1
|
Bao H, Tian Y, Wang H, Ye T, Wang S, Zhao J, Qiu Y, Li J, Pan C, Ma G, Wei W, Tao Y. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat Biomed Eng 2024; 8:1436-1452. [PMID: 37872369 DOI: 10.1038/s41551-023-01112-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
The therapeutic benefits of many cell types involve paracrine mechanisms. Inspired by the paracrine functions of exosomes and the sustained degradation properties of microcapsules, here we report the therapeutic benefits of exosome-loaded degradable poly(lactic-co-glycolic acid) microcapsules with micrometric pores for the treatment of vitreoretinal diseases. On intravitreal injection in a mouse model of retinal ischaemia-reperfusion injury, microcapsules encapsulating mouse mesenchymal-stem-cell-derived exosomes settled in the inferior vitreous cavity, released exosomes for over one month as they underwent degradation and led to the restoration of retinal thickness to nearly that of the healthy retina. In mice and non-human primates with primed mycobacterial uveitis, intravitreally injected microcapsules loaded with exosomes from monkey regulatory T cells resulted in a substantial reduction in the levels of inflammatory cells. The exosome-encapsulating microcapsules, which can be lyophilised, may offer alternative treatment options for vitreoretinal diseases.
Collapse
Affiliation(s)
- Han Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Ying Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Haixin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jian Li
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
2
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Bianchi F, Cocilovo FM, Ruggiero A, Tamburrini G. Optic Pathway Gliomas: The Trends of Basic Research to Reduce the Impact of the Disease on Visual Function. Adv Tech Stand Neurosurg 2023; 48:123-137. [PMID: 37770684 DOI: 10.1007/978-3-031-36785-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Pediatric optic pathway gliomas (OPG) are low-grade brain tumors characterized by slow progression and invalidating visual loss. Common therapeutic strategies include surgery, radiotherapy, chemotherapy, and combinations of these modalities, but despite the different treatment strategies, no actual treatment exists to prevent or revert visual impairment. Nowadays, several reports of the literature show promising results regarding NGF eye drop instillation and improvement of visual outcome. Such results seem to be related with the NGF-linked prevention in caspase activation, which reduces retinal ganglion cell loss.Reducing retinal ganglion cell loss results clinically in visual field improvement as well as visual electric potential and optical coherence tomography gain. Nonetheless, visual acuity fails to show significant changes.Visual impairment represents nowadays one of the major issues in dealing with OPGs. Secondary to the interesting results offered by NGF eye drop administration, further studies are warranted to better comprehend potential treatment strategies.
Collapse
Affiliation(s)
| | | | - Antonio Ruggiero
- Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Milan, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
4
|
Ocular Ischemic Syndrome and Its Related Experimental Models. Int J Mol Sci 2022; 23:ijms23095249. [PMID: 35563640 PMCID: PMC9100201 DOI: 10.3390/ijms23095249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion, finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly unraveled. To better explore the pathophysiology of OIS, several experimental models have been developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal carotid arteries was conducted bilaterally or unilaterally for model development. In this regard, final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar findings on ocular hypoperfusion could be observed. In the current review, we provide an overview of the pathophysiology of OIS from various experimental models, as well as several clinical cases. Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent the development and/or progression of OIS.
Collapse
|
5
|
Forouzanfar F, Shojapour M, Aghili ZS, Asgharzade S. Growth Factors as Tools in Photoreceptor Cell Regeneration and Vision Recovery. Curr Drug Targets 2021; 21:573-581. [PMID: 31755378 DOI: 10.2174/1389450120666191121103831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Photoreceptor loss is a major cause of blindness around the world. Stem cell therapy offers a new strategy in retina degenerative disease. Retinal progenitors can be derived from embryonic stem cells (ESC) in vitro, but cannot be processed to a mature state. In addition, the adult recipient retina presents a very different environment than the photoreceptor precursor donor. It seems that modulation of the recipient environment by ectopic development regulated growth factors for transplanted cells could generate efficient putative photoreceptors. The purpose of this review article was to investigate the signaling pathway of growth factors including: insulin-like growth factors (IGFs), fibroblast growth factors (FGF), Nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), Taurin and Retinoic acid (RA) involved in the differentiation of neuroretina cell, like; photoreceptor and retinal progenitor cells. Given the results available in the related literature, the differentiation efficacy of ESCs toward the photoreceptor and retinal neurons and the important role of growth factors in activating signaling pathways such as Akt, Ras/Raf1/ and ERKs also inhibit the ASK1/JNK apoptosis pathway. Manipulating differentiated culture, growth factors can influence photoreceptor transplantation efficiency in retinal degenerative disease.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mana Shojapour
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Sadat Aghili
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Micera A, Balzamino BO, Di Zazzo A, Dinice L, Bonini S, Coassin M. Biomarkers of Neurodegeneration and Precision Therapy in Retinal Disease. Front Pharmacol 2021; 11:601647. [PMID: 33584278 PMCID: PMC7873955 DOI: 10.3389/fphar.2020.601647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Vision-threatening retinal diseases affect millions of people worldwide, representing an important public health issue (high social cost) for both technologically advanced and new-industrialized countries. Overall RD group comprises the retinitis pigmentosa, the age-related macular degeneration (AMD), the diabetic retinopathy (DR), and idiopathic epiretinal membrane formation. Endocrine, metabolic, and even lifestyles risk factors have been reported for these age-linked conditions that represent a "public priority" also in this COVID-19 emergency. Chronic inflammation and neurodegeneration characterize the disease evolution, with a consistent vitreoretinal interface impairment. As the vitreous chamber is significantly involved, the latest diagnostic technologies of imaging (retina) and biomarker detection (vitreous) have provided a huge input at both medical and surgical levels. Complement activation and immune cell recruitment/infiltration as well as detrimental intra/extracellular deposits occur in association with a reactive gliosis. The cell/tissue aging route shows a specific signal path and biomolecular profile characterized by the increased expression of several glial-derived mediators, including angiogenic/angiostatic, neurogenic, and stress-related factors (oxidative stress metabolites, inflammation, and even amyloid formation). The possibility to access vitreous chamber by collecting vitreous reflux during intravitreal injection or obtaining vitreous biopsy during a vitrectomy represents a step forward for an individualized therapy. As drug response and protein signature appear unique in each single patient, therapies should be individualized. This review addresses the current knowledge about biomarkers and pharmacological targets in these vitreoretinal diseases. As vitreous fluids might reflect the early stages of retinal sufferance and/or late stages of neurodegeneration, the possibility to modulate intravitreal levels of growth factors, in combination to anti-VEGF therapy, would open to a personalized therapy of retinal diseases.
Collapse
Affiliation(s)
- Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
7
|
Esposito G, Balzamino BO, Bruno L, Cacciamani A, Micera A. NGF in Inflammatory and Neurodegenerative Diseases of the Eye: New Findings Supporting Neuroprotection and Proper Tissue Remodeling in Vitreoretinal Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:265-273. [PMID: 34453305 DOI: 10.1007/978-3-030-74046-7_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nerve growth factor (NGF) plays a crucial role in retinal disorders, as suggested by in vitro/in vivo models. The major effect embraces the neuroprotective activity on retinal ganglion cells (RGCs) undergoing degeneration, as observed in experimental diabetic retinopathy, age-related and diabetic macular degeneration, and some vitreoretinal diseases. Focused experiments suggested that locally applied NGF (intravitreal delivery) not only allowed the counteraction of RGC degeneration but also provided data for a whole retina restoration. The currently available retinal microsurgery allows the collection of human aqueous and more interesting vitreous (vitreal reflux) humors. The recent biomolecular analysis highlights the possibility to identify disease-associated biomarkers and allow the monitoring of retinal impairments with sustain to the retinal imaging. Coupled to other soluble mediators, NGF has been quantified in aqueous (slightly expressed) from diabetic retinopathy-suffering patients (cataract surgery) and vitreal reflux (significantly impaired) of diabetic macular degeneration-suffering patients (intravitreal surgery). Although the reasons of these NGF impairments are not fully comprehended, some retinal cells (glial cells, bipolar neurons, and RGCs) have been recognized partially responsible for these local changes.Taken together, the recent progress in the ocular microsurgeries might be associated with sampling of small amount of ocular humors, allowing the collection of biochemical information about diseased retina and the monitoring of treatment. The chance to detect NGF and likewise other neuroprotective or pro-/anti-inflammatory factors in these fluids would open to the possibility to identify biomarkers of early diagnosis or monitoring of retinal disease evolution/therapy (precision medicine).
Collapse
Affiliation(s)
- Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences IRCCS - Fondazione Bietti, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences IRCCS - Fondazione Bietti, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences IRCCS - Fondazione Bietti, Rome, Italy. .,Head of Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy.
| |
Collapse
|
8
|
Astragalus membranaceus Injection Protects Retinal Ganglion Cells by Regulating the Nerve Growth Factor Signaling Pathway in Experimental Rat Traumatic Optic Neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:2429843. [PMID: 33381196 PMCID: PMC7762646 DOI: 10.1155/2020/2429843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Activation of the nerve growth factor (NGF) signaling pathway is a potential method of treatment for retinal ganglion cell (RGC) loss due to traumatic optic neuropathy (TON). The present study aimed to explore the biological effects of injecting Astragalus membranaceus (A. mem) on RGCs in an experimental TON model. Adult male Wistar rats were randomly divided into three groups: sham-operated (SL), model (ML), and A. mem injection (AL). The left eyes of the rats were considered the experimental eyes, and the right eyes served as the controls. AL rats received daily intraperitoneal injections of A. mem (3 mL/kg), whereas ML and SL rats were administered the same volume of normal saline. The TON rat model was induced by optic nerve (ON) transverse quantitative traction. After two-week administration, the number of RGCs was determined using retrograde labeling with Fluoro-Gold. The protein levels of NGF, tyrosine kinase receptor A (TrkA), c-Jun N-terminal protein kinase (JNK), JNK phosphorylation (p-JNK), and nuclear factor kappa-B (NF-κB) were assessed using western blotting. The levels of p75 neurotrophin receptor (p75NTR) and NF-κB DNA binding were examined using real-time PCR and an electrophoretic mobility shift assay. In addition, the concentrations of JNK and p-JNK were assessed using an enzyme-linked immunosorbent assay. Results. The number of RGCs in ML was found to be significantly decreased (P < 0.01) relative to both AL and SL, together with the downregulation of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01); upregulation of p75NTR mRNA (P < 0.01); and increased protein levels of JNK (P < 0.05) and p-JNK (P < 0.05). Treatment using A. mem injection significantly preserved the density of RGCs in rats with experimental TON and markedly upregulated the proteins of NGF (P < 0.01), TrkA (P < 0.05), and NF-κB (P < 0.01) and downregulated the mRNA level of p75NTR(P < 0.01), as well as the proteins of JNK (P < 0.05) and p-JNK (P < 0.01). Thus, A. mem injection could reduce RGC death in TON induced by ON transverse quantitative traction by stimulating the NGF signaling pathway.
Collapse
|
9
|
Effects of Exogenous Neuroglobin (Ngb) on retinal inflammatory chemokines and microglia in a rat model of transient hypoxia. Sci Rep 2019; 9:18799. [PMID: 31827177 PMCID: PMC6906524 DOI: 10.1038/s41598-019-55315-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/20/2019] [Indexed: 12/04/2022] Open
Abstract
Neuroglobin is an endogenous neuroprotective protein. We determined the safety of direct delivery of Neuroglobin in the rat retina and its effects on retinal inflammatory chemokines and microglial during transient hypoxia. Exogenous Neuroglobin protein was delivered to one eye and a sham injection to the contralateral eye of six rats intravitreally. Fundus photography, Optical Coherence Topography, electroretinogram, histology and Neuroglobin, chemokines level were determined on days 7 and 30. Another 12 rats were subjected to transient hypoxia to assess the effect of Neuroglobin in hypoxia exposed retina by immunohistochemistry, retinal Neuroglobin concentration and inflammatory chemokines. Intravitreal injection of Neuroglobin did not incite morphology or functional changes in the retina. Retinal Neuroglobin protein was reduced by 30% at day 7 post hypoxia. It was restored to normoxic control levels with intravitreal exogenous Neuroglobin injections and sustained up to 30 days. IL-6, TNFα, IL-1B, RANTES, MCP-1 and VEGF were significantly decreased in Neuroglobin treated hypoxic retinae compared to non-treated hypoxic controls. This was associated with decreased microglial activation in the retina. Our findings provide proof of concept suggesting intravitreal Neuroglobin injection is non-toxic to the retina and can achieve the functional level to abrogate microglial and inflammatory chemokines responses during transient hypoxia.
Collapse
|
10
|
Mesentier-Louro LA, Rosso P, Carito V, Mendez-Otero R, Santiago MF, Rama P, Lambiase A, Tirassa P. Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury. Mol Neurobiol 2019; 56:1056-1069. [PMID: 29869196 DOI: 10.1007/s12035-018-1154-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/04/2023]
Abstract
Retinal ganglion cell (RGC) degeneration occurs within 2 weeks following optic nerve crush (ONC) as a consequence of reduced retro-transport of growth factors including nerve growth factor (NGF). The hypothesis that intravitreal (ivt) and eye drop (ed) administration of recombinant human NGF (rhNGF) might counteract ONC in adult rats is explored in this study. We found that both ivt- and ed-rhNGF reduced RGC loss and stimulated axonal regrowth. Chiefly, survival and regenerative effects of rhNGF were associated with a reduction of cells co-expressing Nogo-A/p75NTR at crush site borders, which contribute to glia scar formation following nerve injury, and induce further degeneration. We also found that ocular application of rhNGF reduced p75NTR and proNGF and enhanced phosphorylation of TrkA and its intracellular signals at retina level. Nogo-R and Rock2 expression was also normalized by ed-rhNGF treatment in both ONC and contralateral retina. Our findings that ocular applied NGF reaches and exerts biological actions on posterior segment of the eye give a further insight into the neurotrophin diffusion/transport through eye structures and/or their trafficking in optic nerve. In addition, the use of a highly purified NGF form in injury condition in which proNGF/p75NTR binding is favored indicates that increased availability of mature NGF restores the balance between TrkA and p75NGF, thus resulting in RGC survival and axonal growth. In conclusion, ocular applied NGF is confirmed as a good experimental paradigm to study mechanisms of neurodegeneration and regeneration, disclose biomarkers, and time windows for efficacy treatment following cell or nerve injury.
Collapse
Affiliation(s)
- Louise A Mesentier-Louro
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pamela Rosso
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo F Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Rama
- Eye Repair Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Lambiase
- Section of Ophthalmology, Department of Sense Organs, University Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Via di Fosso di Fiorano, 64 (00143), Rome, Italy.
| |
Collapse
|
11
|
Giannaccini M, Usai A, Chiellini F, Guadagni V, Andreazzoli M, Ori M, Pasqualetti M, Dente L, Raffa V. Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress. Cell Mol Life Sci 2018; 75:1255-1267. [PMID: 29098325 PMCID: PMC5843686 DOI: 10.1007/s00018-017-2691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Glaucoma and other optic neuropathies are characterized by a loss of retinal ganglion cells (RGCs), a cell layer located in the posterior eye segment. Several preclinical studies demonstrate that neurotrophins (NTs) prevent RGC loss. However, NTs are rarely investigated in the clinic due to various issues, such as difficulties in reaching the retina, the very short half-life of NTs, and the need for multiple injections. We demonstrate that NTs can be conjugated to magnetic nanoparticles (MNPs), which act as smart drug carriers. This combines the advantages of the self-localization of the drug in the retina and drug protection from fast degradation. We tested the nerve growth factor and brain-derived neurotrophic factor by comparing the neuroprotection of free versus conjugated proteins in a model of RGC loss induced by oxidative stress. Histological data demonstrated that the conjugated proteins totally prevented RGC loss, in sharp contrast to the equivalent dose of free proteins, which had no effect. The overall data suggest that the nanoscale MNP-protein hybrid is an excellent tool in implementing ocular drug delivery strategies for neuroprotection and therapy.
Collapse
Affiliation(s)
| | - Alice Usai
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, Università di Pisa, 56124, Pisa, Italy
| | | | | | - Michela Ori
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | | | - Luciana Dente
- Department of Biology, Università di Pisa, 56127, Pisa, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127, Pisa, Italy.
| |
Collapse
|
12
|
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions. Methods Mol Biol 2018; 1727:19-38. [PMID: 29222770 DOI: 10.1007/978-1-4939-7571-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.
Collapse
Affiliation(s)
- Paola Tirassa
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.
| | - Pamela Rosso
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.,Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Angela Iannitelli
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Expression of cyclooxygenases and trophic and growth factors in epiretinal membranes at late stages of proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254:2277-2279. [PMID: 27485397 DOI: 10.1007/s00417-016-3445-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022] Open
|
14
|
Donegan RK, Lieberman RL. Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions. J Med Chem 2016; 59:788-809. [PMID: 26356532 PMCID: PMC5547565 DOI: 10.1021/acs.jmedchem.5b00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
15
|
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 2016; 31:61-70. [PMID: 26621699 DOI: 10.1016/j.actbio.2015.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue decellularization strategies have enabled engineering of scaffolds that preserve native extracellular matrix (ECM) structure and composition. In this study, we developed decellularized retina (decell-retina) thin films. We hypothesized that these films, mimicking the retina niche, would promote human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. Retinas isolated from bovine eyes were decellularized using 1% w/v sodium dodecyl sulfate (SDS) and pepsin digested. The resulting decell-retina was biochemically assayed for composition and cast dried to develop thin films. Attachment, viability, morphology, proliferation and gene expression of hRPC cultured on the films were studied in vitro. Biochemical analyses of decell-retina compared to native retina indicated the bulk of DNA (94%) was removed, while the majority of sulfated GAGs (55%), collagen (83%), hyaluronic acid (87%), and key growth factors were retained. The decell-retina films supported hRPC attachment and growth, with cell number increasing 1.5-fold over a week. RT-PCR analysis revealed hRPC expression of rhodopsin, rod outer membrane, neural retina-specific leucine zipper neural and cone-rod homeobox gene on decell-retina films, indicating photoreceptor development. In conclusion, novel decell-retina films show promise as potential substrates for culture and/or transplantation of retinal progenitor cells to treat retinal degenerative disorders. STATEMENT OF SIGNIFICANCE In this study, we report the development of a novel biomaterial, based on decellularized retina (decell-retina) that mimics the retina niche and promotes human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. We estimated, for the first time, the amounts of collagen I, GAGs and HA present in native retina, as well as the decell-retina. We demonstrated that retinas can be decellularized using ionic detergents and can be processed into mechanically stable thin films, which can act as substrates for culturing hRPCs. Rhodopsin, ROM1, NRL and CRX gene expression on the decell-retina films indicated photoreceptor development from RPCs. These results support the potential of decell-retina as a cell delivery platform to treat and manage retinal degenerative disease like AMD.
Collapse
|
16
|
Falsini B, Chiaretti A, Rizzo D, Piccardi M, Ruggiero A, Manni L, Soligo M, Dickmann A, Federici M, Salerni A, Timelli L, Guglielmi G, Lazzareschi I, Caldarelli M, Galli-Resta L, Colosimo C, Riccardi R. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. ACTA ACUST UNITED AC 2016; 139:404-14. [PMID: 26767384 DOI: 10.1093/brain/awv366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Paediatric optic pathway gliomas are low-grade brain tumours characterized by slow progression and invalidating visual loss. Presently there is no strategy to prevent visual loss in this kind of tumour. This study evaluated the effects of nerve growth factor administration in protecting visual function in patients with optic pathway glioma-related visual impairment. A prospective randomized double-blind phase II clinical trial was conducted in 18 optic pathway glioma patients, aged from 2 to 23 years, with stable disease and severe visual loss. Ten patients were randomly assigned to receive a single 10-day course of 0.5 mg murine nerve growth factor as eye drops, while eight patients received placebo. All patients were evaluated before and after treatment, testing visual acuity, visual field, visual-evoked potentials, optic coherence tomography, electroretinographic photopic negative response, and magnetic resonance imaging. Post-treatment evaluations were repeated at 15, 30, 90, and 180 days Brain magnetic resonance imaging was performed at baseline and at 180 days. Treatment with nerve growth factor led to statistically significant improvements in objective electrophysiological parameters (electroretinographic photopic negative response amplitude at 180 days and visual-evoked potentials at 30 days), which were not observed in placebo-treated patients. Furthermore, in patients in whom visual fields could still be measured, visual field worsening was only observed in placebo-treated cases, while three of four nerve growth factor-treated subjects showed significant visual field enlargement. This corresponded to improved visually guided behaviour, as reported by the patients and/or the caregivers. There was no evidence of side effects related to nerve growth factor treatment. Nerve growth factor eye drop administration appears a safe, easy and effective strategy for the treatment of visual loss associated with optic pathway gliomas.
Collapse
Affiliation(s)
- Benedetto Falsini
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Chiaretti
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Rizzo
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Piccardi
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luigi Manni
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Marzia Soligo
- 3 Institute of Translational Pharmacology, CNR, 00142 Rome, Italy
| | - Anna Dickmann
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Federici
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Annabella Salerni
- 1 Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Gaspare Guglielmi
- 5 Pharmacy Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Lazzareschi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Caldarelli
- 6 Paediatric Neurosurgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cesare Colosimo
- 8 Institute of Radiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Riccardi
- 2 Paediatric Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
17
|
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive damage to the optic nerve, death of retinal ganglion cells and ultimately visual field loss. It is one of the leading causes of irreversible loss of vision worldwide. The most important trigger of glaucomatous damage is elevated eye pressure, and the current standard approach in glaucoma therapy is reduction of intraocular pressure (IOP). However, despite the use of effective medications or surgical treatment leading to lowering of IOP, progression of glaucomatous changes and loss of vision among patients with glaucoma is common. Therefore, it is critical to prevent vision loss through additional treatment. To implement such treatment(s), it is imperative to identify pathophysiological changes in glaucoma and develop therapeutic methods taking into account neuroprotection. Currently, there is no method of neuroprotection with long-term proven effectiveness in the treatment of glaucoma. Among the most promising molecules shown to protect the retina and optic nerve are neurotrophic factors. Thus, the current focus is on the development of safe and non-invasive methods for the long-term elevation of the intraocular level of neurotrophins through advanced gene therapy and topical eye treatment and on the search for selective agonists of neurotrophin receptors affording more efficient neuroprotection.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Department of Ophthalmology, MSW Hospital, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
18
|
Balzamino BO, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med 2015; 17:314-25. [PMID: 26066836 DOI: 10.1007/s12017-015-8360-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022]
Abstract
We recently reported that increased NGF and p75(NTR) as well as decreased trkA(NGFR) characterized the Reelin-deprived (E-Reeler) retina, prospecting a potential contribution of NGF during E-Reeler retinogenesis. Herein, retinal ganglion cells (RGCs), glial cells and rod bipolar cells (RBCs) were isolated from E-Reeler retinas, and NGF, trkA(NGFR)/p75(NTR) expression and apoptosis were investigated. E-Reeler (n = 28) and E-control (n = 34) retinas were digested, and RGCs, glial cells and RBCs were isolated by the magnetic bead separation. Expression of NGF, trkA(NGFR), p75(NTR), Annexin V/PI and Bcl2/Bax was quantified by flow cytometry and validated by real-time PCR or WB. In E-Reeler retinas, NGF was significantly increased in RGCs and glial cells, p75(NTR) was increased in both RBCs and RGCs, and trkA(NGFR) was unchanged. In E-control retinas, NGF and p75(NTR) were expressed mainly in RBCs and RGCs and faintly in glial cells, while trkA(NGFR) was weakly expressed by RBCs and RGCs. In RBCs and RGCs, Annexin V expression was unchanged, while Bcl2 increased and Bax decreased selectively in E-Reeler RGCs. The data indicate that E-Reeler RBCs and RGCs overexpress NGF and p75(NTR) as a protective endogenous response to Reelin deprivation. The observation is strongly supported by the absence of apoptosis in both cell types.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Laboratory of Ophthalmology, Ocular Surface Unit, IRCCS-G.B. Bietti Foundation, via Alvaro del Portillo 21, 00128, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Manouchehrian O, Arnér K, Deierborg T, Taylor L. Who let the dogs out?: detrimental role of Galectin-3 in hypoperfusion-induced retinal degeneration. J Neuroinflammation 2015; 12:92. [PMID: 25968897 PMCID: PMC4490716 DOI: 10.1186/s12974-015-0312-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/28/2015] [Indexed: 11/30/2022] Open
Abstract
Background Retinal ischemia results in a progressive degeneration of neurons and a pathological activation of glial cells, resulting in vision loss. In the brain, progressive damage after ischemic insult has been correlated to neuroinflammatory processes involving microglia. Galectin-3 has been shown to mediate microglial responses to ischemic injury in the brain. Therefore, we wanted to explore the contribution of Galectin-3 (Gal-3) to hypoperfusion-induced retinal degeneration in mice. Methods Gal-3 knockout (Gal-3 KO) and wildtype (WT) C57BL/6 mice were subjected to chronic cerebral hypoperfusion by bilateral narrowing of the common carotid arteries using metal coils resulting in a 30% reduction of blood flow. Sham operated mice served as controls. After 17 weeks, the mice were sacrificed and the eyes were analyzed for retinal architecture, neuronal cell survival, and glial reactivity using morphological staining and immunohistochemistry. Results Hypoperfusion caused a strong increase in Gal-3 expression and microglial activation in WT mice, coupled with severe degenerative damage to all retinal neuronal subtypes, remodeling of the retinal lamination and Müller cell gliosis. In contrast, hypoperfused Gal-3 KO mice displayed a retained laminar architecture, a significant preservation of photoreceptors and ganglion cell neurons, and an attenuation of microglial and Müller cell activation. Conclusion Moderate cerebral blood flow reduction in the mouse results in severe retinal degenerative damage. In mice lacking Gal-3 expression, pathological changes are significantly attenuated. Gal-3 is thereby a potential target for treatment and prevention of hypoperfusion-induced retinal degeneration and a strong candidate for further research as a factor behind retinal degenerative disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0312-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oscar Manouchehrian
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| | - Linnéa Taylor
- Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund, S-22184, Sweden.
| |
Collapse
|
20
|
Roberti G, Mantelli F, Macchi I, Massaro-Giordano M, Centofanti M. Nerve growth factor modulation of retinal ganglion cell physiology. J Cell Physiol 2014; 229:1130-3. [PMID: 24501088 DOI: 10.1002/jcp.24573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/25/2022]
Abstract
Nerve growth factor (NGF) is an endogenous neurotrophin involved in the development, maintenance and regeneration of mammalian sympathetic and sensory neurons. Additionally, NGF is known to have trophic and differentiating activity on several populations of cholinergic neurons of the central nervous system (CNS), and to act as a differentiation factor in the development of the visual cortex. The paramount functions of NGF in the visual system are also highlighted by the presence of this neurotrophin and both its receptors TrkA and p75 in most intra-ocular tissues, including lens, vitreous, choroid, iris, and trabecular meshwork. In the retina, NGF is produced and utilized specifically by retinal ganglion cells (RGC), bipolar neurons and glial cells, and is thought to have crucial protective effects in several disease states. Studies on the role of NGF on RGCs survival following optic nerve transection, ischemic injury, ocular hypertension and glaucoma are discussed in this review.
Collapse
|
21
|
Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina. Exp Eye Res 2014; 125:156-63. [PMID: 24954538 DOI: 10.1016/j.exer.2014.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022]
Abstract
Although permanent bilateral common carotid artery occlusion (2VO) has been demonstrated to induce retinal injury, there is still a lack of systematic research on the complex processing of retinal degeneration. In the present study, time-dependent (at three, 14, 60 days after 2VO surgery) changes of neurotrophic and inflammatory systems, as well as cAMP-responsive element binding protein (CREB) signaling, which has been previously reported to effectively regulate these two systems, were evaluated. First, a morphological study confirmed that 2VO surgery progressively induced severe inner retinal degeneration and down-regulation of synaptic proteins, PSD95 and synaptophysin. The mRNA or protein levels of neurotrophic factors (NGF, BDNF, NT-3 and GDNF) and their receptors (TrkA, TrkB and TrkC) showed marked and persistent down-regulation in the rat retina since three days after 2VO surgery, whereas the gene transcription levels of CNTF were increased and p75(NTR) mRNA levels remained unchanged. In contrast to inner retinal degeneration, retinal Müller cells displayed rapid and prolonged activation since three days after 2VO lesion, whereas the microglia cell number, and TNF-α and IL-1β levels showed a robust increase with a maximal effect at three days and returned to levels that were slightly over baseline at 14 and 60 days after 2VO lesion. Interestingly, the gene expression levels of iNOS significantly decreased in the rat retina at both three and 14 days after 2VO surgery. Finally, as we hypothesized, remarkable reduction of CREB and extracellular signal-regulated kinase (ERK) phosphorylation levels were observed in the rat retina at three days after 2VO surgery. Thus, for the first time, our study demonstrated that chronic ischemia induced long-term aberrant CREB signaling and time-dependent progressive dysregulation of neurotrophic and inflammatory systems in the retina, which may provide important clues for a better understanding of the pathogenesis of retinal ischemic damage.
Collapse
|
22
|
Gravanis A, Calogeropoulou T, Panoutsakopoulou V, Thermos K, Neophytou C, Charalampopoulos I. Neurosteroids and Microneurotrophins Signal Through NGF Receptors to Induce Prosurvival Signaling in Neuronal Cells. Sci Signal 2012; 5:pt8. [DOI: 10.1126/scisignal.2003387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Bouaita A, Augustin S, Lechauve C, Cwerman-Thibault H, Bénit P, Simonutti M, Paques M, Rustin P, Sahel JA, Corral-Debrinski M. Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2-AIF1 gene therapy. ACTA ACUST UNITED AC 2011; 135:35-52. [PMID: 22120150 DOI: 10.1093/brain/awr290] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Harlequin mutant mouse, characterized by loss of function of apoptosis-inducing factor, represents a reliable genetic model that resembles pathologies caused by human mitochondrial complex I deficiency. Therefore, we extensively characterized the retinal morphology and function of Harlequin mice during the course of neuronal cell death leading to blindness, with the aim of preventing optic atrophy. Retinas and optic nerves from these mice showed an isolated respiratory chain complex I defect correlated with retinal ganglion cell loss, optic atrophy, glial and microglial cell activation. All of these changes led to irreversible vision loss. In control mice, retinas AIF1 messenger RNA was 2.3-fold more abundant than AIF2, both messenger RNAs being sorted to the mitochondrial surface. In Harlequin mouse retinas, there was a 96% decrease of both AIF1 and AIF2 messenger RNA steady-state levels. We attained substantial and long-lasting protection of retinal ganglion cell and optic nerve integrity, the preservation of complex I function in optic nerves, as well as the prevention of glial and microglial responses after intravitreal administration of an AAV2 vector containing the full-length open reading frame and the 3' untranslated region of the AIF1 gene. Therefore, we demonstrate that gene therapy for mitochondrial diseases due to mutations in nuclear DNA can be achieved, so long as the 'therapeutic gene' permits the accurate cellular localization of the corresponding messenger RNA.
Collapse
|
24
|
Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol 2011; 9:e1001051. [PMID: 21541365 PMCID: PMC3082517 DOI: 10.1371/journal.pbio.1001051] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. Dehydroepiandrosterone (DHEA) and its sulphate ester are the most abundant steroid hormones in humans, and DHEA was described as the first neurosteroid produced in the brain. DHEA is known to participate in multiple events in the brain, including neuronal survival and neurogenesis. However, to date no specific cellular receptor has been described for this important neurosteroid. In this study, we provide evidence that DHEA exerts its neurotrophic effects by directly interacting with the TrkA and p75NTR membrane receptors of nerve growth factor (NGF), and efficiently activates their downstream signaling pathways. This activation prevents the apoptotic loss of NGF receptor positive sensory and sympathetic neurons. The interaction of DHEA with NGF receptors may also offer a mechanistic explanation for the multiple actions of DHEA in other peripheral biological systems expressing NGF receptors, such as the immune, reproductive, and cardiovascular systems.
Collapse
|
25
|
Zhong Y, Shen X, Liu X, Cheng Y. The early effect of nerve growth factor in the management of serious optic nerve contusion. Clin Exp Optom 2010; 93:466-70. [PMID: 20880315 DOI: 10.1111/j.1444-0938.2010.00523.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE the aim was to investigate the early effect of nerve growth factor in the management of serious optic nerve contusion (ONC). METHODS nine patients with unilateral serious optic nerve contusion (seven males and two females) were enrolled in this study. Corticosteroid, energy mixture, red sage root, vitamins B1 and B12 were used for all patients within three weeks after trauma. Five of the nine patients were injected intramuscularly with 30 microg/time of nerve growth factor solution (once a day for a total of 14 days). Each patient was subjected to pattern visual evoked potential (VEP) examination and visual field test before and 14 days after treatment. RESULTS the visual acuity, latency of P100 in VEP and mean deviation in Humphrey Field Analyzer of all patients were improved after 14 days. The subtraction of latency of P100 in VEP between pre- and post-treatment showed a significant difference between the nerve growth factor treatment patients and the control patients (p = 0.015). CONCLUSION the application of NGF within three weeks after trauma could promote the recovery of visual function in the patients with serious optic nerve contusion.
Collapse
Affiliation(s)
- Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | |
Collapse
|
26
|
Steinle JJ. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor. Clin Ophthalmol 2010; 4:605-10. [PMID: 20668722 PMCID: PMC2909889 DOI: 10.2147/opth.s10992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Indexed: 12/15/2022] Open
Abstract
Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease.
Collapse
Affiliation(s)
- Jena J Steinle
- Departments of Ophthalmology and Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
27
|
Szabadfi K, Mester L, Reglodi D, Kiss P, Babai N, Racz B, Kovacs K, Szabo A, Tamas A, Gabriel R, Atlasz T. Novel neuroprotective strategies in ischemic retinal lesions. Int J Mol Sci 2010; 11:544-561. [PMID: 20386654 PMCID: PMC2852854 DOI: 10.3390/ijms11020544] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Laszlo Mester
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Peter Kiss
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Norbert Babai
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Boglarka Racz
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Tamas Atlasz
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
- Department of Sportbiology, University of Pecs, H-7624 Pecs, Hungary
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +36-72-503-600/4613; Fax: +36-72-501-517
| |
Collapse
|