1
|
Wellner K, Gnauck J, Bernier D, Bernhart SH, Betat H, Mörl M. Two complementing in vivo selection systems based on cca-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases. RNA Biol 2025. [PMID: 39831457 DOI: 10.1080/15476286.2025.2453963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease. Recently, we developed an in vivo screening system that allows for the selection and analysis of tRNA nucleotidyltransferase variants by challenging terminal AMP incorporation into tRNA during induced RNase Tcatalyzed CCA-decay. Here, we extend this method for screening of full CCA-end repair by utilizing the CCA-trimming activity of exonuclease LCCR4. To demonstrate the combined potential of these two in vivo selection systems, we applied a semi-rational library design to investigate the mode of operation of catalytically important motifs in the human CCA-adding enzyme. This approach revealed unexpected requirements for amino acid composition in two motifs and gives new insights into the mechanism of CCA addition. The data show the potential of these RNase-based screening systems, as they allow the detection of enzyme variations that would not have been identified by a conventional rational approach. Furthermore, the combination of both RNase T and LCCR4 systems can be used to investigate and dissect effects of pathogenic mutations on C- and Aaddition.
Collapse
Affiliation(s)
- Karolin Wellner
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Josefine Gnauck
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Dorian Bernier
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
3
|
Ender A, Etzel M, Hammer S, Findeiß S, Stadler P, Mörl M. Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Res 2021; 49:1784-1800. [PMID: 33469651 PMCID: PMC7897497 DOI: 10.1093/nar/gkaa1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
We describe a synthetic riboswitch element that implements a regulatory principle which directly addresses an essential tRNA maturation step. Constructed using a rational in silico design approach, this riboswitch regulates RNase P-catalyzed tRNA 5′-processing by either sequestering or exposing the single-stranded 5′-leader region of the tRNA precursor in response to a ligand. A single base pair in the 5′-leader defines the regulatory potential of the riboswitch both in vitro and in vivo. Our data provide proof for prior postulates on the importance of the structure of the leader region for tRNA maturation. We demonstrate that computational predictions of ligand-dependent structural rearrangements can address individual maturation steps of stable non-coding RNAs, thus making them amenable as promising target for regulatory devices that can be used as functional building blocks in synthetic biology.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Stefan Hammer
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Science, Inselstr. 22, 04103 Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, Betat H, Sauter C, Mörl M. Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. Int J Mol Sci 2020; 21:E9047. [PMID: 33260740 PMCID: PMC7730189 DOI: 10.3390/ijms21239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
Collapse
Affiliation(s)
- Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Susanne Philipp
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Sonja Bonin
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Kévin Rollet
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Tina Jühling
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| |
Collapse
|
5
|
Erber L, Hoffmann A, Fallmann J, Hagedorn M, Hammann C, Stadler PF, Betat H, Prohaska S, Mörl M. Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in Dictyostelium discoideum. Int J Mol Sci 2020; 21:ijms21155210. [PMID: 32717856 PMCID: PMC7432833 DOI: 10.3390/ijms21155210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Dictyostelium discoideum, the model organism for the evolutionary supergroup of Amoebozoa, is a social amoeba that, upon starvation, undergoes transition from a unicellular to a multicellular organism. In its genome, we identified two genes encoding for tRNA nucleotidyltransferases. Such pairs of tRNA nucleotidyltransferases usually represent collaborating partial activities catalyzing CC- and A-addition to the tRNA 3'-end, respectively. In D. discoideum, however, both enzymes exhibit identical activities, representing bona-fide CCA-adding enzymes. Detailed characterization of the corresponding activities revealed that both enzymes seem to be essential and are regulated inversely during different developmental stages of D. discoideum. Intriguingly, this is the first description of two functionally equivalent CCA-adding enzymes using the same set of tRNAs and showing a similar distribution within the cell. This situation seems to be a common feature in Dictyostelia, as other members of this phylum carry similar pairs of tRNA nucleotidyltransferase genes in their genome.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Anne Hoffmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Jörg Fallmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Peter F. Stadler
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Carrera 45 No. 26-85, Colombia
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Sonja Prohaska
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
6
|
Ernst FGM, Erber L, Sammler J, Jühling F, Betat H, Mörl M. Cold adaptation of tRNA nucleotidyltransferases: A tradeoff in activity, stability and fidelity. RNA Biol 2017; 15:144-155. [PMID: 29099323 DOI: 10.1080/15476286.2017.1391445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cold adaptation is an evolutionary process that has dramatic impact on enzymatic activity. Increased flexibility of the protein structure represents the main evolutionary strategy for efficient catalysis and reaction rates in the cold, but is achieved at the expense of structural stability. This results in a significant activity-stability tradeoff, as it was observed for several metabolic enzymes. In polymerases, however, not only reaction rates, but also fidelity plays an important role, as these enzymes have to synthesize copies of DNA and RNA as exact as possible. Here, we investigate the effects of cold adaptation on the highly accurate CCA-adding enzyme, an RNA polymerase that uses an internal amino acid motif within the flexible catalytic core as a template to synthesize the CCA triplet at tRNA 3'-ends. As the relative orientation of these residues determines nucleotide selection, we characterized how cold adaptation impacts template reading and fidelity. In a comparative analysis of closely related psychro-, meso-, and thermophilic enzymes, the cold-adapted polymerase shows a remarkable error rate during CCA synthesis in vitro as well as in vivo. Accordingly, CCA-adding activity at low temperatures is not only achieved at the expense of structural stability, but also results in a reduced polymerization fidelity.
Collapse
Affiliation(s)
- Felix G M Ernst
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Lieselotte Erber
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Joana Sammler
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Frank Jühling
- b INSERM Unit 1110 , Institute of Viral and Liver Diseases, University of Strasbourg , Strasbourg , France
| | - Heike Betat
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| | - Mario Mörl
- a Institute for Biochemistry, University of Leipzig , Leipzig , Germany
| |
Collapse
|
7
|
Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J, Shi Y. The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Res 2017; 45:9625-9639. [PMID: 28934467 PMCID: PMC5766208 DOI: 10.1093/nar/gkx570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.
Collapse
Affiliation(s)
- Pengzhi Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaodan Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Lingna Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yitong Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
8
|
Kappei D, Scheibe M, Paszkowski-Rogacz M, Bluhm A, Gossmann TI, Dietz S, Dejung M, Herlyn H, Buchholz F, Mann M, Butter F. Phylointeractomics reconstructs functional evolution of protein binding. Nat Commun 2017; 8:14334. [PMID: 28176777 PMCID: PMC5309834 DOI: 10.1038/ncomms14334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022] Open
Abstract
Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.
Collapse
Affiliation(s)
- Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore.,Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Marion Scheibe
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany
| | - Alina Bluhm
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Toni Ingolf Gossmann
- Department of Animal &Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sabrina Dietz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| | - Holger Herlyn
- Institute of Anthropology, University of Mainz, Anselm-Franz-von-Bentzel-Weg 7, Mainz D-55099, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, Dresden D-01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden D-01307, Germany.,German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site, Fetscherstr. 74, 01307 Dresden Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden D-01307, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz D-55128, Germany
| |
Collapse
|
9
|
The unmasking of 'junk' RNA reveals novel sRNAs: from processed RNA fragments to marooned riboswitches. Curr Opin Microbiol 2016; 30:16-21. [PMID: 26771674 DOI: 10.1016/j.mib.2015.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/17/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
Abstract
While the notion that RNAs can function as regulators dates back to early molecular studies of gene regulation of the lac operon, it is only over the last decade that the ubiquity and diversity of regulatory RNAs are being realized. Advancements in high throughput sequencing and the adoption of these approaches to rapidly sequence genomes and transcriptomes and to examine gene expression and RNA binding protein specificity have revealed an ever-expanding RNA world. In this review, we focus on recent studies revealing that RNA fragments cleaved from larger coding or noncoding RNAs can have regulatory functions. Additionally, we discuss examples of riboswitches that function in trans as mRNA or protein-binding sRNAs, upending the traditional thinking that these are exclusively cis-acting elements.
Collapse
|
10
|
Yang L, Wang YL, Dai JC, Liu M, Li X, Tang H. Biochemical properties of Bacillus Calmette Guerin ribonuclease III. J Basic Microbiol 2015; 56:392-404. [PMID: 26632143 DOI: 10.1002/jobm.201500360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/18/2015] [Indexed: 11/11/2022]
Abstract
Double-stranded RNA (dsRNA) is discovered to participate in the regulation of gene expression in both bacterial and eukaryotic cells. Members of ribonuclease III (RNase III) family recognize RNA motifs and cleave substrates at specific sites in a divalent-metal-ion-dependent manner. In this study, we find the RNase III from Bacillus Calmette Guerin (BCG-RNase III) cleaves small hairpin RNA based on the conserved stem structure associated with Mycobacterium 16S ribosomal RNA precursor at specific sites which are not determined. To evaluate the influence of remnant endogenous ribonucleases from expression host on RNA cleavage assays for RNase III, we use E44A and D48A mutant of the enzyme to perform RNA cleavage assays and find that remnant ribonucleases have no effect on cleavage assays. The RNA cleavage activity of the enzyme can be supported by Mg(2+), Mn(2+), and Co(2+) and enhanced with the increasing salt concentration. The catalytic activity of the enzyme is exhibited when the temperature of the reaction buffer ranges from 30 to 55 °C and the pH of the buffer from 7.0 to 10.0. Two major cleavage sites in RNA substrate are identified using RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE).
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China.,Department of Clinical Laboratory, Tianjin First Center Hospital, Tianjin, China
| | - Yan-Li Wang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China.,Department of Clinical Laboratory, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Jin-Chuan Dai
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Ernst FGM, Rickert C, Bluschke A, Betat H, Steinhoff HJ, Mörl M. Domain movements during CCA-addition: a new function for motif C in the catalytic core of the human tRNA nucleotidyltransferases. RNA Biol 2015; 12:435-46. [PMID: 25849199 PMCID: PMC4615804 DOI: 10.1080/15476286.2015.1018502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022] Open
Abstract
CCA-adding enzymes are highly specific RNA polymerases that synthesize and maintain the sequence CCA at the tRNA 3'-end. This nucleotide triplet is a prerequisite for tRNAs to be aminoacylated and to participate in protein biosynthesis. During CCA-addition, a set of highly conserved motifs in the catalytic core of these enzymes is responsible for accurate sequential nucleotide incorporation. In the nucleotide binding pocket, three amino acid residues form Watson-Crick-like base pairs to the incoming CTP and ATP. A reorientation of these templating amino acids switches the enzyme's specificity from CTP to ATP recognition. However, the mechanism underlying this essential structural rearrangement is not understood. Here, we show that motif C, whose actual function has not been identified yet, contributes to the switch in nucleotide specificity during polymerization. Biochemical characterization as well as EPR spectroscopy measurements of the human enzyme reveal that mutating the highly conserved amino acid position D139 in this motif interferes with AMP incorporation and affects interdomain movements in the enzyme. We propose a model of action, where motif C forms a flexible spring element modulating the relative orientation of the enzyme's head and body domains to accommodate the growing 3'-end of the tRNA. Furthermore, these conformational transitions initiate the rearranging of the templating amino acids to switch the specificity of the nucleotide binding pocket from CTP to ATP during CCA-synthesis.
Collapse
Affiliation(s)
- Felix G M Ernst
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | | | - Heike Betat
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| | | | - Mario Mörl
- Institute for Biochemistry; University of Leipzig; Leipzig, Germany
| |
Collapse
|
12
|
Bilusic I, Popitsch N, Rescheneder P, Schroeder R, Lybecker M. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol 2014; 11:641-54. [PMID: 24922322 PMCID: PMC4152368 DOI: 10.4161/rna.29299] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hfq is a global regulator of gene expression in bacteria undergoing adaptation to changing environmental conditions. Its major function is to promote RNA-RNA interactions between regulatory small RNAs (sRNAs) and their target mRNAs. Previously, we demonstrated that Hfq binds many antisense RNAs (asRNAs) in vitro and hypothesized that Hfq may play a role in regulating gene expression via asRNAs. To investigate the E. coli Hfq-binding transcriptome in more detail, we co-immunoprecipitated and deep-sequenced RNAs bound to Hfq in vivo. We detected many new Hfq-binding sRNAs and observed that almost 300 mRNAs bind to Hfq. Among these, several are known to be sRNA targets. We identified 25 novel RNAs, which are transcribed from within protein coding regions and named them intragenic RNAs (intraRNAs). Furthermore, 67 asRNAs were co-immunoprecipitated with Hfq, demonstrating that Hfq binds antisense transcripts in vivo. Northern blot analyses confirmed the deep sequencing results and demonstrated that many of the novel Hfq-binding RNAs identified are regulated by Hfq.
Collapse
Affiliation(s)
- Ivana Bilusic
- Department of Biochemistry and Cell Biology; Max F Perutz Laboratories; University of Vienna; Vienna, Austria
| | - Niko Popitsch
- Center for Integrative Bioinformatics Vienna; Max F Perutz Laboratories; Medical University of Vienna; University of Vienna; Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna; Max F Perutz Laboratories; Medical University of Vienna; University of Vienna; Vienna, Austria
| | - Renée Schroeder
- Department of Biochemistry and Cell Biology; Max F Perutz Laboratories; University of Vienna; Vienna, Austria
| | - Meghan Lybecker
- Department of Biochemistry and Cell Biology; Max F Perutz Laboratories; University of Vienna; Vienna, Austria
| |
Collapse
|
13
|
Wolf J, Obermaier-Kusser B, Jacobs M, Milles C, Mörl M, von Pein HD, Grau AJ, Bauer MF. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation. J Neurol Sci 2012; 316:108-11. [PMID: 22326363 DOI: 10.1016/j.jns.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive.
Collapse
Affiliation(s)
- Joachim Wolf
- Department of Neurology, Klinikum Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pyrophosphorolysis of CCA addition: implication for fidelity. J Mol Biol 2011; 414:28-43. [PMID: 22001019 DOI: 10.1016/j.jmb.2011.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022]
Abstract
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3' end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3' end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.
Collapse
|
15
|
Abstract
Hfq is an RNA-binding protein that is common to diverse bacterial lineages and has key roles in the control of gene expression. By facilitating the pairing of small RNAs with their target mRNAs, Hfq affects the translation and turnover rates of specific transcripts and contributes to complex post-transcriptional networks. These functions of Hfq can be attributed to its ring-like oligomeric architecture, which presents two non-equivalent binding surfaces that are capable of multiple interactions with RNA molecules. Distant homologues of Hfq occur in archaea and eukaryotes, reflecting an ancient origin for the protein family and hinting at shared functions. In this Review, we describe the salient structural and functional features of Hfq and discuss possible mechanisms by which this protein can promote RNA interactions to catalyse specific and rapid regulatory responses in vivo.
Collapse
Affiliation(s)
- Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Joseph-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
16
|
Vervoort L, der Plancken IV, Grauwet T, Verjans P, Courtin CM, Hendrickx ME, Van Loey A. Xylanase B from the hyperthermophile Thermotoga maritima as an indicator for temperature gradients in high pressure high temperature processing. INNOV FOOD SCI EMERG 2011. [DOI: 10.1016/j.ifset.2011.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abstract
The CCA sequence is conserved at the 3' end of all mature tRNA molecules to function as the site of amino acid attachment. This sequence is acquired and maintained by stepwise nucleotide addition by the ubiquitous CCA enzyme, which is an unusual RNA polymerase that does not use a nucleic acid template for nucleotide addition. Crystal structural work has divided CCA enzymes into two structurally distinct classes, which differ in the mechanism of template-independent nucleotide selection. Recent kinetic work of the class II E. coli CCA enzyme has demonstrated a rapid and uniform rate constant for the chemistry of nucleotide addition at each step of CCA synthesis, although the enzyme uses different determinants to control the rate of each step. Importantly, the kinetic work reveals that, at each step of CCA synthesis, E. coli CCA enzyme has an innate ability to discriminate against tRNA backbone damage. This discrimination suggests the possibility of a previously unrecognized quality control mechanism that would prevent damaged tRNA from CCA maturation and from entering the ribosome machinery of protein synthesis. This quality control is relevant to cellular stress conditions that damage tRNA backbone and predicts a role of CCA addition in stress response.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB 220, Philadelphia 19107, PA, USA.
| |
Collapse
|
18
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Le Derout J, Boni IV, Régnier P, Hajnsdorf E. Hfq affects mRNA levels independently of degradation. BMC Mol Biol 2010; 11:17. [PMID: 20167073 PMCID: PMC2834685 DOI: 10.1186/1471-2199-11-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/18/2010] [Indexed: 12/02/2022] Open
Abstract
Background The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account. Results The role of Hfq in the maturation and degradation of the rpsO mRNA of E. coli was investigated in vivo. The data revealed a decrease in rpsO mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in hfq mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of rpsO expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for rpsT, rpsB and rpsB-tsf, but not for lpp, pnp or tRNA transcripts. The abundance of chimeric transcripts rpsO-lacZ and rpsB-lacZ, whose expression was driven by rpsO and rpsB promoters, respectively, was also lower in the hfq null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain. Conclusions The data obtained suggest that alteration of rpsO, rpsT and rpsB-tsf transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome transcription pauses and to prevent preliminary transcript release.
Collapse
Affiliation(s)
- Jacques Le Derout
- UPR CNRS n degrees 9073, conventionnée avec l'Université Paris 7 - Denis Diderot Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
20
|
Kim S, Liu C, Halkidis K, Gamper HB, Hou YM. Distinct kinetic determinants for the stepwise CCA addition to tRNA. RNA (NEW YORK, N.Y.) 2009; 15:1827-1836. [PMID: 19696158 PMCID: PMC2743048 DOI: 10.1261/rna.1669109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/15/2009] [Indexed: 05/28/2023]
Abstract
The universally conserved CCA sequence is present at the 3' terminal 74-76 positions of all active tRNA molecules as a functional tag to participate in ribosome protein synthesis. The CCA enzyme catalyzes CCA synthesis in three sequential steps of nucleotide addition at rapid and identical rates. However, the kinetic determinant of each addition is unknown, thus limiting the insights into the kinetic basis of CCA addition. Using our recently developed single turnover kinetics of Escherichia coli CCA enzyme as a model, we show here that the identical rate of the stepwise CCA addition is determined by distinct kinetic parameters. Specifically, the kinetics of C74 and C75 addition is controlled by the chemistry of nucleotidyl transfer, whereas the kinetics of A76 addition is controlled by a prechemistry conformational transition of the active site. In multiple turnover condition, all three steps are controlled by slow product release, indicating enzyme processivity from one addition to the next. However, the processivity decreases as the enzyme progresses to complete the CCA synthesis. Together, these results suggest the existence of a network of diverse kinetic parameters that determines the overall rate of CCA addition for tRNA maturation.
Collapse
Affiliation(s)
- Sangbumn Kim
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
21
|
Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:1-41. [DOI: 10.1016/s0079-6603(08)00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Dienst D, Dühring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2008; 154:3134-3143. [PMID: 18832319 DOI: 10.1099/mic.0.2008/020222-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ssr3341 locus was previously suggested to encode an orthologue of the RNA chaperone Hfq in the cyanobacterium Synechocystis sp. strain PCC 6803. Insertional inactivation of this gene resulted in a mutant that was not naturally transformable and exhibited a non-phototactic phenotype compared with the wild-type. The loss of motility was complemented by reintroduction of the wild-type gene, correlated with the re-establishment of type IV pili on the cell surface. Microarray analyses revealed a small set of genes with drastically reduced transcript levels in the knockout mutant compared with the wild-type cells. Among the most strongly affected genes, slr1667, slr1668, slr2015, slr2016 and slr2018 stood out, as they belong to two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein SYCRP1. This suggests a link between cAMP signalling, motility and possibly the involvement of RNA-based regulation. This is believed to be the first report demonstrating a functional role of an Hfq orthologue in cyanobacteria, establishing a new factor in the control of motility.
Collapse
Affiliation(s)
- Dennis Dienst
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | - Ulf Dühring
- Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| | | | - Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Golecki
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Justus-Liebig University Giessen, Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.,Humboldt-University Berlin, Institute of Biology, Chausseestr. 117, 10115 Berlin, Germany
| |
Collapse
|
23
|
Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 2008; 4:e1000163. [PMID: 18725932 PMCID: PMC2515195 DOI: 10.1371/journal.pgen.1000163] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/14/2008] [Indexed: 12/27/2022] Open
Abstract
Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1 invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high-density microarrays that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range of bacteria.
Collapse
|