1
|
Elevated S100A6 (Calcyclin) enhances tumorigenesis and suppresses CXCL14-induced apoptosis in clear cell renal cell carcinoma. Oncotarget 2016; 6:6656-69. [PMID: 25760073 PMCID: PMC4466641 DOI: 10.18632/oncotarget.3169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/18/2015] [Indexed: 01/17/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is often resistant to existing therapy. We found elevated S100A6 levels in ccRCC tissues, associated with higher grade pathological features and clinical stages in ccRCC patients. Knockdown of S100A6 inhibited cell proliferation in vitro and tumor growth in vivo. Gene expression profiling suggests a novel function of S100A6 in suppressing apoptosis, as well as a relationship between S100A6 and CXCL14, a pro-inflammatory chemokine. We suggest that the S100A6/CXCL14 signaling pathway is a potential therapeutic target in ccRCC.
Collapse
|
2
|
Stellato C, Porreca I, Cuomo D, Tarallo R, Nassa G, Ambrosino C. The “busy life” of unliganded estrogen receptors. Proteomics 2015; 16:288-300. [DOI: 10.1002/pmic.201500261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Claudia Stellato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | | | - Danila Cuomo
- Department of Science and Technology; University of Sannio; Benevento Italy
- Biogem scarl; Ariano Irpino (AV); Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Baronissi Salerno Italy
| | - Concetta Ambrosino
- Department of Science and Technology; University of Sannio; Benevento Italy
- Biogem scarl; Ariano Irpino (AV); Italy
| |
Collapse
|
3
|
Padmanabhan RA, Laloraya M. Estrogen-Initiated Protein Interactomes During Embryo Implantation. Am J Reprod Immunol 2015; 75:256-62. [DOI: 10.1111/aji.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Renjini A. Padmanabhan
- Division of Molecular Reproduction; Female Reproduction and Metabolic syndromes laboratory; Rajiv Gandhi Centre for Biotechnology; Poojappura Thiruvananthapuram Kerala India
| | - Malini Laloraya
- Division of Molecular Reproduction; Female Reproduction and Metabolic syndromes laboratory; Rajiv Gandhi Centre for Biotechnology; Poojappura Thiruvananthapuram Kerala India
| |
Collapse
|
4
|
Simões J, Amado FM, Vitorino R, Helguero LA. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha. Oncoscience 2015; 2:487-496. [PMID: 26097882 PMCID: PMC4468335 DOI: 10.18632/oncoscience.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.
Collapse
Affiliation(s)
- Joana Simões
- Mass Spectrometry Centre, QOPNA Research Unit, Department of Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Francisco M Amado
- Mass Spectrometry Centre, QOPNA Research Unit, Department of Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,School of Healh Sciences, Universidade de Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA Research Unit, Department of Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,Institute for Research in Biomedicine - iBiMED, Health Sciences Program, Universidade de Aveiro, Portugal
| | - Luisa A Helguero
- Mass Spectrometry Centre, QOPNA Research Unit, Department of Chemistry, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,Institute for Research in Biomedicine - iBiMED, Health Sciences Program, Universidade de Aveiro, Portugal
| |
Collapse
|
5
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
6
|
Cirillo F, Nassa G, Tarallo R, Stellato C, De Filippo MR, Ambrosino C, Baumann M, Nyman TA, Weisz A. Molecular mechanisms of selective estrogen receptor modulator activity in human breast cancer cells: identification of novel nuclear cofactors of antiestrogen-ERα complexes by interaction proteomics. J Proteome Res 2012; 12:421-31. [PMID: 23170835 DOI: 10.1021/pr300753u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that controls key cellular pathways via protein-protein interactions involving multiple components of transcriptional coregulator and signal transduction complexes. Natural and synthetic ERα ligands are classified as agonists (17β-estradiol/E(2)), selective estrogen receptor modulators (SERMs: Tamoxifen/Tam and Raloxifene/Ral), and pure antagonists (ICI 182,780-Fulvestrant/ICI), according to the response they elicit in hormone-responsive cells. Crystallographic analyses reveal ligand-dependent ERα conformations, characterized by specific surface docking sites for functional protein-protein interactions, whose identification is needed to understand antiestrogen effects on estrogen target tissues, in particular breast cancer (BC). Tandem affinity purification (TAP) coupled to mass spectrometry was applied here to map nuclear ERα interactomes dependent upon different classes of ligands in hormone-responsive BC cells. Comparative analyses of agonist (E(2))- vs antagonist (Tam, Ral or ICI)-bound ERα interacting proteins reveal significant differences among ER ligands that relate with their biological activity, identifying novel functional partners of antiestrogen-ERα complexes in human BC cell nuclei. In particular, the E(2)-dependent nuclear ERα interactome is different and more complex than those elicited by Tam, Ral, or ICI, which, in turn, are significantly divergent from each other, a result that provides clues to explain the pharmacological specificities of these compounds.
Collapse
Affiliation(s)
- Francesca Cirillo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Salerno, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhou Z, Zhou J, Du Y. Estrogen receptor alpha interacts with mitochondrial protein HADHB and affects beta-oxidation activity. Mol Cell Proteomics 2012; 11:M111.011056. [PMID: 22375075 DOI: 10.1074/mcp.m111.011056] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is known that estrogen receptors can function as nuclear receptors and transcription factors in the nucleus and as signaling molecules in the plasma membrane. In addition, the localization of the receptors in mitochondria suggests that they may play important roles in mitochondria. In order to identify novel proteins that are involved in ERα-mediated actions of estrogens, we used a proteomic method that integrated affinity purification, two-dimensional gel electrophoresis, and mass spectrometry to isolate and identify cellular proteins that interact with ERα. One of the proteins identified was trifunctional protein β-subunit (HADHB), a mitochondrial protein that is required for β-oxidation of fatty acids in mitochondria. We have verified the interaction between ERα and HADHB by coimmunoprecipitation and established that ERα directly binds to HADHB by performing an in vitro binding assay. In addition, we have shown that ERα colocalizes with HADHB in the mitochondria by confocal microscopy, and the two proteins interact with each other within mitochondria by performing coimmunoprecipitation using purified mitochondria as starting materials. We have demonstrated that the expression of ERα affects HADHB activity, and a combination of 17β-estrodiol and tamoxifen affects the activity of HADHB prepared from human breast cancer cells that express ERα but not from the cells that are ERα deficient. Furthermore, we have demonstrated that 17β-estrodiol plus tamoxifen affects the association of ERα with HADHB in human cell extract. Our results suggest that HADHB is a functional molecular target of ERα in the mitochondria, and the interaction may play an important role in the estrogen-mediated lipid metabolism in animals and humans.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | |
Collapse
|
8
|
Hill KK, Roemer SC, Churchill ME, Edwards DP. Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 2012; 348:418-29. [PMID: 21803119 PMCID: PMC4437577 DOI: 10.1016/j.mce.2011.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.
Collapse
Affiliation(s)
- Krista K. Hill
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Sarah C. Roemer
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mair E.A. Churchill
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Hilser VJ, Thompson EB. Structural dynamics, intrinsic disorder, and allostery in nuclear receptors as transcription factors. J Biol Chem 2011; 286:39675-82. [PMID: 21937423 PMCID: PMC3220581 DOI: 10.1074/jbc.r111.278929] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors (SHRs) and nuclear receptors (NRs) in general are flexible, allosterically regulated transcription factors. The classic model is inadequate to explain all their behavior. Keys to function are their regions of intrinsic disorder (ID). Data show the dynamic structure and allosteric interactions of the three classic SHR domains: ligand-binding (LBD), DNA-binding (DBD), and N-terminal (NTD). Each responds to its ligands by stabilizing its structure. The LBD responds to classic steroidal and nonsteroidal small ligands; both may selectively modify SHR activity. The DBD responds differentially to the DNA sequences of its response elements. The NTD, with its high ID content and AF1, interacts allosterically with the LBD and DBD. Each domain binds heterologous proteins, potential allosteric ligands. An ensemble framework improves the classic model, shows how ID regions poise the SHR/NR family for optimal allosteric response, and provides a basis for quantitative evaluation of SHR/NR actions.
Collapse
Affiliation(s)
- Vincent J. Hilser
- From the Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - E. Brad Thompson
- the Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, and
- the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1068
| |
Collapse
|
10
|
Schultz-Norton JR, Ziegler YS, Nardulli AM. ERα-associated protein networks. Trends Endocrinol Metab 2011; 22:124-9. [PMID: 21371903 DOI: 10.1016/j.tem.2010.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding hormone, interacts with specific recognition sequences in DNA. An extensive body of literature has documented the association of individual regulatory proteins with ERα. It has recently become apparent that, instead of simply recruiting individual proteins, ERα recruits interconnected networks of proteins with discrete activities that play crucial roles in maintaining the structure and function of the receptor, stabilizing the receptor-DNA interaction, influencing estrogen-responsive gene expression, and repairing misfolded proteins and damaged DNA. Together these studies suggest that the DNA-bound ERα serves as a nucleating factor for the recruitment of protein complexes involved in key processes including the oxidative stress response, DNA repair, and transcription regulation.
Collapse
Affiliation(s)
- Jennifer R Schultz-Norton
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
11
|
Lambert JP, Fillingham J, Siahbazi M, Greenblatt J, Baetz K, Figeys D. Defining the budding yeast chromatin-associated interactome. Mol Syst Biol 2011; 6:448. [PMID: 21179020 PMCID: PMC3018163 DOI: 10.1038/msb.2010.104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/05/2010] [Indexed: 11/09/2022] Open
Abstract
We previously reported a novel affinity purification (AP) method termed modified chromatin immunopurification (mChIP), which permits selective enrichment of DNA-bound proteins along with their associated protein network. In this study, we report a large-scale study of the protein network of 102 chromatin-related proteins from budding yeast that were analyzed by mChIP coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage as compared with classical AP methodology for ∼75% of the baits tested. Furthermore, mChIP successfully identified novel binding partners for many lower abundance transcription factors that previously failed using conventional AP methodologies. mChIP was also used to perform targeted studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Nalvarte I, Schwend T, Gustafsson JA. Proteomics analysis of the estrogen receptor alpha receptosome. Mol Cell Proteomics 2010; 9:1411-22. [PMID: 20348541 DOI: 10.1074/mcp.m900457-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The estrogen receptors (ERs) are ligand-dependent transcription factors that activate transcription by binding to estrogen response elements. Estrogen-mediated effects are tissue- and cell type-specific, determined by the cofactor recruitment to the ERs among other factors. To understand these differences in estrogen action, it is important to identify the various compositions of the ER complexes (ER receptosomes). In this report, we describe a fast and efficient method for the isolation of the ERalpha receptosome for proteomics analysis. Using immobilized estrogen response element on a Sepharose column in combination with two-dimensional electrophoresis and MALDI-TOF MS, significant amounts of proteins could be isolated and identified. Differences in ERalpha complex composition with the ER ligands 17beta-estradiol, 4-hydroxytamoxifen, and ICI-182,780 could also be observed. Thus, this approach provides an easy and relevant way of identifying ERalpha cofactor and transcription factor recruitment under different conditions.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institute, SE-14183 Huddinge, Sweden.
| | | | | |
Collapse
|
13
|
Curtis CD, Thorngren DL, Nardulli AM. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 2010; 10:9. [PMID: 20064251 PMCID: PMC2830938 DOI: 10.1186/1471-2407-10-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 01/11/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). METHODS Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. RESULTS We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. CONCLUSIONS Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| | - Daniel L Thorngren
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana IL 61801, USA
| |
Collapse
|
14
|
McEwan IJ, Nardulli AM. Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2009; 7:e011. [PMID: 20087432 PMCID: PMC2807637 DOI: 10.1621/nrs.07011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022]
Abstract
Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared ~20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members. Interestingly, in addition to these defined structural features, it has become clear that NHRs also possess significant structural plasticity. Thus, the dynamic structure of the NHRs was the topic of a recent stimulating and informative FASEB Summer Research Conference held in Vermont.
Collapse
Affiliation(s)
- Iain J McEwan
- Molecular and Cellular Endocrinology, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | |
Collapse
|
15
|
Rao AK, Ziegler YS, McLeod IX, Yates JR, Nardulli AM. Thioredoxin and thioredoxin reductase influence estrogen receptor alpha-mediated gene expression in human breast cancer cells. J Mol Endocrinol 2009; 43:251-61. [PMID: 19620238 PMCID: PMC2994277 DOI: 10.1677/jme-09-0053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Western analysis and immunocytochemistry were used to demonstrate that Trx and TrxR are expressed in the cytoplasm and in the nuclei of MCF-7 human breast cancer cells. More importantly, endogenously expressed ERalpha, Trx, and TrxR interact and ERalpha and TrxR associate with the native, estrogen-responsive pS2 and progesterone receptor genes in MCF-7 cells. RNA interference assays demonstrated that Trx and TrxR differentially influence estrogen-responsive gene expression and that together, 17beta-estradiol, Trx, and TrxR alter hydrogen peroxide (H(2)O(2)) levels in MCF-7 cells. Our findings suggest that Trx and TrxR are multifunctional proteins that, in addition to modulating H(2)O(2) levels and transcription factor activity, aid ERalpha in regulating the expression of estrogen-responsive genes in target cells.
Collapse
Affiliation(s)
- Abhi K Rao
- Department of Cellular and Developmental Biology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
16
|
Buranapramest M, Chakravarti D. Chromatin remodeling and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:193-234. [PMID: 20374705 DOI: 10.1016/s1877-1173(09)87006-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear receptors (NRs) constitute a large family of ligand-dependent transcription factors that play key roles in development, differentiation, metabolism, and homeostasis. They participate in these processes by coordinating and regulating the expression of their target genes. The eukaryotic genome is packaged as chromatin and is generally inhibitory to the process of transcription. NRs overcome this barrier by recruiting two classes of chromatin remodelers, histone modifying enzymes and ATP-dependent chromatin remodelers. These remodelers alter chromatin structure at target gene promoters by posttranslational modification of histone tails and by disrupting DNA-histone interactions, respectively. In the presence of ligand, NRs promote transcription by recruiting remodeling enzymes that increase promoter accessibility to the basal transcription machinery. In the absence of ligand a subset of NRs recruit remodelers that establish and maintain a closed chromatin environment, to ensure efficient gene silencing. This chapter reviews the chromatin remodeling enzymes associated with NR gene control, with an emphasis on the mechanisms of NR-mediated repression.
Collapse
Affiliation(s)
- Manop Buranapramest
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
17
|
Lambert JP, Baetz K, Figeys D. Of proteins and DNA--proteomic role in the field of chromatin research. MOLECULAR BIOSYSTEMS 2009; 6:30-7. [PMID: 20024064 DOI: 10.1039/b907925b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To paraphrase Robert Burns's poem To a Mouse, the best laid schemes of DNA-protein complex purification often go awry. Chromatin with its heterogeneous and dynamic protein composition remains difficult to analyze. Still critical progress has been made in recent years in characterizing the interface between DNA and proteins due, in part, to significant advances in proteomic technologies. Proteomics has progressed to a point where affinity purification of soluble complexes and protein identification by mass spectrometry are routine. The new challenge for chromatin proteomics lies in studying proteins and protein complexes in their native environment, which is on chromatin. These novel types of data represent an additional layer of information that can be used to better characterize and understand cellular processes. This review will focus on the past contributions as well as on emerging mass spectrometry-based methodologies attempting to better define the complex relationship between proteins, protein complexes and DNA.
Collapse
|
18
|
Curtis CD, Thorngren DL, Ziegler YS, Sarkeshik A, Yates JR, Nardulli AM. Apurinic/apyrimidinic endonuclease 1 alters estrogen receptor activity and estrogen-responsive gene expression. Mol Endocrinol 2009; 23:1346-59. [PMID: 19460860 PMCID: PMC2737565 DOI: 10.1210/me.2009-0093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/14/2009] [Indexed: 12/31/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 or redox factor-1 (Ape1/Ref-1) is a pleiotropic cellular protein involved in DNA repair and, through its redox activity, enhances the binding of a select group of transcription factors to their cognate recognition sequences in DNA. Thus, we were intrigued when we identified Ape1/Ref-1 and a number of DNA repair and oxidative stress proteins in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Because Ape1/Ref-1 interacts with a number of transcription factors and influences their activity, we determined whether it might also influence ERalpha activity. We found that endogenously expressed Ape1/Ref-1 and ERalpha from MCF-7 human breast cancer cells interact and that Ape1/Ref-1 enhances the interaction of ERalpha with estrogen-response elements (EREs) in DNA. More importantly, Ape1/Ref-1 alters expression of the endogenous, estrogen-responsive progesterone receptor and pS2 genes in MCF-7 cells and associates with ERE-containing regions of these genes in native chromatin. Interestingly, knocking down Ape1/Ref-1 expression or inhibiting its redox activity with the small molecule inhibitor E3330 enhances estrogen responsiveness of the progesterone receptor and pS2 genes but does not alter the expression of the constitutively active 36B4 gene. Additionally, the reduced form of Ape1/Ref-1 increases and E3330 limits ERalpha-ERE complex formation in vitro and in native chromatin. Our studies demonstrate that Ape1/Ref-1 mediates its gene-specific effects, in part, by associating with endogenous, estrogen-responsive genes and that the redox activity of Ape1/Ref-1 is instrumental in altering estrogen-responsive gene expression.
Collapse
Affiliation(s)
- Carol D Curtis
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|