in significant changes to chromatin structure and stability, which alter gene expression patterns. Here, we detail a mechanism by which HRP2 contributes to epigenetic transcriptional regulation through engagement with heterochromatin-associated proteins to stabilize the chromatin landscape and influence gene expression.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian A. MacDonald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karly A. Stanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Kalra P, Zahid H, Ayoub A, Dou Y, Pomerantz WCK. Alternative Mechanisms for DNA Engagement by BET Bromodomain-Containing Proteins. Biochemistry 2022; 61:1260-1272. [PMID: 35748495 PMCID: PMC9682295 DOI: 10.1021/acs.biochem.2c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Alex Ayoub
- Department of Pathology, University of Michigan, 1301 Catherine St., Ann Arbor, Michigan 48109, United States
| | - Yali Dou
- Norris Comprehensive Cancer Center, University of Southern California, NOR 6314A, 1441 Eastlake Ave., Los Angeles, California 90089, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Li J, Bergmann L, Rafael de Almeida A, Webb KM, Gogol M, Voigt P, Liu Y, Liang H, Smolle M. H3K36 methylation and DNA-binding both promote Ioc4 recruitment and Isw1b remodeler function. Nucleic Acids Res 2022; 50:2549-2565. [PMID: 35188579 PMCID: PMC8934638 DOI: 10.1093/nar/gkac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
The Isw1b chromatin-remodeling complex is specifically recruited to gene bodies to help retain pre-existing histones during transcription by RNA polymerase II. Recruitment is dependent on H3K36 methylation and the Isw1b subunit Ioc4, which contains an N-terminal PWWP domain. Here, we present the crystal structure of the Ioc4-PWWP domain, including a detailed functional characterization of the domain on its own as well as in the context of full-length Ioc4 and the Isw1b remodeler. The Ioc4-PWWP domain preferentially binds H3K36me3-containing nucleosomes. Its ability to bind DNA is required for nucleosome binding. It is also furthered by the unique insertion motif present in Ioc4-PWWP. The ability to bind H3K36me3 and DNA promotes the interaction of full-length Ioc4 with nucleosomes in vitro and they are necessary for its recruitment to gene bodies in vivo. Furthermore, a fully functional Ioc4-PWWP domain promotes efficient remodeling by Isw1b and the maintenance of ordered chromatin in vivo, thereby preventing the production of non-coding RNAs.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lena Bergmann
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Andreia Rafael de Almeida
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Madelaine M Gogol
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Yingfang Liu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huanhuan Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Michaela M Smolle
- Physiological Chemistry, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
- BioPhysics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilian-University Munich, Grosshaderner Str. 9, 82152 Martinsried-Planegg, Germany
| |
Collapse
|
6
|
Generation of Human Stomach Cancer iPSC-Derived Organoids Induced by Helicobacter pylori Infection and Their Application to Gastric Cancer Research. Cells 2022; 11:cells11020184. [PMID: 35053302 PMCID: PMC8773924 DOI: 10.3390/cells11020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022] Open
Abstract
There is considerable cellular diversity in the human stomach, which has helped to clarify cell plasticity in normal development and tumorigenesis. Thus, the stomach is an interesting model for understanding cellular plasticity and for developing prospective anticancer therapeutic agents. However, many questions remain regarding the development of cancers in vivo and in vitro in two- or three-dimensional (2D/3D) cultures, as well as the role of Helicobacter pylori (H. p.) infection. Here, we focus on the characteristics of cancer stem cells and their derived 3D organoids in culture, including the formation of stem cell niches. We define the conditions required for such organoid culture in vitro and examine the ability of such models for testing the use of anticancer agents. We also summarize the signaling cascades and the specific markers of stomach-cancer-derived organoids induced by H. p. infection, and their stem cell niches.
Collapse
|
7
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
8
|
Poosapati S, Ravulapalli PD, Viswanathaswamy DK, Kannan M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J Fungi (Basel) 2021; 7:1002. [PMID: 34946985 PMCID: PMC8704589 DOI: 10.3390/jof7121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today's agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Prasad Durga Ravulapalli
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
| | | | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India;
| |
Collapse
|
9
|
Yun HS, Lee J, Kim JY, Sim YJ, Lee CW, Park JK, Kim JS, Ahn J, Song JY, Baek JH, Hwang SG. A novel function of HRP-3 in regulating cell cycle progression via the HDAC-E2F1-Cyclin E pathway in lung cancer. Cancer Sci 2021; 113:145-155. [PMID: 34714604 PMCID: PMC8748221 DOI: 10.1111/cas.15183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the poor survival rate of lung cancer patients, we investigated the role of HDGF‐related protein 3 (HRP‐3) as a potential biomarker for lung cancer. The expression of endogenous HRP‐3 in human lung cancer tissues and xenograft tumor models is indicative of its clinical relevance in lung cancer. Additionally, we demonstrated that HRP‐3 directly binds to the E2F1 promoter on chromatin. Interestingly, HRP‐3 depletion in A549 cells impedes the binding of HRP‐3 to the E2F1 promoter; this in turn hampers the interaction between Histone H3/H4 and HDAC1/2 on the E2F1 promoter, while concomitantly inducing Histone H3/H4 acetylation around the E2F1 promoter. The enhanced Histone H3/H4 acetylation on the E2F1 promoter through HRP‐3 depletion increases the transcription level of E2F1. Furthermore, the increased E2F1 transcription levels lead to the enhanced transcription of Cyclin E, known as the E2F1‐responsive gene, thus inducing S‐phase accumulation. Therefore, our study provides evidence for the utility of HRP‐3 as a biomarker for the prognosis and treatment of lung cancer. Furthermore, we delineated the capacity of HRP‐3 to regulate the E2F1 transcription level via histone deacetylation.
Collapse
Affiliation(s)
- Hong Shik Yun
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Janet Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ye-Ji Sim
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong-Hwa Baek
- Radiation Biology Research Team, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
10
|
Yang Y, Ma Y, Gao H, Peng T, Shi H, Tang Y, Li H, Chen L, Hu K, Han A. A novel HDGF-ALCAM axis promotes the metastasis of Ewing sarcoma via regulating the GTPases signaling pathway. Oncogene 2020; 40:731-745. [PMID: 33239755 DOI: 10.1038/s41388-020-01485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Ewing sarcoma (ES) is a type of highly aggressive pediatric tumor in bones and soft tissues and its metastatic spread remains the most powerful predictor of poor outcome. We previously identified that the transcription factor hepatoma-derived growth factor (HDGF) promotes ES tumorigenesis. However, the mechanisms underlying ES metastasis remain unclear. Here, we show that HDGF drives ES metastasis in vitro and in vivo, and HDGF reduces metastasis-free survival (MFS) in two independent large cohorts of human ES patients. Integrative analyses of HDGF ChIP-seq and gene expression profiling in ES cells reveal that HDGF regulates multiple metastasis-associated genes, among which activated leukocyte cell adhesion molecule (ALCAM) emerges as a major HDGF target and a novel metastasis-suppressor in ES. HDGF down-regulates ALCAM, induces expression and activation of the downstream effectors Rho-GTPase Rac1 and Cdc42, and promotes actin cytoskeleton remodeling and cell-matrix adhesion. In addition, repression of ALCAM and activation of Rac1 and Cdc42 are required for the pro-metastatic functions of HDGF in vitro. Moreover, analyses in murine models with ES tumor orthotopic implantation and experimental metastasis, as well as in human ES samples, demonstrate the associations among HDGF, ALCAM, and GTPases expression levels. Furthermore, high HDGF/low ALCAM expression define a subgroup of patients harboring the worst MFS. These findings suggest that the HDGF/ALCAM/GTPases axis represents a promising therapeutic target for limiting ES metastasis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yuedong Ma
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Tingsheng Peng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yunxiang Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P.R. China.
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
11
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
12
|
Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, Brunner AD, Larsen TJ, Bayarri-Olmos R, Prabhakar BS, Helgstrand C, Severinsen MCK, Holst B, Kjaer A, Tang-Christensen M, Sanfridson A, Garred P, Privé GG, Pedersen BK, Gerhart-Hines Z, Nielsen S, Drucker DJ, Mann M, Scheele C. Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metab 2019; 30:963-975.e7. [PMID: 31668873 DOI: 10.1016/j.cmet.2019.10.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Adipokines secreted from white adipose tissue play a role in metabolic crosstalk and homeostasis, whereas the brown adipose secretome is less explored. We performed high-sensitivity mass-spectrometry-based proteomics on the cell media of human adipocytes derived from the supraclavicular brown adipose and from the subcutaneous white adipose depots of adult humans. We identified 471 potentially secreted proteins covering interesting categories such as hormones, growth factors, extracellular matrix proteins, and proteins of the complement system, which were differentially regulated between brown and white adipocytes. A total of 101 proteins were exclusively quantified in brown adipocytes, and among these was ependymin-related protein 1 (EPDR1). EPDR1 was detected in human plasma, and functional studies suggested a role for EPDR1 in thermogenic determination during adipogenesis. In conclusion, we report substantial differences between the secretomes of brown and white human adipocytes and identify novel candidate batokines that can be important regulators of human metabolism.
Collapse
Affiliation(s)
- Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacqueline L Beaudry
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Naja Z Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carsten H Nielsen
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen 2200, Denmark; Minerva Imaging ApS, Copenhagen 2200, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Andreas D Brunner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Therese J Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen 2100, Denmark
| | - Bhargav S Prabhakar
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Mai C K Severinsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen 2200, Denmark
| | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen 2100, Denmark
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
13
|
Hou Y, Zhang R, Sun X. Enhancer LncRNAs Influence Chromatin Interactions in Different Ways. Front Genet 2019; 10:936. [PMID: 31681405 PMCID: PMC6807612 DOI: 10.3389/fgene.2019.00936] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
More than 98% of the human genome does not encode proteins, and the vast majority of the noncoding regions have not been well studied. Some of these regions contain enhancers and functional non-coding RNAs. Previous research suggested that enhancer transcripts could be potent independent indicators of enhancer activity, and some enhancer lncRNAs (elncRNAs) have been proven to play critical roles in gene regulation. Here, we identified enhancer–promoter interactions from high-throughput chromosome conformation capture (Hi-C) data. We found that elncRNAs were highly enriched surrounding chromatin loop anchors. Additionally, the interaction frequency of elncRNA-associated enhancer–promoter pairs was significantly higher than the interaction frequency of other enhancer–promoter pairs, suggesting that elncRNAs may reinforce the interactions between enhancers and promoters. We also found that elncRNA expression levels were positively correlated with the interaction frequency of enhancer–promoter pairs. The promoters interacting with elncRNA-associated enhancers were rich in RNA polymerase II and YY1 transcription factor binding sites. We clustered enhancer–promoter pairs into different groups to reflect the different ways in which elncRNAs could influence enhancer–promoter pairs. Interestingly, G-quadruplexes were found to potentially mediate some enhancer–promoter interaction pairs, and the interaction frequency of these pairs was significantly higher than that of other enhancer–promoter pairs. We also found that the G-quadruplexes on enhancers were highly related to the expression of elncRNAs. G-quadruplexes located in the promoters of elncRNAs led to high expression of elncRNAs, whereas G-quadruplexes located in the gene bodies of elncRNAs generally resulted in low expression of elncRNAs.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Tian W, Yan P, Xu N, Chakravorty A, Liefke R, Xi Q, Wang Z. The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Res 2019; 47:5436-5448. [PMID: 31162607 PMCID: PMC6547440 DOI: 10.1093/nar/gkz294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
HDGF-related protein 3 (HRP3, also known as HDGFL3) belongs to the family of HDGF-related proteins (HRPs) and plays an essential role in hepatocellular carcinoma pathogenesis. All HRPs have a PWWP domain at the N-terminus that binds both histone and DNA substrates. Despite previous advances in PWWP domains, the molecular basis by which HRP3 interacts with chromatin is unclear. In this study, we solved the crystal structures of the HRP3 PWWP domain in complex with various double-stranded DNAs with/without bound histone peptides. We found that HRP3 PWWP bound to the phosphate backbone of the DNA minor groove and showed a preference for DNA molecules bearing a narrow minor groove width. In addition, HRP3 PWWP preferentially bound to histone peptides bearing the H3K36me3/2 modification. HRP3 PWWP uses two adjacent surfaces to bind both DNA and histone substrates simultaneously, enabling us to generate a model illustrating the recruitment of PWWP to H3K36me3-containing nucleosomes. Cell-based analysis indicated that both DNA and histone binding by the HRP3 PWWP domain is important for HRP3 recruitment to chromatin in vivo. Our work establishes that HRP3 PWWP is a new family of minor groove-specific DNA-binding proteins, which improves our understanding of HRP3 and other PWWP domain-containing proteins.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Peiqiang Yan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Arghya Chakravorty
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
15
|
Eltahir HM. Insight into the roles of hepatoma derived growth factor related protein-3 under physiological and pathological conditions. Biochem Cell Biol 2018; 96:707-712. [DOI: 10.1139/bcb-2018-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatoma derived growth factor related protein-3 (HRP-3) is a HDGF growth factor family member that is expressed mainly in nervous tissues. It shares structural similarities with HDGF but differs in its expression and scope of action. It has recently attracted more attention due to its variable roles. HRP-3 was originally reported as a mitogenic factor. However, over the last decade, additional functions for this growth factor have been uncovered. In addition to its mitogenic activity, other physiological functions were discovered including those related to proliferation, differentiation, and maintenance of neurons, presenting it as a neurotrophic and neuroprotective growth factor. Interestingly, HRP-3 was also shown to be involved in the pathogenesis of certain tumors via its mitogenic, angiogenic, and antiapoptotic effects. Based on this, HRP-3 represents a molecule that can be targeted for the treatment of cancer and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Heba M. Eltahir
- College of Pharmacy, Department of Pharmacology and Toxicology, Taibah University, Medina, KSA
- College of Pharmacy, Department of Pharmacology and Toxicology, Taibah University, Medina, KSA
| |
Collapse
|
16
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Min X, Wen J, Zhao L, Wang K, Li Q, Huang G, Liu J, Zhao X. Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma. Mol Oncol 2018; 12:1480-1497. [PMID: 30004626 PMCID: PMC6120245 DOI: 10.1002/1878-0261.12357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Although identified as a growth factor, the mechanism by which hepatoma‐derived growth factor (HDGF) promotes cancer development remains unclear. We found that nuclear but not cytoplasmic HDGF is closely associated with prognosis of hepatocellular carcinoma (HCC). RNA‐sequencing analysis further demonstrated that the nuclear role of HDGF involved regulation of transcription of lipid metabolism genes. HDGF‐induced expression of lipogenic genes was mainly associated with activation of sterol regulatory element binding protein (SREBP) transcription factor. Coexpression of SREBP‐1 and nuclear HDGF predicts poor prognosis for HCC. In addition, by changing the first amino acid of the PWWP domain from proline to alanine, the type of PWWP domain changed from P‐ to A‐type, resulting in inability to induce SREBP‐1‐mediated gene transcription. The type of PWWP domain affects the recruitment of the C‐terminal binding protein‐1 transcriptional repressor on the promoter of the lipogenic gene. Our data indicate that HDGF acts as a coactivator of SREBP1‐mediated transcription of lipogenic genes. The PWWP domain is crucial for HDGF to promote lipogenesis. Moreover, transcriptional regulation of nuclear HDGF plays important roles in the development of HCC.
Collapse
Affiliation(s)
- Xuejie Min
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Wen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kaiying Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Qingli Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Gang Huang
- Shanghai University of Medicine & Health Sciences, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
18
|
Sun CY, Wu MS, Lee CC, Chen SH, Lo KC, Chen YH. A novel SNP in the 5' regulatory region of organic anion transporter 1 is associated with chronic kidney disease. Sci Rep 2018; 8:8085. [PMID: 29795395 PMCID: PMC5967335 DOI: 10.1038/s41598-018-26460-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
We aimed to analyze the associations of single nucleotide polymorphisms (SNP) in the 5′ regulatory region of the human organic anion transporter 1 (OAT1) gene with chronic kidney disease (CKD). A case-control study including age- and sex-matched groups of normal subjects and patients with CKD (n = 162 each) was designed. Direct sequencing of the 5′ regulatory region (+88 to −1196 region) showed that patients with CKD had a higher frequency of the −475 SNP (T > T/G) than normal subjects (14/162 vs. 2/162). The luciferase activity assay results indicated that the −475G SNP had a higher promoter efficiency than the −475T SNP. Chromatin immunoprecipitation (ChIP) and LC/MS/MS analyses showed that the −475G SNP up-regulated 26 proteins and down-regulated 74 proteins. The Southwestern blot assay results revealed that the −475G SNP decreased the binding of Hepatoma-derived growth factor (HDGF), a transcription repressor, compared to the −475T SNP. Overexpression of HDGF significantly down-regulated OAT1 in renal tubular cells. Moreover, a zebrafish animal model showed that HDGF-knockdown zebrafish embryos had higher rates of kidney malformation than wild-type controls [18/78 (23.1%) vs. 1/30 (3.3%)]. In conclusion, our results suggest that an OAT1 SNP might be clinically associated with CKD. Renal tubular cells with the −475 SNP had increased OAT1 expression, which resulted in increased transportation of organic anion toxins into cells. Cellular accumulation of organic anion toxins caused cytotoxicity and resulted in CKD.
Collapse
Affiliation(s)
- Chiao-Yin Sun
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Mai-Szu Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chin-Chan Lee
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hong Chen
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Medical Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kang-Chieh Lo
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City, Taiwan.
| |
Collapse
|
19
|
Chen LY, Huang YC, Huang ST, Hsieh YC, Guan HH, Chen NC, Chuankhayan P, Yoshimura M, Tai MH, Chen CJ. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Sci Rep 2018; 8:287. [PMID: 29321480 PMCID: PMC5762634 DOI: 10.1038/s41598-017-18510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
The human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal PWWP domain capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancers. We report the first crystal structures of the human HDGF PWWP domain (residues 1–100) in a complex with SMYD1 of 10 bp at 2.84 Å resolution and its apo form at 3.3 Å, respectively. The structure of the apo PWWP domain comprises mainly four β-strands and two α-helices. The PWWP domain undergoes domain swapping to dramatically transform its secondary structures, altering the overall conformation from monomeric globular folding into an extended dimeric structure upon DNA binding. The flexible loop2, as a hinge loop with the partially built structure in the apo PWWP domain, notably refolds into a visible and stable α-helix in the DNA complex. The swapped PWWP domain interacts with the minor grooves of the DNA through residues Lys19, Gly22, Arg79 and Lys80 in varied ways on loops 1 and 4 of the two chains, and the structure becomes more rigid than the apo form. These novel structural findings, together with physiological and activity assays of HDGF and the PWWP domain, provide new insights into the DNA-binding mechanism of HDGF during nucleosomal functions.
Collapse
Affiliation(s)
- Li-Ying Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan. .,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
20
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
21
|
Yang J, Nies MK, Fu Z, Damico R, Korley FK, Hassoun PM, Ivy DD, Austin ED, Everett AD. Hepatoma-derived Growth Factor Predicts Disease Severity and Survival in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 194:1264-1272. [PMID: 27254543 DOI: 10.1164/rccm.201512-2498oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a fatal disease, and pulmonary microvascular remodeling is an important contributor to PAH development. Therefore, we hypothesized that a circulating angiogenic factor could predict disease severity and survival. OBJECTIVES We sought to assess the relationship of serum hepatoma-derived growth factor (HDGF) with PAH disease severity and survival. METHODS Using a newly developed enzyme-linked immunosorbent assay, we evaluated circulating HDGF levels in two independent PAH cohorts and two different characterized control cohorts. Clinical and laboratory data were also used to assess the value of HDGF as a PAH prognostic biomarker. MEASUREMENTS AND MAIN RESULTS Serum HDGF levels were significantly elevated in two independent PAH cohorts. Importantly, serum HDGF levels were not elevated in a noncardiac chronic disease cohort. Further, patients with elevated HDGF had significantly lower exercise tolerance, worse New York Heart Association functional class, and higher levels of N-terminal pro-brain natriuretic peptide. HDGF was a strong predictor of mortality, with an unadjusted hazard ratio of 4.5 (95% confidence interval, 1.9-10.3; P = 0.003 by log-rank test). In multivariable Cox proportional hazards models, elevated HDGF levels predicted decreased survival after being adjusted for age, PAH subtype, invasive hemodynamics, and N-terminal pro-brain natriuretic peptide. CONCLUSIONS Elevated HDGF was associated with worse functional class, exertional intolerance, and increased mortality in PAH, suggesting HDGF as a potential biomarker for predicting mortality and as having possible diagnostic value for distinguishing PAH from non-PAH. HDGF may add additional value in PAH risk stratification in clinical trials and may represent a potential target for future PAH drug development.
Collapse
Affiliation(s)
- Jun Yang
- 1 Division of Pediatric Cardiology
| | | | - Zongming Fu
- 2 Division of Pediatric Hematology, Department of Pediatrics
| | - Rachel Damico
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Frederick K Korley
- 4 Department of Emergency Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - David D Ivy
- 5 Department of Pediatric Cardiology, Children's Hospital Colorado, Denver, Colorado; and
| | - Eric D Austin
- 6 Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
22
|
Pünzeler S, Link S, Wagner G, Keilhauer EC, Kronbeck N, Spitzer RM, Leidescher S, Markaki Y, Mentele E, Regnard C, Schneider K, Takahashi D, Kusakabe M, Vardabasso C, Zink LM, Straub T, Bernstein E, Harata M, Leonhardt H, Mann M, Rupp RA, Hake SB. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. EMBO J 2017. [PMID: 28645917 DOI: 10.15252/embj.201695757] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.
Collapse
Affiliation(s)
- Sebastian Pünzeler
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stephanie Link
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriele Wagner
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Eva C Keilhauer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nina Kronbeck
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ramona Mm Spitzer
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Susanne Leidescher
- Department of Biology, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yolanda Markaki
- Department of Biology, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Edith Mentele
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Catherine Regnard
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Schneider
- Department of Biology, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Daisuke Takahashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku Sendai, Japan
| | - Masayuki Kusakabe
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku Sendai, Japan
| | - Chiara Vardabasso
- Department of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Zink
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Emily Bernstein
- Department of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku Sendai, Japan
| | - Heinrich Leonhardt
- Department of Biology, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Ralph Aw Rupp
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sandra B Hake
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany .,Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| |
Collapse
|
23
|
Nüße J, Mirastschijski U, Waespy M, Oetjen J, Brandes N, Rebello O, Paroni F, Kelm S, Dietz F. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem 2016; 397:417-36. [PMID: 26845719 DOI: 10.1515/hsz-2015-0273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance.
Collapse
|
24
|
Lian J, Tang J, Shi H, Li H, Zhen T, Xie W, Zhang F, Yang Y, Han A. Positive feedback loop of hepatoma-derived growth factor and β-catenin promotes carcinogenesis of colorectal cancer. Oncotarget 2016; 6:29357-74. [PMID: 26296979 PMCID: PMC4745732 DOI: 10.18632/oncotarget.4982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023] Open
Abstract
To clarify the role of hepatoma-derived growth factor (HDGF) and β-catenin in carcinogenesis of colorectal cancer (CRC), our results showed that high HDGF expression was found in CRC cells and tissues and significantly related to histological differentiation (p = 0.035) and lymph node metastasis (p = 0.000). Significant positive correlation between HDGF expression and β-catenin abnormal expression was found in CRC tissues. High HDGF and lymph node metastasis were the strong independent prognostic indicators for reduced overall survival in CRC patients. HDGF knockdown dramatically inhibited cellular proliferation, migration, invasion, and tumorigenesis, both in vitro and in vivo, but induced G1 phase arrest and apoptosis in CRC cells. HDGF knock-down dramatically suppressed β-catenin and its down-stream genes expression in CRC cells. Intriguingly, β-catenin knock-down dramatically suppressed HDGF expression in CRC cells. Human recombinant Wnt3a and DKK1 treatment increased and decreased HDGF, β-catenin, c-Myc, cyclin D1, MMP9, and phos-GSK-3β (Ser9) protein expression in nuclear and cytoplasmic fraction of CRC cells upon β-catenin knock-down, respectively. Three HDGF-binding elements in β-catenin promoter were found and specific for transcriptional activation of β-catenin in CRC cells. In conclusion, our results first suggest that HDGF and β-catenin interacts as a positive feedback loop, which plays an important role in carcinogenesis and progression of CRC.
Collapse
Affiliation(s)
- Jiayan Lian
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianming Tang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Zhen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenlin Xie
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Tang J, Shi H, Li H, Zhen T, Dong Y, Zhang F, Yang Y, Han A. The interaction of hepatoma-derived growth factor and β-catenin promotes tumorigenesis of synovial sarcoma. Tumour Biol 2016; 37:10287-301. [DOI: 10.1007/s13277-016-4905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/14/2023] Open
|
26
|
Rona GB, Eleutherio ECA, Pinheiro AS. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev 2016; 8:63-74. [PMID: 28510146 DOI: 10.1007/s12551-015-0190-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Chromatin plays an important role in gene transcription control, cell cycle progression, recombination, DNA replication and repair. The fundamental unit of chromatin, the nucleosome, is formed by a DNA duplex wrapped around an octamer of histones. Histones are susceptible to various post-translational modifications, covalent alterations that change the chromatin status. Lysine methylation is one of the major post-translational modifications involved in the regulation of chromatin function. The PWWP domain is a member of the Royal superfamily that functions as a chromatin methylation reader by recognizing both DNA and histone methylated lysines. The PWWP domain three-dimensional structure is based on an N-terminal hydrophobic β-barrel responsible for histone methyl-lysine binding, and a C-terminal α-helical domain. In this review, we set out to discuss the most recent literature on PWWP domains, focusing on their structural features and the mechanisms by which they specifically recognize DNA and histone methylated lysines at the level of the nucleosome.
Collapse
Affiliation(s)
- Germana B Rona
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Elis C A Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
27
|
Bao C, Wang J, Ma W, Wang X, Cheng Y. HDGF: a novel jack-of-all-trades in cancer. Future Oncol 2015; 10:2675-85. [PMID: 25236340 DOI: 10.2217/fon.14.194] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HDGF is an important regulator of a broad range of cancer cell activities and plays important roles in cancer cell transformation, apoptosis, angiogenesis and metastasis. Such a divergent influence of HDGF on cancer cell activities derives from its multiple inter- and sub-cellular localizations where it interacts with a range of different binding partners. Interestingly, high levels of HDGF could be detected in patients' serum of some cancers. This review is focused on the role of HDGF in tumorigenesis and metastasis, and provides insight for application in clinical cancer therapy as well as its clinical implications as a prognostic marker in cancer progression.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 Wenhua Road West, Jinan 250012, China
| | | | | | | | | |
Collapse
|
28
|
Liu XJ, Liu WL, Yang FM, Yang XQ, Lu XF. Hepatoma-derived growth factor predicts unfavorable prognosis of epithelial ovarian cancer. Onco Targets Ther 2015; 8:2101-9. [PMID: 26316779 PMCID: PMC4540117 DOI: 10.2147/ott.s85660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim To evaluate the expression and clinical significance of hepatoma-derived growth factor (HDGF) in epithelial ovarian cancer (EOC). Background Recent studies have demonstrated that HDGF overexpression correlates to the progression and poor prognosis in several kinds of cancers. However, the clinical significance and prognostic value of HDGF in EOC have not been investigated. Methods Expression of HDGF was visualized by immunohistology and then the cohort was divided into higher- and lower-expression groups. The correlation between HDGF and clinicopathologic factors was analyzed by χ2 test. The prognostic value of HDGF was assessed by univariate analysis with Kaplan–Meier method, and by multivariate analysis with Cox-regression model. With experiments in vitro, HDGF expression in ovarian cancer cell lines was detected by immunoblotting. Results Higher HDGF expression rate was 52.76% in EOC. HDGF expression was significantly associated with lymphatic metastasis (P=0.006). Higher HDGF expression was closely correlated to poorer 5-year overall survival rate with univariate analysis (P=0.003), and was identified as an independent prognostic factor with multivariate analysis (P=0.007). With experiments in vitro, HDGF was proved to exist in all ovarian cancer cell lines with different expression levels. Conclusion HDGF expression correlates to unfavorable prognosis and can be considered as an independent prognostic factor, indicating that HDGF may be a promising potential molecular drug target.
Collapse
Affiliation(s)
- Xue-Jun Liu
- Department of Obstetrics, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Wen-Lian Liu
- Department of Obstetrics, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Fang-Mei Yang
- Department of Obstetrics, Linyi Hospital Affiliated to Shandong University, Linyi City, People's Republic of China
| | - Xiao-Qing Yang
- Department of Pathology, Qianfoshan Hospital Affiliated to Shandong University, Jinan City, People's Republic of China
| | - Xiao-Fei Lu
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan City, People's Republic of China
| |
Collapse
|
29
|
Hung YL, Lee HJ, Jiang I, Lin SC, Lo WC, Lin YJ, Sue SC. The First Residue of the PWWP Motif Modulates HATH Domain Binding, Stability, and Protein-Protein Interaction. Biochemistry 2015; 54:4063-74. [PMID: 26067205 DOI: 10.1021/acs.biochem.5b00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatoma-derived growth factor (hHDGF) and HDGF-related proteins (HRPs) contain conserved N-terminal HATH domains with a characteristic structural motif, namely the PWWP motif. The HATH domain has attracted attention because of its ability to bind with heparin/heparan sulfate, DNA, and methylated histone peptide. Depending on the sequence of the PWWP motif, HRP HATHs are classified into P-type (Pro-His-Trp-Pro) and A-type (Ala-His-Trp-Pro) forms. A-type HATH is highly unstable and tends to precipitate in solution. We replaced the Pro residue in P-type HATHHDGF with Ala and evaluated the influence on structure, dynamics, and ligand binding. Nuclear magnetic resonance (NMR) hydrogen/deuterium exchange and circular dichroism (CD) measurements revealed reduced stability. Analysis of NMR backbone (15)N relaxations (R1, R2, and nuclear Overhauser effect) revealed additional backbone dynamics in the interface between the β-barrel and the C-terminal helix bundle. The β1-β2 loop, where the AHWP sequence is located, has great structural flexibility, which aids HATH-HATH interaction through the loop. A-type HATH, therefore, shows a stronger tendency to aggregate when binding with heparin and DNA oligomers. This study defines the role of the first residue of the PWWP motif in modulating HATH domain stability and oligomer formation in binding.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Cheng Lo
- §Institute of Bioinformatics and Structural Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Jan Lin
- ∥Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
30
|
Enomoto H, Nakamura H, Liu W, Nishiguchi S. Hepatoma-Derived Growth Factor: Its Possible Involvement in the Progression of Hepatocellular Carcinoma. Int J Mol Sci 2015; 16:14086-97. [PMID: 26101867 PMCID: PMC4490540 DOI: 10.3390/ijms160614086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023] Open
Abstract
The development of hepatocellular carcinoma (HCC) is an important complication of viral infection induced by hepatitis virus C, and our major research theme is to identify a new growth factor related to the progression of HCC. HDGF (hepatoma-derived growth factor) is a novel growth factor that belongs to a new gene family. HDGF was initially purified from the conditioned medium of a hepatoma cell line. HDGF promotes cellular proliferation as a DNA binding nuclear factor and a secreted protein acting via a receptor-mediated pathway. HDGF is a unique multi-functional protein that can function as a growth factor, angiogenic factor and anti-apoptotic factor and it participates in the development and progression of various malignant diseases. The expression level of HDGF may be an independent prognostic factor for predicting the disease-free and overall survival in patients with various malignancies, including HCC. Furthermore, the overexpression of HDGF promotes the proliferation of HCC cells, while a reduction in the HDGF expression inhibits the proliferation of HCC cells. This article provides an overview of the characteristics of HDGF and describes the potential role of HDGF as a growth-promoting factor for HCC.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hideji Nakamura
- Department of Gastroenterology and Hepatology, Nissay Hospital, Itachibori 6-3-8, Nishi-ku, Osaka 550-0012, Japan.
| | - Weidong Liu
- Department of Hepatology and Infectious Diseases, the Second Affiliated Hospital, Shantou University Medical College, No. 69, Dongxiabei, Jinping, Shantou 515041, China.
| | - Shuhei Nishiguchi
- Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
31
|
Hepatocarcinoma cell-derived hepatoma-derived growth factor (HDGF) induces regulatory T cells. Cytokine 2015; 72:31-5. [PMID: 25569374 DOI: 10.1016/j.cyto.2014.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS It is suggested that regulatory immune cells play a critical role in cancer cell growth by facilitating cancer cells to escape from the immune surveillance. The generation of the immune regulatory cells in cancer has not been fully understood yet. This study aims to investigate the role of the hepatoma-derived growth factor (HDGF) in the generation of regulatory T cells (Treg). METHODS CCL-9.1 cells (A mouse hepatoma cell line), were cultured. The expression of HDGF in CCL-9.1 cells was assessed by quantitative RT-PCR and Western blotting. The generation of Foxp3(+) T cells was assessed by cell culture and flow cytometry. The immune suppressor function of the Foxp3(+) T cells on CD8(+) T cell activities was assessed by the carboxyfluorescein succinimidyl ester (CFSE)-dilution assay and enzyme-linked immunosorbent assay. RESULTS The results showed that exposure to PolyIC markedly increased the expression of HDGF in CCL-9.1 cells. Coculture of CCL-9.1 cells and CD4(+) CD25(-) T cells in the presence of PolyIC generated the Forkhead box protein (Foxp)3(+) T cells. The exposure to HDGF increased the expression of Foxp3 and decreased the expression of GATA3 in CD4(+) T cells. After activation, the Foxp3(+) T cells suppressed the CD8(+) T cell proliferation and the release of the cytotoxic cytokines. CONCLUSIONS Liver cancer cell-derived HDGF can induce Foxp3(+) T cells; the latter has the immune suppressor functions on CD8(+) T cell activities.
Collapse
|
32
|
Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:242-54. [PMID: 25070081 PMCID: PMC4283595 DOI: 10.1111/tpj.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants.
Collapse
Affiliation(s)
- Sathya S Jali
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Sarah M Rosloski
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | | | - Joshua G Steffen
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vladimir Zhurov
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Richard M Clark
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vojislava Grbic
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| |
Collapse
|
33
|
Qin S, Min J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 2014; 39:536-47. [PMID: 25277115 DOI: 10.1016/j.tibs.2014.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100-150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA 'reader' or 'modifier' domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.
Collapse
Affiliation(s)
- Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
34
|
Gao J, Li J, Li BJ, Yagil E, Zhang J, Du SJ. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PLoS One 2014; 9:e86808. [PMID: 24466251 PMCID: PMC3900645 DOI: 10.1371/journal.pone.0086808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. Methodology/Principal Findings To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Conclusion/Significance Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.
Collapse
Affiliation(s)
- Jie Gao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Junling Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bao-Jun Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ezra Yagil
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Jianshe Zhang
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li D, Han Z, Liu J, Zhang X, Ren J, Yan L, Liu H, Xu Z. Upregulation of nucleus HDGF predicts poor prognostic outcome in patients with penile squamous cell carcinoma bypass VEGF-A and Ki-67. Med Oncol 2013; 30:702. [PMID: 23999841 DOI: 10.1007/s12032-013-0702-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/20/2013] [Indexed: 01/27/2023]
Abstract
Hepatoma-derived growth factor (HDGF) has been verified to serve as a credible prognostic marker for several types of cancers, but its role in urologic carcinomas remains undetermined. In this study, we analyzed the significance of HDGF, as well as its relative factors such as vascular endothelial growth factor-A (VEGF-A) and Ki-67, in penile squamous cell carcinoma (PSCC). Formalin-fixed paraffin-embedded PSCC samples from 54 patients receiving surgery at Qilu Hospital of Shandong University were included in the retrospective study. The expressions of HDGF, VEGF-A, and Ki-67 were detected by immunohistochemistry of a non-biotin polymerized horseradish peroxidase method. The relationships between the expressions of HDGF and VEGF-A, Ki-67 were assessed. Moreover, their correlations with clinical pathologic characteristics and disease prognosis were, respectively, evaluated. HDGF, VEGF-A, and Ki-67 were positively expressed in 28 (51.9%), 29 (53.7%), and 26 (48.1%) patients, respectively. The expressions of VEGF-A and Ki-67 were closely correlated with PSCC type (P < 0.05). A statistically significant relationship between the expressions of HDGF and VEGF-A in PSCC was observed (P = 0.03). Patients with symptom interval of more than 6 months had a significantly poorer survival rate than those with symptom interval less than 6 months (43.3 vs. 70.8%, P = 0.043). Patients with positive HDGF expression also showed a significantly poorer survival rate than those with negative HDGF expression (39.3 vs. 73.1%, P = 0.013). Logistic regression demonstrated that the expression level of HDGF was an independent predictor for the prognosis of postoperative patients. The expression of HDGF significantly correlated with VEGF-A, but not Ki-67 expression. Overexpression of HDGF, rather than VEGF-A or Ki-67, was confirmed to be an independent prognosticator of poor outcome for PSCC patients.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang Y, Li H, Zhang F, Shi H, Zhen T, Dai S, Kang L, Liang Y, Wang J, Han A. Clinical and biological significance of hepatoma-derived growth factor in Ewing's sarcoma. J Pathol 2013; 231:323-34. [PMID: 23878072 DOI: 10.1002/path.4241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023]
Abstract
We sought to investigate the clinicopathological significance and biological function of hepatoma-derived growth factor (HDGF) in Ewing's sarcoma. Our results showed that HDGF expression is up-regulated in Ewing's sarcoma. Nuclear HDGF expression is significantly associated with tumour volume (p < 0.001), metastases at diagnosis (p < 0.001), low overall survival rate (p < 0.001) and low disease-free survival rate (p < 0.001). HDGF knock-down results in significant reduction of Ewing's sarcoma cell growth, proliferation and enhances tumourigenesis, both in vitro and in vivo. Meanwhile, HDGF knock-down causes cell cycle arrest and enhanced sensitization to serum starvation-induced apoptosis. Furthermore, recombinant HDGF promotes proliferation and colony formation of Ewing's sarcoma cells. Ninety-eight candidate HDGF downstream genes were identified in Ewing's sarcoma cells using cDNA microarray analysis. In addition, we found that HDGF knock-down inhibited FLI1 expression in Ewing's sarcoma cells at the mRNA and protein levels. Our findings suggest that HDGF exhibits oncogenic properties and may be a novel prognostic factor in Ewing's sarcoma. Targeting HDGF might be a potential therapeutic strategy for Ewing's sarcoma.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu J, Wang Y. p53 and the PWWP domain containing effector proteins in chromatin damage repair. CELL & DEVELOPMENTAL BIOLOGY 2013; 2:112. [PMID: 25264544 PMCID: PMC4175562 DOI: 10.4172/2168-9296.1000112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In eukaryotic cells, DNA damage repair occurs on a template DNA that is organized with histones to form nucleosomes and chromatin structures. As such, chromatin plays an important role in DNA damage repair. In this review, we will use "chromatin damage repair" as a framework and highlight recent progress in understanding the role of chromatin, chromatin modifiers, chromatin binding effectors (e.g., the PWWP domain proteins), and the p53 tumor suppressor. We view chromatin as an active participant during DNA damage repair.
Collapse
Affiliation(s)
- Jing Hu
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| | - Yanming Wang
- Graduate Program in Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802 USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802 USA
| |
Collapse
|
38
|
Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 2013; 41:3924-36. [PMID: 23396443 PMCID: PMC3616739 DOI: 10.1093/nar/gkt074] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/27/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) tethers lentiviral preintegration complexes (PICs) to chromatin and is essential for effective HIV-1 replication. LEDGF/p75 interactions with lentiviral integrases are well characterized, but the structural basis for how LEDGF/p75 engages chromatin is unknown. We demonstrate that cellular LEDGF/p75 is tightly bound to mononucleosomes (MNs). Our proteomic experiments indicate that this interaction is direct and not mediated by other cellular factors. We determined the solution structure of LEDGF PWWP and monitored binding to the histone H3 tail containing trimethylated Lys36 (H3K36me3) and DNA by NMR. Results reveal two distinct functional interfaces of LEDGF PWWP: a well-defined hydrophobic cavity, which selectively interacts with the H3K36me3 peptide and adjacent basic surface, which non-specifically binds DNA. LEDGF PWWP exhibits nanomolar binding affinity to purified native MNs, but displays markedly lower affinities for the isolated H3K36me3 peptide and DNA. Furthermore, we show that LEDGF PWWP preferentially and tightly binds to in vitro reconstituted MNs containing a tri-methyl-lysine analogue at position 36 of H3 and not to their unmodified counterparts. We conclude that cooperative binding of the hydrophobic cavity and basic surface to the cognate histone peptide and DNA wrapped in MNs is essential for high-affinity binding to chromatin.
Collapse
Affiliation(s)
- Jocelyn O. Eidahl
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brandon L. Crowe
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Justin A. North
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher J. McKee
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nikoloz Shkriabai
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lei Feng
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Matthew Plumb
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert L. Graham
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert J. Gorelick
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sonja Hess
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael G. Poirier
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mark P. Foster
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mamuka Kvaratskhelia
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA and AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
39
|
Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, Varlet P, Devaux B, Soncin F, Gavard J, Junier MP, Chneiweiss H. Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012; 30:845-53. [PMID: 22331796 DOI: 10.1002/stem.1062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Presence in glioblastomas of cancer cells with normal neural stem cell (NSC) properties, tumor initiating capacity, and resistance to current therapies suggests that glioblastoma stem-like cells (GSCs) play central roles in glioblastoma development. We cultured human GSCs endowed with all features of tumor stem cells, including tumor initiation after xenograft and radio-chemoresistance. We established proteomes from four GSC cultures and their corresponding whole tumor tissues (TTs) and from human NSCs. Two-dimensional difference gel electrophoresis and tandem mass spectrometry revealed a twofold increase of hepatoma-derived growth factor (HDGF) in GSCs as compared to TTs and NSCs. Western blot analysis confirmed HDGF overexpression in GSCs as well as its presence in GSC-conditioned medium, while, in contrast, no HDGF was detected in NSC secretome. At the functional level, GSC-conditioned medium induced migration of human cerebral endothelial cells that can be blocked by anti-HDGF antibodies. In vivo, GSC-conditioned medium induced neoangiogenesis, whereas HDGF-targeting siRNAs abrogated this effect. Altogether, our results identify a novel candidate, by which GSCs can support neoangiogenesis, a high-grade glioma hallmark. Our strategy illustrates the usefulness of comparative proteomic analysis to decipher molecular pathways, which underlie GSC properties.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U894, Psychiatry and Neuroscience Center, Glial Plasticity Team, Cochin Institute, Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alvarez-Venegas R, Avramova Z. Evolution of the PWWP-domain encoding genes in the plant and animal lineages. BMC Evol Biol 2012; 12:101. [PMID: 22734652 PMCID: PMC3457860 DOI: 10.1186/1471-2148-12-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations ('promiscuous' domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages. RESULTS Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements ('cassettes'). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. CONCLUSION Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.
Collapse
Affiliation(s)
- Raúl Alvarez-Venegas
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato Gto., 36821, Mexico
| | | |
Collapse
|
41
|
Lin YW, Li CF, Chen HY, Yen CY, Lin LC, Huang CC, Huang HY, Wu PC, Chen CH, Chen SC, Tai MH. The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncol 2012; 48:629-35. [PMID: 22361040 DOI: 10.1016/j.oraloncology.2012.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/27/2011] [Accepted: 01/26/2012] [Indexed: 12/12/2022]
Abstract
Hepatoma-derived growth factor (HDGF) participates in oncogenic progression and represents a prognostic factor in several types of cancer. This study aimed to elucidate the role of HDGF during oral carcinogenesis. HDGF expression and the tumorigenic behaviors in human oral cell lines were investigated by immunoblotting, invasion and colony formation assays. Recombinant adenovirus vectors were employed to modulate the HDGF level in oral cancer cells. Immunohistochemical analysis using tissue microarray (TMA) consisting of surgically resected samples from 95 oral cancer patients was performed to delineate the correlation between HDGF expression and clinic-pathological parameters. HDGF expression was higher in malignant oral cancer cells than benign ones. Adenovirus-mediated HDGF overexpression and knockdown demonstrated the cellular HDGF level regulated the tumorigenic behaviors of oral cancer cells. Immunohistochemical analysis revealed increased HDGF expression in the nucleus and cytoplasm in oral cancer tissues. The nuclear HDGF expression was significantly correlated with tumor stage (P=0.004) and grade (P=0.013) while the cytoplasmic HDGF expression was associated with tumor necrosis (P=0.002). Kaplan-Meier analysis revealed that patients with high nuclear HDGF expression had significantly worse 5-year disease-specific survival (P=0.0069), metastasis-free survival (P=0.0168), and local recurrence-free survival (P=0.0047). Multivariate analysis indicated that the nuclear HDGF labeling index was an independent prognostic factor for disease-specific and local recurrence-free survival. HDGF overexpression contributes to the oncogenic processes in oral cancer cells and constitutes a novel prognostic factor for survival outcome of oral cancer patients.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Department of Radiation Oncology, Division of Oral & Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Leoh LS, van Heertum B, De Rijck J, Filippova M, Rios-Colon L, Basu A, Martinez SR, Tungteakkhun SS, Filippov V, Christ F, De Leon M, Debyser Z, Casiano CA. The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity. Mol Cancer Res 2012; 10:378-91. [PMID: 22275515 DOI: 10.1158/1541-7786.mcr-11-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lens epithelium-derived growth factor p75 (LEDGF/p75) is a transcription coactivator that promotes resistance to oxidative stress- and chemotherapy-induced cell death. LEDGF/p75 is also known as the dense fine speckles autoantigen of 70 kDa (DFS70) and has been implicated in cancer, HIV-AIDS, autoimmunity, and inflammation. To gain insights into mechanisms by which LEDGF/p75 protects cancer cells against stress, we initiated an analysis of its interactions with other transcription factors and the influence of these interactions on stress gene activation. We report here that both LEDGF/p75 and its short splice variant LEDGF/p52 interact with MeCP2, a methylation-associated transcriptional modulator, in vitro and in various human cancer cells. These interactions were established by several complementary approaches: transcription factor protein arrays, pull-down and AlphaScreen assays, coimmunoprecipitation, and nuclear colocalization by confocal microscopy. MeCP2 was found to interact with the N-terminal region shared by LEDGF/p75 and p52, particularly with the PWWP-CR1 domain. Like LEDGF/p75, MeCP2 bound to and transactivated the Hsp27 promoter (Hsp27pr). LEDGF/p75 modestly enhanced MeCP2-induced Hsp27pr transactivation in U2OS osteosarcoma cells, whereas this effect was more pronounced in PC3 prostate cancer cells. LEDGF/p52 repressed Hsp27pr activity in U2OS cells. Interestingly, siRNA-induced silencing of LEDGF/p75 in U2OS cells dramatically elevated MeCP2-mediated Hsp27pr transactivation, whereas this effect was less pronounced in PC3 cells depleted of LEDGF/p75. These results suggest that the LEDGF/p75-MeCP2 interaction differentially influences Hsp27pr activation depending on the cellular and molecular context. These findings are of significance in understanding the contribution of this interaction to the activation of stress survival genes.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thakar K, Votteler I, Kelkar D, Shidore T, Gupta S, Kelm S, Dietz F. Interaction of HRP-2 isoforms with HDGF. Chromatin binding of a specific heteromer. FEBS J 2012; 279:737-51. [DOI: 10.1111/j.1742-4658.2011.08464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Chen FF, Lin WH, Lin SC, Kuo JH, Chu HY, Huang WC, Chuang YJ, Lee SC, Sue SC. Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 2012; 22:649-61. [DOI: 10.1093/glycob/cwr191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
45
|
Zhao J, Yu H, Lin L, Tu J, Cai L, Chen Y, Zhong F, Lin C, He F, Yang P. Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics 2011; 75:588-602. [DOI: 10.1016/j.jprot.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/14/2011] [Accepted: 08/25/2011] [Indexed: 02/05/2023]
|
46
|
Hsu SS, Chen CH, Liu GS, Tai MH, Wang JS, Wu JC, Kung ML, Chan EC, Liu LF. Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 2011; 107:101-9. [PMID: 22037800 DOI: 10.1007/s11060-011-0733-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 09/21/2011] [Indexed: 12/28/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a neurotrophic factor found in mouse spinal cord and hippocampal neurons. In various malignant tumors, the role of HDGF in tumor progression and its use as a diagnostic biomarker or therapeutic target have been extensively explored. However, the prognostic function and mitogenic role of HDGF in gliomagenesis are yet to be verified. In this study, we found a significant incidence of HDGF prevalence between the different pathological types and stages of glioma in 105 patients. We also found a prognostic significance in 41 glioblastoma multiforme (GBM) patients, with prevalence of nuclear HDGF predicting short survival of patients with GBM after surgery. To delineate the mitogenic role of HDGF in gliomagenesis, an adenoviral-expressed HDGF small interfering RNA (Ad-HDGF siRNA) was used to knock down expression of nuclear HDGF. After knocking down nuclear HDGF expression in human GBM cells, cell growth and cell invasion and induction on apoptosis by caspase-3 activation were significantly inhibited. We conclude that HDGF is a mitogenic growth factor in glioma progression and can be a useful prognostic marker for GBM and therapeutic target for clinical management of glioma in the future.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gijsbers R, Vets S, De Rijck J, Ocwieja KE, Ronen K, Malani N, Bushman FD, Debyser Z. Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem 2011; 286:41812-41826. [PMID: 21987578 DOI: 10.1074/jbc.m111.255711] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
LEDGF/p75 is a chromatin-interacting, cellular cofactor of HIV integrase that dictates lentiviral integration site preference. In this study we determined the role of the PWWP domain of LEDGF/p75 in tethering and targeting of the lentiviral pre-integration complex, employing potent knockdown cell lines allowing analysis in the absence of endogenous LEDGF/p75. Deletion of the PWWP domain resulted in a diffuse subnuclear distribution pattern, loss of interaction with condensed chromatin, and failure to rescue proviral integration, integration site distribution, and productive virus replication. Substitution of the PWWP domain of LEDGF/p75 with that of hepatoma-derived growth factor or HDGF-related protein-2 rescued viral replication and lentiviral integration site distribution in LEDGF/p75-depleted cells. Replacing all chromatin binding elements of LEDGF/p75 with full-length hepatoma-derived growth factor resulted in more integration in genes combined with a preference for CpG islands. In addition, we showed that any PWWP domain targets SMYD1-like sequences. Analysis of integration preferences of lentiviral vectors for epigenetic marks indicates that the PWWP domain is critical for interactions specifying the relationship of integration sites to regions enriched in specific histone post-translational modifications.
Collapse
Affiliation(s)
- Rik Gijsbers
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Sofie Vets
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jan De Rijck
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karen E Ocwieja
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Zeger Debyser
- Division of Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, Christ F, Debyser Z. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011; 410:811-30. [PMID: 21763490 DOI: 10.1016/j.jmb.2011.03.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/21/2022]
Abstract
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.
Collapse
Affiliation(s)
- Melissa McNeely
- Laboratory for Molecular Virology and Gene Therapy, Molecular Medicine, KULeuven and IRC Kulak, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Qi J, Guo Y, Guo Y, Fu W, Zhou B, Wu G, Han L, He A. [Aberrant expression of HDGF and its prognostic values in surgically resected non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:211-8. [PMID: 21426662 PMCID: PMC5999669 DOI: 10.3779/j.issn.1009-3419.2011.03.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Our previous studies revealed that hepatoma-derived growth factor (HDGF) is highly expressed in non-small cell lung cancer (NSCLC) cells, playing important roles in promoting NSCLC cells growth and invasion. The aim of this study is to detect the expression of HDGF in 158 cases of surgically resected NSCLC and evaluate its clinical significance. METHODS Immunohistochemical SP method was used to detect the expression of HDGF in 158 NSCLC tissues and 12 normal control lung tissues. Survival analysis was further conducted. RESULTS HDGF was found significantly highly expressed in 158 NSCLC tissues compared with normal control lung tissues (P < 0.001). The 5-year survival rate was 38.2% in HDGF high expression cases, compared with 63.1% in HDGF low expression cases, the difference was statistically significant (P=0.009). Linear correlation analysis discovered a significantly negative correlation between HDGF expression and the survival time (r=-0.183, P=0.022). COX proportion hazard model analysis revealed that pathological stages and HDGF expression were independent prognostic factors for this group of 158 resected NSCLC cases. CONCLUSIONS HDGF is highly expressed in human NSCLC tissues, predicting worse prognosis in resected NSCLCs. It might be useful molecular biomarker for predicting the prognosis of resected NSCLCs.
Collapse
Affiliation(s)
- Jun Zhang
- China Medical University Lung Cancer Center, the First Hospital of China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One 2011; 6:e18919. [PMID: 21720545 PMCID: PMC3119473 DOI: 10.1371/journal.pone.0018919] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/24/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. METHODOLOGY/PRINCIPAL FINDINGS The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. CONCLUSIONS PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
Affiliation(s)
- Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Robert Lam
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maria F. Amaya
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Dombrovski
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Wei Qiu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Yanming Wang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|