1
|
Vasishta S, Ammankallu S, Poojary G, Gomes SM, Ganesh K, Umakanth S, Adiga P, Upadhya D, Prasad TSK, Joshi MB. High glucose induces DNA methyltransferase 1 dependent epigenetic reprogramming of the endothelial exosome proteome in type 2 diabetes. Int J Biochem Cell Biol 2024; 176:106664. [PMID: 39303850 DOI: 10.1016/j.biocel.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known. Hence, in the present study, we used Human umbilical vein endothelial cells (HUVECs), High Fat Diet (HFD) induced diabetic mice (C57BL/6) and clinical models to understand epigenetic basis of exosome proteome regulation in T2D pathogenesis . Exosomes were isolated by size exclusion chromatography and subjected to tandem mass tag (TMT) labelled quantitative proteomics and bioinformatics analysis. Immunoblotting was performed to validate exosome protein signature in clinically characterized individuals with T2D. We observed ECs cultured in high glucose and aortic ECs from HFD mouse expressed elevated DNA methyltransferase1 (DNMT1) levels. Quantitative proteomics of exosomes isolated from ECs treated with high glucose and overexpressing DNMT1 showed significant alterations in both protein levels and post translational modifications which were aligned to T2D associated vascular functions. Based on ontology and gene-function-disease interaction analysis, differentially expressed exosome proteins such as Thrombospondin1, Pentraxin3 and Cystatin C related to vascular complications were significantly increased in HUVECs treated with high glucose and HFD animals and T2D individuals with higher levels of glycated hemoglobin. These proteins were reduced upon treatment with 5-Aza-2'-deoxycytidine. Our study shows epigenetic regulation of exosome proteome in T2D associated vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575020, India
| | - Ganesha Poojary
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. Alzheimers Res Ther 2023; 15:78. [PMID: 37038196 PMCID: PMC10088180 DOI: 10.1186/s13195-023-01216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. METHODS We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ42, phosphorylated tau181 (pTau181), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. RESULTS We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. CONCLUSIONS Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michael A Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14Th Street, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Martin ER, Wang L. Distinct CSF biomarker-associated DNA methylation in Alzheimer's disease and cognitively normal subjects. RESEARCH SQUARE 2023:rs.3.rs-2391364. [PMID: 36865230 PMCID: PMC9980279 DOI: 10.21203/rs.3.rs-2391364/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Background Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzheimer's disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have correlated blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropathology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than with clinical data, would provide more relevant information on AD pathogenesis. Methods We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ 42 , phosphorylated tau 181 (pTau 181 ), and total tau (tTau) biomarkers data, measured on the same subjects and at the same clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset. Results We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau 181 in the CSF, as well as tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker. Conclusions Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
Collapse
Affiliation(s)
- Wei Zhang
- University of Miami, Miller School of Medicine
| | - Juan I Young
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | - Michael A Schmidt
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | | | | | | | - Eden R Martin
- Dr. John T Macdonald Foundation, University of Miami, Miller School of Medicine
| | - Lily Wang
- University of Miami, Miller School of Medicine
| |
Collapse
|
4
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
5
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
6
|
Costa V, De Fine M, Carina V, Conigliaro A, Raimondi L, De Luca A, Bellavia D, Salamanna F, Alessandro R, Pignatti G, Fini M, Giavaresi G. How miR-31-5p and miR-33a-5p Regulates SP1/CX43 Expression in Osteoarthritis Disease: Preliminary Insights. Int J Mol Sci 2021; 22:2471. [PMID: 33671114 PMCID: PMC7957523 DOI: 10.3390/ijms22052471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of i) osteoblasts and chondrocytes genes expression, ii) joint inflammation cytokines releases and iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.
Collapse
Affiliation(s)
- Viviana Costa
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Marcello De Fine
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.D.F.); (G.P.)
| | - Valeria Carina
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (A.C.); (R.A.)
| | - Lavinia Raimondi
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Angela De Luca
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Daniele Bellavia
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Francesca Salamanna
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (A.C.); (R.A.)
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90133 Palermo, Italy
| | - Giovanni Pignatti
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.D.F.); (G.P.)
| | - Milena Fini
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| | - Gianluca Giavaresi
- SC Scienze e Tecnologie Chirurgiche-SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (L.R.); (A.D.L.); (D.B.); (F.S.); (M.F.); (G.G.)
| |
Collapse
|
7
|
Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020; 6:392-406. [PMID: 32348735 DOI: 10.1016/j.trecan.2020.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable epigenetic modification that contributes to the spatiotemporal regulation of gene expression. The manner in which DNA methylation contributes to transcriptional control is dependent on the biological context, including physiological state and the properties of the DNA itself. Classically, dense promoter DNA methylation is associated with transcriptional repression. However, growing evidence suggests that this association may not always hold true, and promoter hypermethylation now also appears to be associated with high transcriptional activity. Furthermore, in a selection of contexts, increasing levels of promoter methylation correlate directly with increased gene expression. These findings postulate a context-dependent model whereby epigenetic contributions to transcriptional regulation occur in a more complex and dynamic manner. We present current evidence documenting promoter hypermethylation and high levels of gene expression, offer insights into the possible mechanisms by which this occurs, and discuss the potential implications for both research and clinical applications.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Swapnoleena Sen
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand.
| |
Collapse
|
8
|
Renart J, San Mauro D, Agorreta A, Rutherford K, Gemmell NJ, Quintanilla M. Evolutionary history of the podoplanin gene. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 2018; 78:126-136. [PMID: 29496040 DOI: 10.1016/j.oraloncology.2018.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.
Collapse
Affiliation(s)
- Edward P Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Evan M Nevel
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Amber Batra
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Tran Phi
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Angels T P Nguyen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, New Jersey School of Dental Medicine, Rutgers University, Newark, NJ 07103 USA
| | - Alan J Shienbaum
- Department of Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
10
|
Ntougkos E, Chouvardas P, Roumelioti F, Ospelt C, Frank-Bertoncelj M, Filer A, Buckley CD, Gay S, Nikolaou C, Kollias G. Genomic Responses of Mouse Synovial Fibroblasts During Tumor Necrosis Factor-Driven Arthritogenesis Greatly Mimic Those in Human Rheumatoid Arthritis. Arthritis Rheumatol 2017; 69:1588-1600. [PMID: 28409894 DOI: 10.1002/art.40128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Aberrant activation of synovial fibroblasts is a key determinant in the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to produce a map of gene expression and epigenetic changes occurring in this cell type during disease progression in the human tumor necrosis factor (TNF)-transgenic model of arthritis and to identify commonalities with human synovial fibroblasts. METHODS We used deep sequencing to probe the transcriptome, the methylome, and the chromatin landscape of cultured mouse arthritogenic synovial fibroblasts at 3 stages of disease, as well as synovial fibroblasts stimulated with human TNF. We performed bioinformatics analyses at the gene, pathway, and network levels, compared mouse and human data, and validated selected genes in both species. RESULTS We found that synovial fibroblast arthritogenicity was reflected in distinct dynamic patterns of transcriptional dysregulation, which was especially enriched in pathways of the innate immune response and mesenchymal differentiation. A functionally representative subset of these changes was associated with methylation, mostly in gene bodies. The arthritogenic state involved highly active promoters, which were marked by histone H3K4 trimethylation. There was significant overlap between the mouse and human data at the level of dysregulated genes and to an even greater extent at the level of pathways. CONCLUSION This study is the first systematic examination of the pathogenic changes that occur in mouse synovial fibroblasts during progressive TNF-driven arthritogenesis. Significant correlations with the respective human RA synovial fibroblast data further validate the human TNF-transgenic mouse as a reliable model of the human disease. The resource of data generated in this work may serve as a framework for the discovery of novel pathogenic mechanisms and disease biomarkers.
Collapse
Affiliation(s)
| | - Panagiotis Chouvardas
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Roumelioti
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | - Steffen Gay
- University Hospital of Zurich, Zurich, Switzerland
| | | | - George Kollias
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Abstract
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Collapse
|
12
|
Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1. PLoS One 2016; 11:e0163277. [PMID: 27695039 PMCID: PMC5047477 DOI: 10.1371/journal.pone.0163277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD) receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteoblast mineralization. To test this hypothesis, we conducted FZD1 promoter assays in Saos2 cells with and without Sp1 overexpression. We found that Sp1 significantly up-regulates FZD1 promoter activity in Saos2 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assays identified a novel and functional Sp1 binding site at -44 to -40 from the translation start site in the FZD1 promoter. The Sp1-dependent activation of the FZD1 promoter was abolished by mithramycin A (MMA), an antibiotic affecting both Sp1 binding and Sp1 protein levels in Saos2 cells. Similarly, down-regulation of Sp1 in hFOB cells resulted in less FZD1 expression and lower alkaline phosphatase activity. Moreover, over-expression of Sp1 increased FZD1 expression and Saos2 cell mineralization while MMA decreased Sp1 and FZD1 expression and Saos2 cell mineralization. Knockdown of FZD1 prior to Sp1 overexpression partially abolished Sp1 stimulation of osteoblast differentiation markers. Taken together, our results suggest that Sp1 plays a role in human osteoblast differentiation and mineralization, which is at least partially mediated by Sp1-dependent transactivation of FZD1.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Laura M. Yerges-Armstrong
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Program in Personalized and Genomic Medicine and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Yanxia Chu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Duval E, Bouyoucef M, Leclercq S, Baugé C, Boumédiene K. Hypoxia inducible factor 1 alpha down-regulates type i collagen through Sp3 transcription factor in human chondrocytes. IUBMB Life 2016; 68:756-63. [PMID: 27521280 DOI: 10.1002/iub.1539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022]
Abstract
Cartilage engineering is one challenging issue in regenerative medicine. Low oxygen tension or hypoxia inducible factor-1 (HIF-1α) gene therapy are promising strategies in the field of cartilage repair. Previously, we showed that hypoxia and its mediator HIF-1 regulate matrix genes expression (collagens and aggrecan). Here, we investigated the molecular mechanism involved in the regulation of type I collagen (COL1A1) by HIF-1 in human articular chondrocytes. We show that HIF-1α reduces COL1A1 transcription, through a distal promoter (-2300 to -1816 bp upstream transcription initiation site), containing two GC boxes that bind Sp transcription factors (Sp1/Sp3). Sp1 acts as a positive regulator but is not induced by HIF-1. COL1A1 inhibition caused by HIF-1 implies only Sp3, which accumulates and competes Sp1 binding on COL1A1 promoter. Additionally, Sp3 ectopic expression inhibits COL1A1, while Sp3 knockdown counteracts the downregulation of COL1A1 induced by HIF-1. In conclusion, we established a new regulatory model of COL1A1 regulation by HIF-1, and bring out its relationship with Sp3 transcription factor. In a fundamental level, these findings give insights in the mechanisms controlling COL1A1 gene expression. This may be helpful to improve strategies to impair type I collagen expression during chondrocyte differentiation for cartilage engineering. © 2016 IUBMB Life, 68(9):756-763, 2016.
Collapse
Affiliation(s)
- Elise Duval
- EA4652, Equipe BioConnecT, UNICAEN, Caen, CS, 14032, France.,Normandie University, UFR de médecine, Caen, France
| | - Mouloud Bouyoucef
- EA4652, Equipe BioConnecT, UNICAEN, Caen, CS, 14032, France.,Normandie University, UFR de médecine, Caen, France
| | - Sylvain Leclercq
- EA4652, Equipe BioConnecT, UNICAEN, Caen, CS, 14032, France.,Normandie University, UFR de médecine, Caen, France.,Département De Chirurgie Orthopédique, Clinique Saint-Martin, Caen, 14000, France
| | - Catherine Baugé
- EA4652, Equipe BioConnecT, UNICAEN, Caen, CS, 14032, France.,Normandie University, UFR de médecine, Caen, France.,Fédération Hospitalo Universitaire SURFACE, Amiens, Rouen, Caen, France
| | - Karim Boumédiene
- EA4652, Equipe BioConnecT, UNICAEN, Caen, CS, 14032, France.,Normandie University, UFR de médecine, Caen, France.,Fédération Hospitalo Universitaire SURFACE, Amiens, Rouen, Caen, France
| |
Collapse
|
14
|
Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol 2015; 32:153-62. [PMID: 26078107 DOI: 10.1007/s10014-015-0224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
Comprising more than 80% of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.
Collapse
|
15
|
Chiang YH, Wu SH, Kuo YC, Chen HF, Chiou A, Lee OK. Raman spectroscopy for grading of live osteosarcoma cells. Stem Cell Res Ther 2015; 6:81. [PMID: 25928011 PMCID: PMC4445270 DOI: 10.1186/s13287-015-0074-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/28/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Osteosarcoma is the most common primary malignant bone tumor, and the grading of osteosarcoma cells relies on traditional histopathology and molecular biology methods, which require RNA extraction, protein isolation and immunohistological staining. All these methods require cell isolation, lysis or fixation, which is time-consuming and requires certain amount of tumor specimen. In this study, we report the use of Raman spectroscopy for grading of malignant osteosarcoma cells. Methods We demonstrate that, based on the detection of differential production of mineral species, Raman spectroscopy can be used as a live cell analyzer to accurately assess the grades of osteosarcoma cells by evaluating their mineralization levels. Mineralization level was assessed by measuring amount of hydroxyapatite (HA), which is highly expressed in mature osteoblasts, but not in poorly differentiated osteosarcoma cell or mesenchymal stem cells, the putative cell-of-origin of osteosarcoma. Results We found that under Raman spectroscopy, the level of HA production was high in MG-63 cells, which are low-grade. Moreover, hydroxyapatite production was low in high-grade osteosarcoma cells such as 143B and SaOS2 cells (p < 0.05). Matrix metalloproteinase MMP2, MMP9 were highly expressed in SaOS2, 143B and MSCs and decreased in human fetal osteoblast (FOB) and MG-63 cells as expected (p < 0.05). These results may highlight the inverse correlation between HA level and prognosis of osteosarcoma. Conclusions The use of Raman spectroscopy for the measurement of HA production by the protocol reported in this study may serve as a useful tool to rapidly and accurately assess the degree of malignancy in osteosarcoma cells in a label-free manner. Such application may shorten the period of pathological diagnosis and may benefit patients who are inflicted with osteosarcoma.
Collapse
Affiliation(s)
- Yi-Hung Chiang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan. .,Department of Orthopaedics, National Yang-Ming University Hospital, No. 152, Xinmin Road, Yi-Lan, 260, Taiwan.
| | - Stewart H Wu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan.
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan.
| | - How-Foo Chen
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan.
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan.
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan. .,Department of Orthopaedic Surgery, Taipei City Hospital, No. 145, Zhengzhou Road, Taipei, 10341, Taiwan. .,Stem Cell Research Center, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, No. 201, Sec 2, Shipai Road, Taipei, 11217, Taiwan.
| |
Collapse
|
16
|
Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, Quintanilla M. New insights into the role of podoplanin in epithelial-mesenchymal transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:185-239. [PMID: 26008786 DOI: 10.1016/bs.ircmb.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Podoplanin is a small mucin-like transmembrane protein expressed in several adult tissues and with an important role during embryogenesis. It is needed for the proper development of kidneys and lungs as well as accurate formation of the lymphatic vascular system. In addition, it is involved in the physiology of the immune system. A wide variety of tumors express podoplanin, both in the malignant cells and in the stroma. Although there are exceptions, the presence of podoplanin results in poor prognosis. The main consequence of forced podoplanin expression in established and tumor-derived cell lines is an increase in cell migration and, eventually, the triggering of an epithelial-mesenchymal transition, whereby cells acquire a fibroblastoid phenotype and increased motility. We will examine the current status of the role of podoplanin in the induction of epithelial-mesenchymal transition as well as the different interactions that lead to this program.
Collapse
Affiliation(s)
- Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Lucía Montero
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María M Yurrita
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| |
Collapse
|
17
|
He P, Shao D, Ye M, Zhang G. Analysis of gene expression identifies candidate markers and pathways in pre-eclampsia. J OBSTET GYNAECOL 2014; 35:578-84. [PMID: 25528892 DOI: 10.3109/01443615.2014.990430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pre-eclampsia is a serious multisystem disorder and causes significant increase in both maternal and foetal morbidity and perinatal mortality globally. Due to the limited understanding of the molecular mechanism of pre-eclampsia, the current study conducted bioinformatic analyses to screen key regulators involved in pre-eclampsia. The gene expression profiling dataset GSE44711 containing 8 early-onset pre-eclampsia placentas and 8 gestational-age-matched control placentas was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened by limma software package, which were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the Database for Annotation, Visualization, and Integrated Discovery website. Finally, protein-protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes database. In total, 192 DEGs including 106 upregulated and 86 downregulated genes were obtained. Proteoglycan 2 and podoplanin were the most significantly up- and downregulated genes, respectively. In addition, three potential pathways and their related DEGs: spermidine/spermine N1-acetyltransferase 1, amiloride-binding protein 1 and adenosylmethionine decarboxylase 1 were associated with arginine and proline metabolism. Vascular endothelial growth factor C; phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit beta; collagen, type I, alpha 1 (COL1A1); and fibronectin 1 (FN1) were associated with focal adhesion. COL6A1 as well as COL1A1 and FN1 were involved in extra-cellular matrix-receptor interaction. The current study identified several potential genes and three pathways which may be considered as candidate targets for diagnosis and therapy of pre-eclampsia.
Collapse
Affiliation(s)
- P He
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| | - D Shao
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - M Ye
- b Guangzhou Medical Research and Development Centre of BGI , Guangzhou , P. R. China
| | - G Zhang
- a Department of Physiological Obstetric , Guangzhou Women and Children's Medical Centre, Guangzhou Medical University , Guangzhou , P. R. China
| |
Collapse
|
18
|
Prideaux M, Wijenayaka AR, Kumarasinghe DD, Ormsby RT, Evdokiou A, Findlay DM, Atkins GJ. SaOS2 Osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif Tissue Int 2014; 95:183-93. [PMID: 24916279 DOI: 10.1007/s00223-014-9879-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022]
Abstract
The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.
Collapse
Affiliation(s)
- Matthew Prideaux
- Bone Cell Biology Group, Centre for Orthopaedic and Trauma Research, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Bahar Halpern K, Vana T, Walker MD. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. J Biol Chem 2014; 289:23882-92. [PMID: 25016019 DOI: 10.1074/jbc.m114.573469] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2'-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation.
Collapse
Affiliation(s)
- Keren Bahar Halpern
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Vana
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael D Walker
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014; 94:96-102. [DOI: 10.1016/j.mvr.2014.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 01/23/2023]
|
21
|
Gustems M, Woellmer A, Rothbauer U, Eck SH, Wieland T, Lutter D, Hammerschmidt W. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res 2013; 42:3059-72. [PMID: 24371273 PMCID: PMC3950711 DOI: 10.1093/nar/gkt1323] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CpG methylation in mammalian DNA is known to interfere with gene expression by inhibiting the binding of transactivators to their cognate sequence motifs or recruiting proteins involved in gene repression. An Epstein–Barr virus-encoded transcription factor, Zta, was the first example of a sequence-specific transcription factor that preferentially recognizes and selectively binds DNA sequence motifs with methylated CpG residues, reverses epigenetic silencing and activates gene transcription. The DNA binding domain of Zta is homologous to c-Fos, a member of the cellular AP-1 (activator protein 1) transcription factor family, which regulates cell proliferation and survival, apoptosis, transformation and oncogenesis. We have identified a novel AP-1 binding site termed meAP-1, which contains a CpG dinucleotide. If methylated, meAP-1 sites are preferentially bound by the AP-1 heterodimer c-Jun/c-Fos in vitro and in cellular chromatin in vivo. In activated human primary B cells, c-Jun/c-Fos locates to these methylated elements in promoter regions of transcriptionally activated genes. Reminiscent of the viral Zta protein, c-Jun/c-Fos is the first identified cellular member of the AP-1 family of transactivators that can induce expression of genes with methylated, hence repressed promoters, reversing epigenetic silencing.
Collapse
Affiliation(s)
- Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Munich, D-81377, Germany, Biocenter at the Department of Biology II, Ludwig-Maximilians University Munich, Martinsried D-82152, Germany, Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany and Institute of Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Garching D-85748, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 2013; 532:165-72. [PMID: 24096177 DOI: 10.1016/j.gene.2013.09.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/13/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved. β-Catenin gene expression and nuclear levels were analyzed by real time PCR and confocal immunofluorescence. Increased nuclear β-catenin was found in osteoblasts isolated from patients with osteoarthritis (99 ± 4 units vs. 76 ± 12, p=0.01, n=10), without differences in gene transcription, which is consistent with a post-translational down-regulation of β-catenin and decreased Wnt pathway activity. Twenty four single nucleotide polymorphisms (SNPs) of genes showing differential expression between fractures and osteoarthritis (WNT4, WNT10A, WNT16 and SFRP1) were analyzed in DNA isolated from blood of 853 patients. The genotypic frequencies were similar in both groups of patients, with no significant differences. Methylation of Wnt pathway genes was analyzed in bone tissue samples (15 with fractures and 15 with osteoarthritis) by interrogating a CpG-based methylation array. Six genes showed significant methylation differences between both groups of patients: FZD10, TBL1X, CSNK1E, WNT8A, CSNK1A1L and SFRP4. The DNA demethylating agent 5-deoxycytidine up-regulated 8 genes, including FZD10, in an osteoblast-like cell line, whereas it down-regulated other 16 genes. In conclusion, Wnt activity is reduced in patients with hip fractures, in comparison with those with osteoarthritis. It does not appear to be related to differences in the allele frequencies of the Wnt genes studied. On the other hand, methylation differences between both groups could contribute to explain the differences in Wnt activity.
Collapse
Key Words
- 5-aza-2-deoxy-azacytidine
- AzadC
- Bone diseases
- C-terminal binding protein 1
- CACYBP
- CAMK2G
- CSNK1A1
- CSNK1A1L
- CSNK1E
- CTBP1
- Ct
- DNA methylation
- FDR
- FOS-like antigen 1
- FOSL1
- FRZB
- FZD10
- Fractures
- GSK3B
- GWAS
- HWE
- Hardy–Weinberg equilibrium
- LRP5
- PLCB3
- PPP2R1A
- RHOA
- SFRP1
- SFRP4
- TATA box binding protein
- TBL1X
- TBP
- WNT10A
- WNT16
- WNT4
- WNT8A
- Wnt
- calcium/calmodulin-dependent protein kinase II gamma
- calcyclin binding protein
- casein kinase 1, alpha 1
- casein kinase 1, alpha 1-like
- casein kinase 1, epsilon
- false discovery rate
- frizzled homolog 10
- frizzled-related protein
- genome-wide association study
- glycogen synthase kinase 3 beta
- lipoprotein receptor related protein 5
- phospholipase C, beta 3 (phosphatidylinositol-specific)
- protein phosphatase 2 (formerly 2A), regulatory subunit A, alpha isoform
- ras homolog gene family, member A
- secreted frizzled-related protein 1
- secreted frizzled-related protein 4
- threshold cycle
- transducin (beta)-like 1X-linked
- wingless-type MMTV integration site family, member 10A
- wingless-type MMTV integration site family, member 16
- wingless-type MMTV integration site family, member 4
- wingless-type MMTV integration site family, member 8A
- β-Catenin
Collapse
|
23
|
Abstract
Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bone's reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- PhD, Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th Street, Kansas City, Missouri 64108.
| | | | | |
Collapse
|
24
|
Ebp1 activates podoplanin expression and contributes to oral tumorigenesis. Oncogene 2013; 33:3839-50. [DOI: 10.1038/onc.2013.354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/18/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022]
|
25
|
Hung PS, Kuo YC, Chen HG, Chiang HHK, Lee OKS. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One 2013; 8:e65438. [PMID: 23734254 PMCID: PMC3667172 DOI: 10.1371/journal.pone.0065438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications.
Collapse
Affiliation(s)
- Pei-San Hung
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - He-Guei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Delgado-Calle J, Garmilla P, Riancho JA. Do epigenetic marks govern bone mass and homeostasis? Curr Genomics 2012; 13:252-63. [PMID: 23115526 PMCID: PMC3382279 DOI: 10.2174/138920212800543129] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 12/26/2022] Open
Abstract
Bone is a specialized connective tissue with a calcified extracellular matrix in which cells are embedded. Besides providing the internal support of the body and protection for vital organs, bone also has several important metabolic functions, especially in mineral homeostasis. Far from being a passive tissue, it is continuously being resorbed and formed again throughout life, by a process known as bone remodeling. Bone development and remodeling are influenced by many factors, some of which may be modifiable in the early steps of life. Several studies have shown that environmental factors in uterus and in infancy may modify the skeletal growth pattern, influencing the risk of bone disease in later life. On the other hand, bone remodeling is a highly orchestrated multicellular process that requires the sequential and balanced events of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. These processes are accompanied by specific gene expression patterns which are responsible for the differentiation of the mesenchymal and hematopoietic precursors of osteoblasts and osteoclasts, respectively, and the activity of differentiated bone cells. This review summarizes the current understanding of how epigenetic mechanisms influence these processes and their possible role in common skeletal diseases.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U.M. Valdecilla-IFIMAV-University of Cantabria, Santander, Spain
| | | | | |
Collapse
|
27
|
Xu W, Zhu Q, Wu Z, Guo H, Wu F, Mashausi DS, Zheng C, Li D. A Novel Evolutionarily Conserved Element Is a General Transcriptional Repressor of p21WAF1/CIP1. Cancer Res 2012; 72:6236-46. [DOI: 10.1158/0008-5472.can-12-1236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Kaji C, Tsujimoto Y, Kato Kaneko M, Kato Y, Sawa Y. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin. Acta Histochem Cytochem 2012; 45:227-37. [PMID: 23012488 PMCID: PMC3445762 DOI: 10.1267/ahc.12008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/14/2012] [Indexed: 01/06/2023] Open
Abstract
This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG2a) and anti-human mAb NZ-1.2 (IgG2a) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections.
Collapse
Affiliation(s)
- Chiaki Kaji
- Department of Morphological Biology, Fukuoka Dental College
- Department of Morphological Biology, Fukuoka Dental College
| | - Yuta Tsujimoto
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Mika Kato Kaneko
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Yukinari Kato
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
- Molecular Tumor Marker Research Team, Yamagata University Global COE Program, Yamagata University Faculty of Medicine
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
29
|
Uhm TG, Lee SK, Kim BS, Kang JH, Park CS, Rhim TY, Chang HS, Kim DJ, Chung IY. CpG methylation at GATA elements in the regulatory region of CCR3 positively correlates with CCR3 transcription. Exp Mol Med 2012; 44:268-80. [PMID: 22217447 PMCID: PMC3349909 DOI: 10.3858/emm.2012.44.4.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA methylation may regulate gene expression by restricting the access of transcription factors. We have previously demonstrated that GATA-1 regulates the transcription of the CCR3 gene by dynamically interacting with both positively and negatively acting GATA elements of high affinity binding in the proximal promoter region including exon 1. Exon 1 has three CpG sites, two of which are positioned at the negatively acting GATA elements. We hypothesized that the methylation of these two CpGs sites might preclude GATA-1 binding to the negatively acting GATA elements and, as a result, increase the availability of GATA-1 to the positively acting GATA element, thereby contributing to an increase in GATA-1-mediated transcription of the gene. To this end, we determined the methylation of the three CpG sites by bisulfate pyrosequencing in peripheral blood eosinophils, cord blood (CB)-derived eosinophils, PBMCs, and cell lines that vary in CCR3 mRNA expression. Our results demonstrated that methylation of CpG sites at the negatively acting GATA elements severely reduced GATA-1 binding and augmented transcription activity in vitro. In agreement, methylation of these CpG sites positively correlated with CCR3 mRNA expression in the primary cells and cell lines examined. Interestingly, methylation patterns of these three CpG sites in CB-derived eosinophils mostly resembled those in peripheral blood eosinophils. These results suggest that methylation of CpG sites at the GATA elements in the regulatory regions fine-tunes CCR3 transcription.
Collapse
Affiliation(s)
- Tae Gi Uhm
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan 426-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Motomura K, Natsume A, Watanabe R, Ito I, Kato Y, Momota H, Nishikawa R, Mishima K, Nakasu Y, Abe T, Namba H, Nakazato Y, Tashiro H, Takeuchi I, Mori T, Wakabayashi T. Immunohistochemical analysis-based proteomic subclassification of newly diagnosed glioblastomas. Cancer Sci 2012; 103:1871-9. [PMID: 22747609 DOI: 10.1111/j.1349-7006.2012.02377.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/30/2022] Open
Abstract
Recent gene expression and copy number profilings of glioblastoma multiforme (GBM) by The Cancer Genome Atlas (TCGA) Research Network suggest the existence of distinct subtypes of this tumor. However, these approaches might not be easily applicable in routine clinical practice. In the current study, we aimed to establish a proteomics-based subclassification of GBM by integrating their genomic and epigenomic profiles. We subclassified 79 newly diagnosed GBM based on expression patterns determined by comprehensive immunohistochemical observation in combination with their DNA copy number and DNA methylation patterns. The clinical relevance of our classification was independently validated in TCGA datasets. Consensus clustering identified the four distinct GBM subtypes: Oligodendrocyte Precursor (OPC) type, Differentiated Oligodendrocyte (DOC) type, Astrocytic Mesenchymal (AsMes) type and Mixed type. The OPC type was characterized by highly positive scores of Olig2, PDGFRA, p16, p53 and synaptophysin. In contrast, the AsMes type was strongly associated with strong expressions of nestin, CD44 and podoplanin, with a high glial fibrillary acidic protein score. The median overall survival of OPC-type patients was significantly longer than that of the AsMes-type patients (19.9 vs 12.8 months). This finding was in agreement with the Oncomine analysis of TCGA datasets, which revealed that PDGFRA and Olig2 were favorable prognostic factors and podoplanin and CD44 were associated with a poor clinical outcome. This is the first study to establish a subclassification of GBM on the basis of immunohistochemical analysis. Our study will shed light on personalized therapies that might be feasible in daily neuropathological practice.
Collapse
Affiliation(s)
- Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, Delbecque K, Kridelka F, Fuks F, Ennaji MM, Delvenne P. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One 2012; 7:e42704. [PMID: 22880087 PMCID: PMC3411846 DOI: 10.1371/journal.pone.0042704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023] Open
Abstract
Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2'-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cervix Uteri/drug effects
- Cervix Uteri/metabolism
- Cervix Uteri/pathology
- Cluster Analysis
- Cytological Techniques
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA, Neoplasm/isolation & purification
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Neoplasm/genetics
- Humans
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Promoter Regions, Genetic
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Samuel Guenin
- Laboratory of Experimental Pathology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ohta M, Abe A, Ohno F, Hasegawa Y, Tanaka H, Maseki S, Kondo E, Kurita K, Nakanishi H. Positive and negative regulation of podoplanin expression by TGF-β and histone deacetylase inhibitors in oral and pharyngeal squamous cell carcinoma cell lines. Oral Oncol 2012; 49:20-6. [PMID: 22840788 DOI: 10.1016/j.oraloncology.2012.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/23/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Podoplanin, a transmembrane sialomucin-like glycoprotein, is known to express at high frequency in oral squamous cell carcinomas (OSCC) and possess metastasis-promoting activity such as increased invasion and platelet-aggregating activity. However, the regulatory mechanism of podoplanin expression in OSCC remains unknown. MATERIALS AND METHODS In the present study, we investigated the podoplanin expression in both clinical specimens from total 80 patients (50 OSCC and 30 pharyngeal SCC) and in 4 OSCC cell lines in vitro. RESULTS Immunohistochemical analysis of surgically resected specimens of OSCC revealed podoplanin expression in 70% of OSCC cases with localization primarily in the basal layer of squamous cancer nest and the expression was inversely correlated with squamous cell differentiation. In vitro analysis of OSCC cell lines revealed 36 that podoplanin expression was decreased in response to the squamous cell differentiation (Cytokeratin 10 expression as a marker) induced by treatment with histone deacetylase (HDAC) inhibitors such as sodium butyrate and trichostatin. Furthermore, transforming growth factor-β (TGF-β) significantly enhanced podoplanin expression in OSCC cell lines in line with increased phosphorylation of Smad2. A TGF-β type I receptor inhibitor (SB431542) significantly inhibited such induction of podoplanin expression by TGF-β at both the protein and mRNA level. However, in a subset of OSCC cell line, its expression was only weakly dependent on TGF-β and squamous differentiation. CONCLUSION These results suggest that regulation of podoplanin is not simple, but in the majority of OSCC cell lines, its expression is positively and negatively regulated by TGF-β receptor/Smad signaling pathway and epigenetic mechanism leading to squamous differentiation, respectively.
Collapse
Affiliation(s)
- Mitsuhiko Ohta
- The First Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8651, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vincent A, Van Seuningen I. On the epigenetic origin of cancer stem cells. Biochim Biophys Acta Rev Cancer 2012; 1826:83-8. [PMID: 22495062 DOI: 10.1016/j.bbcan.2012.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 12/14/2022]
Abstract
Epigenetic mechanisms are the key component of the dynamic transcriptional programming that occurs along the process of differentiation from normal stem cells to more specialized cells. In the development of cancer and according to the cancer stem cell model, aberrant epigenetic changes may ensure the property of cancer cells to switch cancer stem cell markers on and off in order to generate a heterogeneous population of cells. The tumour will then be composed of tumourigenic (cancer stem cells) and non-tumourigenic (the side population that constitutes the bulk of the tumour) cells. Characterizing epigenetic landscapes may thus help discriminate aberrant marks (good candidates for tumour detection) from cancer stem cell specific profiles. In this review, we will give some insights about what epigenetics can teach us about the origin of cancer stem cells. We will also discuss how identification of epigenetic reprogramming may help designing new drugs that will specifically target cancer stem cells.
Collapse
Affiliation(s)
- Audrey Vincent
- Inserm, UMR837, Jean-Pierre Aubert Research Centre, Team 5 "Mucins, epithelial differentiation and carcinogenesis", Lille, France
| | | |
Collapse
|
34
|
Kaji C, Tomooka M, Kato Y, Kojima H, Sawa Y. The expression of podoplanin and classic cadherins in the mouse brain. J Anat 2012; 220:435-46. [PMID: 22352427 DOI: 10.1111/j.1469-7580.2012.01484.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podoplanin is a transmembrane glycoprotein indirectly linked to classic cadherins through ezrin-actin networks. Recently, the overexpression of podoplanin in high-grade malignancy brain tumors has been reported. The aim of this study was to investigate the expression of podoplanin and classic cadherins in the mouse brain. Immunohistochemistry showed that podoplanin was expressed on ependymal cells and choroid plexus epithelial cells at the ventricle side of the cell surface and at the cell-cell junctions, and on retinal pigment epithelial cells and in the pia mater; P-cadherin between choroid plexus epithelial cells and endothelial cells at the basement membrane side of cell surface, and between retinal pigment epithelial cells; VE-cadherin on the PECAM-1 positive-choroid plexus endothelial cells of the fibrovascular core; and N-cadherin on the cell surface and at the cell-cell junctions of ependymal cells, and in the pia mater. The regions expressing podoplanin, P-cadherin, and VE-cadherin did not coincide. In real-time PCR analysis, the amounts of podoplanin and P- and N-cadherin mRNA were larger in the ventricular wall with choroid plexus than in the abdominal aorta and cerebrum. In the RT-PCR analysis, the intensities of amplicon for VE-cadherin mRNA were the same for the abdominal aorta, cerebrum, and ventricular wall with the choroid plexus, suggesting that mouse ependymal cells, choroid plexus epithelial cells, and glial cells under the pia mater have the ability to express podoplanin and P- and N-cadherins. Glial cells and retinal pigment epithelial cells may create barriers by podoplanin and classic cadherins as a rate-determining step for transmission of blood components.
Collapse
Affiliation(s)
- Chiaki Kaji
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
35
|
Amano I, Imaizumi Y, Kaji C, Kojima H, Sawa Y. Expression of podoplanin and classical cadherins in salivary gland epithelial cells of klotho-deficient mice. Acta Histochem Cytochem 2011; 44:267-76. [PMID: 22282587 PMCID: PMC3263859 DOI: 10.1267/ahc.11037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that salivary gland myoepithelial cells express podoplanin. Podoplanin indirectly binds the actin filament network which links classical cadherins. The study here is aimed to investigate the expression of podoplanin and cadherins on salivary gland myoepithelial cells and the changes in the aging cells using klotho-deficient (kl/kl) mice. The submandibular glands of kl/kl mouse lack granular ducts which express klotho in wild type mice, suggesting that klotho may be a gene responsible for granular duct development. Although aging resulted in growth suppression of myoepithelial cells because of the sparse distribution of the cells in kl/kl mouse salivary glands, the expression of podoplanin and E-cadherin was shown in aging myoepithelial cells. It is thought that podoplanin participates in the actin-E-cadherin networks which are maintained in aging myoepithelial cells. It was also shown that granular ducts were filled with P-cadherin, and that the P-cadherin amount was larger in the wild type mouse submandibular glands than in the sublingual and parotid glands of wild type mouse, and in the submandibular glands of kl/kl mouse. These findings suggest that the granular duct is an organ secreting soluble P-cadherin into the saliva.
Collapse
Affiliation(s)
- Ikuko Amano
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Yuri Imaizumi
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Chiaki Kaji
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Hiroshi Kojima
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
36
|
Delgado-Calle J, Sañudo C, Sánchez-Verde L, García-Renedo RJ, Arozamena J, Riancho JA. Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 2011; 49:830-8. [PMID: 21700004 DOI: 10.1016/j.bone.2011.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/15/2011] [Accepted: 06/06/2011] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms play an important role in the tissue-specific regulation of gene expression. This study analyzed the relationship between tissue non-specific alkaline phosphatase (ALPL) gene expression and the methylation of a CpG island located in its proximal region. Gene expression was analyzed by real time RT-qPCR in primary human osteoblasts (hOBs), the osteoblastic cell line MG-63, the mammary cell line MCF-7, and bone tissue. DNA methylation was analyzed by qMSP in those cells and also in lining osteoblasts and in osteocytes obtained from human bone samples by laser-assisted capture. hOBs expressed much more ALPL mRNA than MG-63 cells (7.3±3.2 vs. 0.2±0.1 arbitrary units, respectively). hOBs showed a very weak DNA methylation (<10%), whereas MG-63 had a higher degree of methylation (58±6%). Likewise, MCF-7 cells, which scarcely expressed ALPL, had a hypermethylated CpG island. Thus, the degree of methylation in the CpG island was inversely associated with the transcriptional levels of ALPL in the studied cells. Furthermore, treatment with the DNA demethylating agent AzadC induced a 30-fold increase in ALPL expression, in MG-63 cells, accompanied by a parallel increase in alkaline phosphatase activity. However, AzadC did not affect ALPL levels in the already hypomethylated hOBs. In addition, in microdissected osteocytes, which do not express alkaline phosphatase, the CpG island was highly methylated (>90%), whereas lining osteoblasts showed an intermediate degree of methylation (58±13%). These results suggest an important role of DNA methylation in the regulation of ALPL expression through the osteoblast-osteocyte transition.
Collapse
Affiliation(s)
- Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U.M. Valdecilla-IFIMAV, University of Cantabria, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1041-9. [PMID: 21801875 DOI: 10.1016/j.ajpath.2011.04.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/02/2011] [Accepted: 04/29/2011] [Indexed: 11/20/2022]
Abstract
Podoplanin is a type-I transmembrane sialomucin-like protein, which is expressed in a wide range of cell types and is involved in platelet aggregation and tumor metastasis. Here, we investigated the function, regulation, and expression of podoplanin in osteosarcoma. Podoplanin expression was observed in three osteosarcoma cell lines (MG-63, HOS, and U-2 OS) with platelet aggregation-inducing ability, which was blocked by podoplanin small-interfering RNA or a neutralizing antibody. Overexpression of podoplanin in nonmetastatic Dunn osteosarcoma cells promoted cell migration without attenuating cell proliferation. Both podoplanin and TGF-β1 were up-regulated by c-Fos induction in MC3T3-E1 osteoblastic cells, and were highly expressed in c-Fos transgenic mouse osteosarcomas and c-Fos-transformed osteosarcoma cell lines. Immunohistochemistry of human osteosarcoma tissue microarrays (n = 133) showed staining of tumor cells embedded in an excess of irregular neoplastic bone matrix in 100% of tumors undergoing so-called "normalization/maturation." Podoplanin was also expressed in osteosarcoma subtypes, with 65% of osteoblastic, 100% of chondroblastic, and 79% of fibroblastic tumors. CD44 and pERM immunohistochemistry showed coexpression with podoplanin in both mouse and human osteosarcoma. Podoplanin expression was significantly higher in metastatic osteosarcomas (n = 6) than in primary osteosarcomas (n = 10). Our data suggest that podoplanin, which is not expressed in normal osteoblasts but in osteocytes, is aberrantly expressed in transformed osteoblasts and in osteosarcoma, and is under AP-1 transcriptional control. Thus podoplanin is a candidate molecule for therapeutic targeting.
Collapse
|
38
|
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192:275-83. [PMID: 20810260 DOI: 10.1016/j.aanat.2010.07.010] [Citation(s) in RCA: 448] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Sp1 and Sp3 are transcription factors expressed in all mammalian cells. These factors are involved in regulating the transcriptional activity of genes implicated in most cellular processes. Dysregulation of Sp1 and Sp3 is observed in many cancers and diseases. Due to the amino acid sequence similarity of the DNA binding domains, Sp1 and Sp3 recognize and associate with the same DNA element with similar affinity. However, others and our laboratory demonstrated that these two factors possess different properties and exert different functional roles. Both Sp1 and Sp3 can interact with and recruit a large number of proteins including the transcription initiation complex, histone modifying enzymes and chromatin remodeling complexes, which strongly suggest that Sp1 and Sp3 are important transcription factors in the remodeling chromatin and the regulation of gene expression. In this review, the role of Sp1 and Sp3 in normal and cancer cell biology and the multiple mechanisms deciding the functional roles of Sp1 and Sp3 will be presented.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
39
|
Sawa Y. New trends in the study of podoplanin as a cell morphological regulator. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2010.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Perera EM, Bao Y, Kos L, Berkovitz G. Structural and functional characterization of the mouse tescalcin promoter. Gene 2010; 464:50-62. [PMID: 20540995 DOI: 10.1016/j.gene.2010.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 02/06/2023]
Abstract
Tescalcin, an EF-hand calcium binding protein that regulates the Na(+)/H(+) exchanger 1 (NHE1), is highly expressed in various mouse tissues such as heart and brain. Despite its potentially important role in cell physiology, the mechanisms that regulate tescalcin gene (Tesc) expression are unknown. In this study, we report two new Tesc mRNA variants (V2 and V3) and characterize the mouse Tesc promoter. The V2 and V3 transcripts result from alternative splicing of intron 5. Our results show that Tesc mRNA variants are expressed in various mouse tissues. Primer extension analysis located the transcription start site at 94 nucleotides upstream of the translation start codon. The DNA nucleotide sequence of the 5'-flanking region contained a CpG island spanning the promoter region from nucleotides -372 to +814, a canonical TATA box (-38/-32), and putative transcription factor binding sites for Sp1, EGR1, ZBP-89, KLF3, MZF1, AP2, ZF5, and CDF-1. Transient transfection of the Y1 and msc-1 cell lines with a series of 5'-deleted promoter constructs indicated that the minimal promoter region was between nucleotides -130 and -40. Electrophoresis mobility shift assays, supershift assays, and mutation studies demonstrated that Sp1 and Sp3 bind to the GC-rich motifs, a CACCC box and three GC boxes, located within the Tesc proximal promoter. Nonetheless, mutations that abolished interaction of Sp1 and Sp3 with the GC-rich motifs located within the minimal promoter region did not abrogate promoter activity in Y1 cells. Mithramycin A, an inhibitor of Sp1-DNA interaction, reduced Tesc promoter activity in msc-1 cells in a dose-dependent manner. Sp3 was a weaker transactivator compared to Sp1 in Drosophila D.mel-2 cells. However, when Sp1 and Sp3 were coexpressed, they transactivated the Tesc promoter in a synergistic manner. In Y1 cells, mutation analysis of a putative ZF5 motif located within the Tesc minimal promoter indicated that this motif was critical for activity of Tesc promoter. Taken together, the data demonstrated that Sp1 and Sp3 transcription factors cooperate positively in the regulation of Tesc promoter, and that the putative ZF5 motif is critical for its activation.
Collapse
Affiliation(s)
- Erasmo M Perera
- Department of Pediatrics, Endocrinology Division, University of Miami, Leonard Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
41
|
Noda Y, Amano I, Hata M, Kojima H, Sawa Y. Immunohistochemical examination on the distribution of cells expressed lymphatic endothelial marker podoplanin and LYVE-1 in the mouse tongue tissue. Acta Histochem Cytochem 2010; 43:61-8. [PMID: 20514293 PMCID: PMC2875857 DOI: 10.1267/ahc.10008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/25/2010] [Indexed: 12/13/2022] Open
Abstract
The clinical study for lingual disease requires the detailed investigation of the lingual lymphatic network and lymphatic marker-positive cells. Recently, it has been reported that several tissue cells and leukocytes express lymphatic markers, LYVE-1 and podoplanin. This study was aimed to clarify the lingual distribution of cells expressing LYVE-1 and podoplanin. In the mouse tongue, podoplanin is expressed in nerve sheaths, lingual gland myoepithelial cells, and lymphatic vessels. LYVE-1 is expressed in the macrophage marker Mac-1-positive cells as well as lymphatic vessels, while factor-VIII was detected in only blood endothelial cells. α-SMA was detected in vascular smooth muscle and myoepithelial cells. Therefore, identification of lymphatic vessels in lingual glands, the combination of LYVE-1 and factor-VIII, or LYVE-1 and Mac-1 is useful because myoepithelial cells express podoplanin and α-SMA. The immunostaining of factor-VIII on lymphatic vessels was masked by the immunostaining to LYVE-1 or podoplanin because lymphatic vessels express factor-VIII to a far lesser extent than blood vessels. Therefore, except for the salivary glands, the combination of podoplanin and α-SMA, or factor-VIII is useful to identify lymphatic vessels and blood vessels with smooth muscle, or blood capillaries.
Collapse
Affiliation(s)
- Yuya Noda
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Ikuko Amano
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Minoru Hata
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Hiroshi Kojima
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
42
|
Hata M, Amano I, Tsuruga E, Kojima H, Sawa Y. Immunoelectron microscopic study of podoplanin localization in mouse salivary gland myoepithelium. Acta Histochem Cytochem 2010; 43:77-82. [PMID: 20514295 PMCID: PMC2875856 DOI: 10.1267/ahc.10011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/17/2010] [Indexed: 01/23/2023] Open
Abstract
We have recently reported that salivary gland cells express the lymphatic endothelial cell marker podoplanin. The present study was aimed to immunohistochemically investigate the expression of the myoepithelial cell marker α-smooth muscle actin (SMA) on podoplanin-positive cells in mouse parotid and sublingual glands, and to elucidate podoplanin localization in salivary gland myoepithelial cells by immunoelectron microscopic study. The distribution of myoepithelial cells expressing podoplanin and α-SMA was examined by immunofluorescent staining, and the localization of reaction products of anti-podoplanin antibody was investigated by pre-embedded immunoelectron microscopic method. In immunohistochemistry, the surfaces of both the mucous acini terminal portion and ducts were covered by a number of extensive myoepithelial cellular processes expressing podoplanin, and the immunostaining level with anti-podoplanin antibody to myoepithelial cells completely coincided with the immunostaining level with anti-α-SMA antibody. These findings suggest that podoplanin is a salivary gland myoepithelial cell antigen, and that the detection level directly reflects the myoepithelial cell distribution. In immunoelectron microscopic study, a number of reaction products with anti-podoplanin antibody were found at the Golgi apparatus binding to the endoplasmic reticulum in the cytoplasm of myoepithelial cells between sublingual gland acinar cells, and were also found at the myoepithelial cell membrane. These findings suggest that salivary gland myoepithelial cells constantly produce podoplanin and glycosylate at the Golgi apparatus, and transport them to the cell membrane. Podoplanin may be involved in maintaining the homeostasis of myoepithelial cells through its characteristic as a mucin-type transmembrane glycoprotein.
Collapse
Affiliation(s)
- Minoru Hata
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Ikuko Amano
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Eichi Tsuruga
- Department of Morphological Biology, Fukuoka Dental College
| | - Hiroshi Kojima
- Department of Oral Growth & Development, Fukuoka Dental College
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
43
|
Ariizumi T, Ogose A, Kawashima H, Hotta T, Li G, Xu Y, Umezu H, Sugai M, Endo N. Expression of podoplanin in human bone and bone tumors: New marker of osteogenic and chondrogenic bone tumors. Pathol Int 2010; 60:193-202. [DOI: 10.1111/j.1440-1827.2009.02510.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18:625-34. [PMID: 20087316 DOI: 10.1038/mt.2009.317] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Collapse
Affiliation(s)
- Dachun Wang
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Horii T, Morita S, Kimura M, Hatada I. Epigenetic regulation of adipocyte differentiation by a Rho guanine nucleotide exchange factor, WGEF. PLoS One 2009; 4:e5809. [PMID: 19503838 PMCID: PMC2686168 DOI: 10.1371/journal.pone.0005809] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/04/2009] [Indexed: 11/26/2022] Open
Abstract
Epigenetic regulation, including DNA methylation, plays an important role in several differentiation processes and possibly in adipocyte differentiation. To search for genes that show methylation change during adipogenesis, genome-wide DNA methylation analysis in insulin-induced adipogenesis of 3T3-L1 preadipocyte cells was performed using a method called microarray-based integrated analysis of methylation by isoschizomers (MIAMI). The MIAMI revealed that Hpa II sites of exon 1 in a Rho guanine nucleotide exchange factor 19 (ARHGEF19; WGEF) gene were demethylated during adipocyte differentiation of 3T3-L1 cells. Deletion of the region containing cytosine-guanine (CpG) sites that showed methylation change suppressed transcriptional activity in the reporter assay, indicating that this region regulates WGEF transcription. WGEF expression in 3T3-L1 cells was reduced during adipocyte differentiation, and high-fat diet-induced obese mice also showed lower expression of WGEF gene than control mice in white adipose tissue. Additionally, forced expression of WGEF in 3T3-L1 cells down-regulated the expression of adipogenic marker genes and inhibited the adipogenic program. This study clarified that adipogenesis was regulated by WGEF expression through DNA methylation change.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail:
| |
Collapse
|
46
|
Martín-Villar E, Yurrita MM, Fernández-Muñoz B, Quintanilla M, Renart J. Regulation of podoplanin/PA2.26 antigen expression in tumour cells. Involvement of calpain-mediated proteolysis. Int J Biochem Cell Biol 2008; 41:1421-9. [PMID: 19146981 DOI: 10.1016/j.biocel.2008.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/05/2008] [Accepted: 12/14/2008] [Indexed: 01/20/2023]
Abstract
Podoplanin/PA2.26 antigen is a small transmembrane mucin expressed in different types of cancer where it is associated with increased cell migration, invasiveness and metastasis. Little is known about the mechanisms that control podoplanin expression. Here, we show that podoplanin synthesis can be controlled at different levels. We analyzed podoplanin expression in a wide panel of tumour cell lines. The podoplanin gene (PDPN) is transcribed in cells derived from sarcomas, embryonal carcinomas, squamous cell carcinomas and endometrial tumours, while cell lines derived from colon, pancreatic, ovarian and ductal breast carcinomas do not express PDPN transcripts. PDPN is expressed as two mRNAs of approximately 2.7 and approximately 0.9 kb, both of which contain the coding sequence and arise by alternative polyadenylation. Strikingly, in most of the cell lines where PDPN transcripts were found, no podoplanin or only very low levels of the protein could be detected in Western blot. Treatment of several of these cell lines with the calpain inhibitor calpeptin resulted in podoplanin accumulation, whereas lactacystin, a specific inhibitor of the proteasome, had no effect. In vitro experiments showed that podoplanin is a substrate of calpain-1. These results indicate that at least in some tumour cells absence or reduced podoplanin protein levels are due to post-translational calpain-mediated proteolysis. We also report in this article the identification of a novel podoplanin isoform that originates by alternative splicing and differs from the standard form in lacking two cytoplasmic residues (YS). YS dipeptide is highly conserved across species, suggesting that it might be functionally relevant.
Collapse
Affiliation(s)
- Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM. Arturo Duperier, 4, 28029-Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H, Kato M. Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma. FEBS Lett 2007; 582:341-5. [PMID: 18158922 DOI: 10.1016/j.febslet.2007.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 01/23/2023]
Abstract
Podoplanin/aggrus is increased in tumors and its expression was associated with tumor malignancy. Podoplanin on cancer cells serves as a platelet-aggregating factor, which is associated with the metastatic potential. However, regulators of podoplanin remain to be determined. Transforming growth factor-beta (TGF-beta) regulates many physiological events, including tumorigenesis. Here, we found that TGF-beta induced podoplanin in human fibrosarcoma HT1080 cells and enhanced the platelet-aggregating-ability of HT1080. TGF-beta type I receptor inhibitor (SB431542) and short hairpin RNAs for Smad4 inhibited the podoplanin induction by TGF-beta. These results suggest that TGF-beta is a physiological regulator of podoplanin in tumor cells.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|