1
|
Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, Lu S, Huang P, Chen X, Zeng X, Liang S. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One 2014; 9:e100682. [PMID: 24949878 PMCID: PMC4065081 DOI: 10.1371/journal.pone.0100682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
Spider venom comprises a mixture of compounds with diverse biological activities, which are used to capture prey and defend against predators. The peptide components bind a broad range of cellular targets with high affinity and selectivity, and appear to have remarkable structural diversity. Although spider venoms have been intensively investigated over the past few decades, venomic strategies to date have generally focused on high-abundance peptides. In addition, the lack of complete spider genomes or representative cDNA libraries has presented significant limitations for researchers interested in molecular diversity and understanding the genetic mechanisms of toxin evolution. In the present study, second-generation sequencing technologies, combined with proteomic analysis, were applied to determine the diverse peptide toxins in venom of the Chinese bird spider Ornithoctonus huwena. In total, 626 toxin precursor sequences were retrieved from transcriptomic data. All toxin precursors clustered into 16 gene superfamilies, which included six novel superfamilies and six novel cysteine patterns. A surprisingly high number of hypermutations and fragment insertions/deletions were detected, which accounted for the majority of toxin gene sequences with low-level expression. These mutations contribute to the formation of diverse cysteine patterns and highly variable isoforms. Furthermore, intraspecific venom variability, in combination with variable transcripts and peptide processing, contributes to the hypervariability of toxins in venoms, and associated rapid and adaptive evolution of toxins for prey capture and defense.
Collapse
Affiliation(s)
- Yiya Zhang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Quanze He
- The State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Jinyan Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ji Luo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Zhu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shanshan Lu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pengfei Huang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinyi Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongzhi Zeng
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail: (ZX); (SL)
| | - Songping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail: (ZX); (SL)
| |
Collapse
|
2
|
Jiang L, Deng M, Duan Z, Tang X, Liang S. Molecular cloning, bioinformatics analysis and functional characterization of HWTX-XI toxin superfamily from the spider Ornithoctonus huwena. Peptides 2014; 54:9-18. [PMID: 24418069 DOI: 10.1016/j.peptides.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
Spider venom contains a very valuable repertoire of natural resources to discover novel components for molecular diversity analyses and therapeutic applications. In this study, HWTX-XI toxins from the spider venom glands of Ornithoctonus huwena which are Kunitz-type toxins (KTTs) and were directly cloned, analyzed and functionally characterized. To date, the HWTX-XI superfamily consists of 38 members deduced from 121 high-quality expressed sequence tags, which is the largest spider KTT superfamily with significant molecular diversity mainly resulted from cDNA tandem repeats as well as focal hypermutation. Among them, HW11c40 and HW11c50 may be intermediate variants between native Kunitz toxins and sub-Kunitz toxins based on evolutionary analyses. In order to elucidate their biological activities, recombinant HW11c4, HW11c24, HW11c27 and HW11c39 were successfully expressed, further purified and functionally characterized. Both HW11c4 and HW11c27 display inhibitory activities against trypsin, chymotrypsin and kallikrein. Moreover, HW11c4 is also an inhibitor relatively specific for Kv1.1 channels. HW11c24 and HW11c39 are found to be inactive on chymotrysin, trypsin, kallikrein, thrombin and ion channels. These findings provide molecular evidence for toxin diversification of the HWTX-XI superfamily and useful molecular templates of serine protease inhibitors and ion channel blockers for the development of potentially clinical applications.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Meichun Deng
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Xing Tang
- College of Chemistry, Biology, and Material Science, East China Institute of Technology, Nanchang, Jiangxi 330013, PR China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China.
| |
Collapse
|
3
|
Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211. Appl Environ Microbiol 2011; 78:994-1003. [PMID: 22156425 DOI: 10.1128/aem.06701-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.
Collapse
|
4
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
5
|
Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen. Appl Environ Microbiol 2010; 76:2027-31. [PMID: 20118375 DOI: 10.1128/aem.02895-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.
Collapse
|
6
|
Boyce R, Chilana P, Rose TM. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Res 2009; 37:W222-8. [PMID: 19443442 PMCID: PMC2703993 DOI: 10.1093/nar/gkp379] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PCR amplification using COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) has proven to be highly effective for identifying unknown pathogens and characterizing novel genes. We describe iCODEHOP; a new interactive web application that simplifies the process of designing and selecting CODEHOPs from multiply-aligned protein sequences. iCODEHOP intelligently guides the user through the degenerate primer design process including uploading sequences, creating a multiple alignment, deriving CODEHOPs and calculating their annealing temperatures. The user can quickly scan over an entire set of degenerate primers designed by the program to assess their relative quality and select individual primers for further analysis. The program displays phylogenetic information for input sequences and allows the user to easily design new primers from selected sequence sub-clades. It also allows the user to bias primer design to favor specific clades or sequences using sequence weights. iCODEHOP is freely available to all interested researchers at https://icodehop.cphi.washington.edu/i-codehop-context/Welcome.
Collapse
Affiliation(s)
- Richard Boyce
- Department of Biomedical Informatics, University of Pittsburgh, UPMC Cancer Pavilion, Suite 301, Pittsburgh, PA 15232, USA.
| | | | | |
Collapse
|
7
|
Jiang L, Chen J, Peng L, Zhang Y, Xiong X, Liang S. Genomic organization and cloning of novel genes encoding toxin-like peptides of three superfamilies from the spider Orinithoctonus huwena. Peptides 2008; 29:1679-84. [PMID: 18590782 DOI: 10.1016/j.peptides.2008.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 11/21/2022]
Abstract
The bird spider Ornithoctonus huwena is one of the most venomous spiders in China. Its venom is a mixture of various compounds with diverse bioactivities. Ninety proteins and 47 peptides have been identified, and 67 cDNA sequences encoding different toxin precursors have been cloned. However, the genomic DNA of them is seldom reported. To characterize the genomic DNA structure of huwentoxins, the genomic DNA encoding toxins of three superfamilies were cloned by using sequence specific or partially degenerate primers based on their cDNA sequences. An unexpected finding was that the intron was lacking in the genomic sequences of three superfamilies. The genomic DNA information has predictive value for better understanding the relationship of spider toxin evolution. In addition, we have cloned and analyzed 19 novel genes encoding toxin-like precursors by using the genomic DNA of the spider O. huwena.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Homologous-restraint polymerase chain reaction: an efficient and rapid protocol to clone multiple homologous genes. Curr Microbiol 2008; 57:51-4. [PMID: 18427895 DOI: 10.1007/s00284-008-9151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
In this article, we present a novel protocol, called homologous-restraint polymerase chain reaction (HRPCR), for cloning multiple homologous genes. One of the homologous genes was cloned by consensus-degenerate hybrid oligonucleotide (CODEHOP) polymerase chain reaction (PCR) and sequenced. Primers of HRPCR were designed with 20 to 30 nt inverted to the known gene before the 5' end of the CODEHOP primers. The amplification of the known gene was restricted owing to the loop of the PCR product or the incorrect binding of the primers and the template. As a result, only unknown genes could be cloned. This protocol proved to be simple, rapid, and efficient. We applied this protocol to clone the multiple homologous genes of beta-1,4-N,6-O-diacetylmuramidase from the genomic DNA of Streptomyces griseus.
Collapse
|