1
|
Edwards AJ, Beltz BS. Longitudinal tracking of hemocyte populations in vivo indicates lineage relationships and supports neural progenitor identity in adult neurogenesis. Neural Dev 2024; 19:7. [PMID: 38902780 PMCID: PMC11191286 DOI: 10.1186/s13064-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Adult neurogenesis, which takes place in both vertebrate and invertebrate species, is the process by which new neurons are born and integrated into existing functional neural circuits, long after embryonic development. Most studies in mammals suggest that self-renewing stem cells are the source of the new neurons, although the extent of self-renewal is a matter of debate. In contrast, research in the crayfish Procambarus clarkii has demonstrated that the neural progenitors producing adult-born neurons are capable of both self-renewing and consuming (non-self-renewing) divisions. However, self-renewing divisions are relatively rare, and therefore the production of adult-born neurons depends heavily on progenitors that are not replenishing themselves. Because the small pool of neural progenitors in the neurogenic niche is never exhausted throughout the long lives of these animals, we hypothesized that there must also be an extrinsic source of these cells. It was subsequently demonstrated that the neural progenitors originate in hemocytes (blood cells) produced by the immune system that travel in the circulation before ultimately integrating into niches where the neural lineage begins. The current study examines the developmental lineage of the three hemocyte types - hyaline (HC), semigranular (SGC) and granular (GC) cells - with the goal of understanding the origins of the progenitor cells that produce adult-born neurons. Longstanding qualitative metrics for hemocyte classification were validated quantitatively. Then, in a longitudinal study, proliferation markers were used to label the hemocytes in vivo, followed by sampling the circulating hemocyte population over the course of two months. Hemolymph samples were taken at intervals to track the frequencies of the different hemocyte types. These data reveal sequential peaks in the relative frequencies of HCs, SGCs and GCs, which were identified using qualitative and quantitative measures. These findings suggest that the three hemocyte types comprise a single cellular lineage that occurs in the circulation, with each type as a sequential progressive stage in hemocyte maturation beginning with HCs and ending with GCs. When combined with previously published data, this timeline provides additional evidence that HCs serve as the primary neural progenitor during adult neurogenesis in P. clarkii.
Collapse
Affiliation(s)
- Alex J Edwards
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Barbara S Beltz
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Kor G, Mengal K, Buřič M, Kozák P, Niksirat H. Granules of immune cells are the source of organelles in the regenerated nerves of crayfish antennae. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108787. [PMID: 37141955 DOI: 10.1016/j.fsi.2023.108787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Regeneration refers to the regrowing and replacing of injured or lost body parts. Crayfish antennae are nervous organs that are crucial for perceiving environmental signals. Immune cells (hemocytes) are responsible for neurogenesis in crayfish. Here, we used transmission electron microscopy to investigate at ultrastructural levels the potential roles of immune cells in nerve regeneration in crayfish antennae after amputation. The results showed that, while all three types of hemocytes were observed during nerve regeneration, granules of semi-granulocytes and granulocytes are the main sources of new organelles such as mitochondria, the Golgi apparatus and nerve fibres in the regenerated nerves of crayfish antennae. We describe the transformation of immune cell granules into different organelles in the regenerating nerve at ultrastructural levels. Also, we observed that the regeneration process speeds up after crayfish moulting. In conclusion, the granules are compacted packages of versatile materials carried by immune cells and can be converted into different organelles during nerve regeneration in crayfish antennae.
Collapse
Affiliation(s)
- Golara Kor
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| | - Kifayatullah Mengal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Miloš Buřič
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Pavel Kozák
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
3
|
Söderhäll I, Fasterius E, Ekblom C, Söderhäll K. Characterization of hemocytes and hematopoietic cells of a freshwater crayfish based on single-cell transcriptome analysis. iScience 2022; 25:104850. [PMID: 35996577 PMCID: PMC9391574 DOI: 10.1016/j.isci.2022.104850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Crustaceans constitute a species-rich and ecologically important animal group, and their circulating blood cells (hemocytes) are of critical importance in immunity as key players in pathogen recognition, phagocytosis, melanization, and antimicrobial defense. To gain a better understanding of the immune responses to different pathogens, it is crucial that we identify different hemocyte subpopulations with different functions and gain a better understanding of how these cells are formed. Here, we performed single-cell RNA sequencing of isolated hematopoietic tissue (HPT) cells and hemocytes from the crayfish Pacifastacus leniusculus to identify hitherto undescribed hemocyte types in the circulation and show that the circulating cells are more diversified than previously recognized. In addition, we discovered cell populations in the HPT with clear precursor characteristics as well as cells involved in iron homeostasis, representing a previously undiscovered cell type. These findings may improve our understanding of hematopoietic stem cell regulation in crustaceans and other animals. Single-cell RNA sequencing of hematopoietic cell types reveals new cell types One cell type contains iron homeostasis-associated transcripts Hemocytes and hematopoietic cells differ in their transcript profiles Prophenoloxidase is only expressed in hemocytes
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
- Corresponding author
| | - Erik Fasterius
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, SE171 65 Solna, Sweden
| | - Charlotta Ekblom
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| |
Collapse
|
4
|
Benton JL, Li E, Weisbach E, Fukumura Y, Quinan VC, Chaves da Silva PG, Edwards AJ, Beltz BS. Adult neurogenesis in crayfish: Identity and regulation of neural progenitors produced by the immune system. iScience 2022; 25:103993. [PMID: 35340434 PMCID: PMC8941203 DOI: 10.1016/j.isci.2022.103993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeanne L. Benton
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Emmy Li
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Emily Weisbach
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Yuriko Fukumura
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | | | | | - Alex J. Edwards
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Barbara S. Beltz
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
- Corresponding author
| |
Collapse
|
5
|
Brenneis G, Schwentner M, Giribet G, Beltz BS. Insights into the genetic regulatory network underlying neurogenesis in the parthenogenetic marbled crayfish Procambarus virginalis. Dev Neurobiol 2021; 81:939-974. [PMID: 34554654 DOI: 10.1002/dneu.22852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
Nervous system development has been intensely studied in insects (especially Drosophila melanogaster), providing detailed insights into the genetic regulatory network governing the formation and maintenance of the neural stem cells (neuroblasts) and the differentiation of their progeny. Despite notable advances over the last two decades, neurogenesis in other arthropod groups remains by comparison less well understood, hampering finer resolution of evolutionary cell type transformations and changes in the genetic regulatory network in some branches of the arthropod tree of life. Although the neurogenic cellular machinery in malacostracan crustaceans is well described morphologically, its genetic molecular characterization is pending. To address this, we established an in situ hybridization protocol for the crayfish Procambarus virginalis and studied embryonic expression patterns of a suite of key genes, encompassing three SoxB group transcription factors, two achaete-scute homologs, a Snail family member, the differentiation determinants Prospero and Brain tumor, and the neuron marker Elav. We document cell type expression patterns with notable similarities to insects and branchiopod crustaceans, lending further support to the homology of hexapod-crustacean neuroblasts and their cell lineages. Remarkably, in the crayfish head region, cell emigration from the neuroectoderm coupled with gene expression data points to a neuroblast-independent initial phase of brain neurogenesis. Further, SoxB group expression patterns suggest an involvement of Dichaete in segmentation, in concordance with insects. Our target gene set is a promising starting point for further embryonic studies, as well as for the molecular genetic characterization of subregions and cell types in the neurogenic systems in the adult crayfish brain.
Collapse
Affiliation(s)
- Georg Brenneis
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA.,Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Martin Schwentner
- Naturhistorisches Museum Wien, Vienna, Austria.,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
6
|
Hollmann G, da Silva PGC, Linden R, Allodi S. Cell proliferation in the central nervous system of an adult semiterrestrial crab. Cell Tissue Res 2021; 384:73-85. [PMID: 33599819 DOI: 10.1007/s00441-021-03413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Neurogenesis occurs in adults of most organisms, both vertebrates and invertebrates. In semiterrestrial crabs of the infraorder Brachyura, the deutocerebrum, where neurogenesis occurs, processes the olfactory sensory information from the antennae. The deutocerebrum is composed of a pair of olfactory lobes associated with cell clusters 9 and 10 (Cl 9 and Cl 10), containing proliferating cells. Because the location of the neurogenic niche in brachyuran semiterrestrial crabs has not been defined, here we describe a neurogenic niche in the central olfactory system of the crab Ucides cordatus and report two types of glial cells in the deutocerebrum, based on different markers. Serotonin (5-hydroxytryptamine) labeling was used to reveal neuroanatomical aspects of the central olfactory system and the neurogenic niche. The results showed a zone of proliferating neural cells within Cl 10, which also contains III beta-tubulin (Tuj1)+ immature neurons, associated with a structure that has characteristics of the neurogenic niche. For the first time, using two glial markers, glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS), we identified two types of astrocyte-like cells in different regions of the deutocerebrum. This study adds to the understanding of neurogenesis in a brachyuran semiterrestrial crustacean and encourages comparative studies between crustaceans and vertebrates, including mammals, based on shared aspects of both mechanisms of neurogenesis and regenerative potentials.
Collapse
Affiliation(s)
- Gabriela Hollmann
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, 21941-590, Brazil. .,Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, João Pio Duarte Silva, 241, Florianópolis, SC, 88037-000, Brazil.
| | - Paula Grazielle Chaves da Silva
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica , Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro-UFRJ , 21941-590, Rio de Janeiro, Brazil
| | - Rafael Linden
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, 21941-590, Brazil.,Programa de Pós-Graduação em Ciências Biológicas - Biofísica , Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro-UFRJ , 21941-590, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, 21941-590, Brazil.,Programa de Pós-Graduação em Ciências Biológicas - Biofísica , Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro-UFRJ , 21941-590, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Chaves da Silva PG, Hsu K, Benton JL, Beltz BS, Allodi S. A Balancing Act: The Immune System Supports Neurodegeneration and Neurogenesis. Cell Mol Neurobiol 2020; 40:967-989. [PMID: 31980992 DOI: 10.1007/s10571-020-00787-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/04/2020] [Indexed: 01/08/2023]
Abstract
Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.
Collapse
Affiliation(s)
- Paula Grazielle Chaves da Silva
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil
- Wellesley College, Wellesley, MA, 02481, USA
| | - Kelly Hsu
- Wellesley College, Wellesley, MA, 02481, USA
| | | | | | - Silvana Allodi
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
8
|
Brenneis G, Beltz BS. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol 2019; 528:1459-1485. [PMID: 31743442 DOI: 10.1002/cne.24820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 02/04/2023]
Abstract
Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit-amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.
Collapse
Affiliation(s)
- Georg Brenneis
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA.,Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Greifswald, Germany
| | - Barbara S Beltz
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA
| |
Collapse
|
9
|
Treffkorn S, Hernández-Lagos OY, Mayer G. Evidence for cell turnover as the mechanism responsible for the transport of embryos towards the vagina in viviparous onychophorans (velvet worms). Front Zool 2019; 16:16. [PMID: 31182967 PMCID: PMC6555992 DOI: 10.1186/s12983-019-0317-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background Onychophorans, commonly known as velvet worms, display a remarkable diversity of reproductive strategies including oviparity, and placentotrophic, lecithotrophic, matrotrophic or combined lecithotrophic/matrotrophic viviparity. In the placentotrophic species, the embryos of consecutive developmental stages are attached to the uterus via a placental stalk, suggesting they might be transported passively towards the vagina due to proximal growth and distal degeneration of tissue. However, this assumption has never been tested using specific markers. We therefore analyzed the patterns of cell proliferation and apoptosis in the genital tracts of two placentotrophic peripatids from Colombia and a non-placentotrophic peripatopsid from Australia. Results All three species show a high number of apoptotic cells in the distal portion of the genital tract near the genital opening. In the two placentotrophic species, additional apoptotic cells appear in ring-like vestigial placentation zones of late embryonic chambers. While moderate cell proliferation occurs along the entire uterus in all three species, only the two placentotrophic species show a distinct proliferation zone near the ovary as well as in the ring-like implantation zone of the first embryonic chamber. In contrast to the two placentotrophic species, the non-placentotrophic species clearly does not show such regions of high proliferation in the uterus but exhibits proliferating and apoptotic cells in the ovarian stalks. While cell proliferation mainly occurs in stalks carrying maturating oocytes, apoptosis is restricted to stalks whose oocytes have been released into the ovarian lumen. Conclusions Our results confirm the hypothesis that the uterus of placentotrophic onychophorans grows proximally but is resorbed distally. This is supported by the detection of a proximal proliferation zone and a distal degenerative zone in the two placentotrophic species. Hence, cell turnover might be responsible for the transport of their embryos towards the vagina, analogous to a conveyor belt. Surprisingly, the distal degenerative zone is also found in the non-placentotrophic species, in which cell turnover was unexpected. These findings suggest that the distal degenerative zone is an ancestral feature of Onychophora, whereas the proximal proliferation zone might have evolved in the last common ancestor of the placentotrophic Peripatidae. Electronic supplementary material The online version of this article (10.1186/s12983-019-0317-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- 1Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Oscar Yesid Hernández-Lagos
- 2Laboratorio de Biología Molecular, Escuela de Biología, Universidad Industrial de Santander, Carrera 27 #9, ciudad Universitaria, Bucaramanga, Santander Colombia
| | - Georg Mayer
- 1Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| |
Collapse
|
10
|
Wittfoth C, Harzsch S. Adult neurogenesis in the central olfactory pathway of dendrobranchiate and caridean shrimps: New insights into the evolution of the deutocerebral proliferative system in reptant decapods. Dev Neurobiol 2018; 78:757-774. [PMID: 29663684 DOI: 10.1002/dneu.22596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/10/2022]
Abstract
Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt University of Greifswald, Zoological Institute & Museum, Greifswald, Germany
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt University of Greifswald, Zoological Institute & Museum, Greifswald, Germany
| |
Collapse
|
11
|
Gross V, Bährle R, Mayer G. Detection of cell proliferation in adults of the water bear Hypsibius dujardini (Tardigrada) via incorporation of a thymidine analog. Tissue Cell 2018; 51:77-83. [PMID: 29622091 DOI: 10.1016/j.tice.2018.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Accepted: 03/10/2018] [Indexed: 12/15/2022]
Abstract
The taxon Tardigrada, commonly called "water bears", consists of microscopic, eight-legged invertebrates that are well known for their ability to tolerate extreme environmental conditions. Their miniscule body size means that tardigrades possess a small total number of cells, the number and arrangement of which may be highly conserved in some organs. Although mitoses have been observed in several organs, the rate and pattern of cell divisions in adult tardigrades has never been characterized. In this study, we incubated live tardigrades over a period of several days with a thymidine analog in order to visualize all cells that had divided during this time. We focus on the midgut, the largest part of the digestive system. Our results show that new cells in the midgut arise from the anterior and posterior ends of this organ and either migrate or divide toward its middle. These cells divide at a constant rate and all cells of the midgut epithelium are replaced in approximately one week. On the other hand, we found no cell divisions in the nervous system or any other major organs, suggesting that the cell turnover of these organs may be extremely slow or dependent on changing environmental conditions.
Collapse
Affiliation(s)
- V Gross
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany.
| | - R Bährle
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
| | - G Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, D-34132 Kassel, Germany
| |
Collapse
|
12
|
Beltz BS, Benton JL. From Blood to Brain: Adult-Born Neurons in the Crayfish Brain Are the Progeny of Cells Generated by the Immune System. Front Neurosci 2017; 11:662. [PMID: 29270102 PMCID: PMC5725445 DOI: 10.3389/fnins.2017.00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
New neurons continue to be born and integrated into the brains of adult decapod crustaceans. Evidence in crayfish indicates that the 1st-generation neural precursors that generate these adult-born neurons originate in the immune system and travel to the neurogenic niche via the circulatory system. These precursors are attracted to the niche, become integrated amongst niche cells, and undergo mitosis within a few days; both daughters of this division migrate away from the niche toward the brain clusters where they will divide again and differentiate into neurons. In the crustacean brain, the rate of neuronal production is highly sensitive to serotonin (5-hydroxytryptamine, 5-HT) levels. These effects are lineage-dependent, as serotonin's influence is limited to late 2nd-generation neural precursors and their progeny. Experiments indicate that serotonin regulates adult neurogenesis in the crustacean brain by multiple mechanisms: via direct effects of serotonin released from brain neurons into the hemolymph or by local release onto target cells, or by indirect influences via a serotonin-mediated release of agents from other regions, such as hormones from the sinus gland and cytokines from hematopoietic tissues. Evidence in crayfish also indicates that serotonin mediates the attraction of neural precursors generated by the immune system to the neurogenic niche. Thus, studies in the crustacean brain have revealed multiple roles for this monoamine in adult neurogenesis, and identified several pathways by which serotonin influences the generation of new neurons.
Collapse
Affiliation(s)
- Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, MA, United States
| | - Jeanne L Benton
- Neuroscience Program, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
13
|
Abstract
During brain development, highly complex and interconnected neural circuits are established. This intricate wiring needs to be robust to faithfully perform adult brain function throughout life, but at the same time offer room for plasticity to integrate new information. In the mammalian brain, adult-born neurons are produced in restricted niches harboring neural stem cells. In the fruit fly Drosophila, low-level adult neurogenesis arising from a dispersed population of neural progenitors has recently been detected in the optic lobes. Strikingly, these normally quiescent neural stem cells proliferate upon brain injury and produce new neurons for brain regeneration. Here, we review adult neurogenesis in crustaceans and insects and highlight that neurogenesis in the visual system is prominent in arthropods, but its role and underlying mechanisms are unclear. Moreover, we discuss how the study of damage-responsive progenitor cells in Drosophila may help to understand robust regenerative neurogenesis and open new avenues to enhance brain repair after injury or stroke in humans.
Collapse
|
14
|
Beltz BS, Brenneis G, Benton JL. Adult Neurogenesis: Lessons from Crayfish and the Elephant in the Room. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:146-155. [DOI: 10.1159/000447084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 1st-generation neural precursors in the crustacean brain are functionally analogous to neural stem cells in mammals. Their slow cycling, migration of their progeny, and differentiation of their descendants into neurons over several weeks are features of the neural precursor lineage in crayfish that also characterize adult neurogenesis in mammals. However, the 1st-generation precursors in crayfish do not self-renew, contrasting with conventional wisdom that proposes the long-term self-renewal of adult neural stem cells. Nevertheless, the crayfish neurogenic niche, which contains a total of 200-300 cells, is never exhausted and neurons continue to be produced in the brain throughout the animal's life. The pool of neural precursors in the niche therefore cannot be a closed system, and must be replenished from an extrinsic source. Our in vitro and in vivo data show that cells originating in the innate immune system (but not other cell types) are attracted to and incorporated into the neurogenic niche, and that they express a niche-specific marker, glutamine synthetase. Further, labeled hemocytes that undergo adoptive transfer to recipient crayfish generate cells in neuronal clusters in the olfactory pathway of the adult brain. These hemocyte descendants express appropriate neurotransmitters and project to target areas typical of neurons in these regions. These studies indicate that under natural conditions, the immune system provides neural precursors supporting adult neurogenesis in the crayfish brain, challenging the canonical view that ectodermal tissues generating the embryonic nervous system are the sole source of neurons in the adult brain. However, these are not the first studies that directly implicate the immune system as a source of neural precursor cells. Several types of data in mammals, including adoptive transfers of bone marrow or stem cells as well as the presence of fetal microchimerism, suggest that there must be a population of cells that are able to access the brain and generate new neurons in these species.
Collapse
|
15
|
Harzsch S, von Bohlen und Halbach O. A possible role for the immune system in adult neurogenesis: new insights from an invertebrate model. ZOOLOGY 2016; 119:153-157. [DOI: 10.1016/j.zool.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
16
|
Malagoli D, Mandrioli M, Tascedda F, Ottaviani E. Circulating phagocytes: the ancient and conserved interface between immune and neuroendocrine function. Biol Rev Camb Philos Soc 2015; 92:369-377. [PMID: 26548761 DOI: 10.1111/brv.12234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Immune and neuroendocrine functions display significant overlap in highly divergent and evolutionarily distant models such as molluscs, crustaceans, insects and mammals. Fundamental players in this crosstalk are professional phagocytes: macrophages in vertebrates and immunocytes in invertebrates. Although they have different developmental origins, macrophages and immunocytes possess comparable functions and differentiate under the control of evolutionarily conserved transcription factors. Macrophages and immunocytes share their pools of receptors, signalling molecules and pathways with neural cells and the neuro-endocrine system. In crustaceans, adult transdifferentiation of circulating haemocytes into neural cells has been documented recently. In light of developmental, molecular and functional evidence, we propose that the immune-neuroendocrine role of circulating phagocytes pre-dates the split of protostomian and deuterostomian superphyla and has been conserved during the evolution of the main groups of metazoans.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| |
Collapse
|
17
|
Beltz BS, Cockey EL, Li J, Platto JF, Ramos KA, Benton JL. Adult neural stem cells: Long-term self-renewal, replenishment by the immune system, or both? Bioessays 2015; 37:495-501. [PMID: 25761245 DOI: 10.1002/bies.201400198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.
Collapse
|
18
|
Benton JL, Kery R, Li J, Noonin C, Söderhäll I, Beltz BS. Cells from the immune system generate adult-born neurons in crayfish. Dev Cell 2014; 30:322-33. [PMID: 25117683 DOI: 10.1016/j.devcel.2014.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/08/2014] [Accepted: 06/19/2014] [Indexed: 10/24/2022]
Abstract
Neurogenesis is an ongoing process in the brains of adult decapod crustaceans. However, the first-generation precursors that produce adult-born neurons, which reside in a neurogenic niche, are not self-renewing in crayfish and must be replenished. The source of these neuronal precursors is unknown. Here, we report that adult-born neurons in crayfish can be derived from hemocytes. Following adoptive transfer of 5-ethynyl-2'-deoxyuridine (EdU)-labeled hemocytes, labeled cells populate the neurogenic niche containing the first-generation neuronal precursors. Seven weeks after adoptive transfer, EdU-labeled cells are located in brain clusters 9 and 10 (where adult-born neurons differentiate) and express appropriate neurotransmitters. Moreover, the number of cells composing the neurogenic niche in crayfish is tightly correlated with total hemocyte counts (THCs) and can be manipulated by raising or lowering THC. These studies identify hemocytes as a source of adult-born neurons in crayfish and demonstrate that the immune system is a key contributor to adult neurogenesis.
Collapse
Affiliation(s)
- Jeanne L Benton
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Rachel Kery
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Jingjing Li
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
19
|
Abstract
Adult neurogenic niches are present in both vertebrates and invertebrates. Where do stem cells populating these niches originate, and what are the mechanisms maintaining their self-renewal? In this issue of Developmental Cell, Benton et al. (2014) show that in crayfish, hemolymph-derived cells enter a neurogenic niche to replenish neural progenitors.
Collapse
|
20
|
Ng TH, Hung HY, Chiang YA, Lin JH, Chen YN, Chuang YC, Wang HC. WSSV-induced crayfish Dscam shows durable immune behavior. FISH & SHELLFISH IMMUNOLOGY 2014; 40:78-90. [PMID: 24973514 DOI: 10.1016/j.fsi.2014.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
One of the major gaps in our understanding of arthropod specific immune priming concerns the mechanism[s] by which the observed long-term (>2 weeks) protective effects might be mediated. Hypervariable Dscam (Down syndrome cell adhesion molecule) might support arthropod innate immunity with specificity for more extended periods. We show here that, in the relatively long-lived arthropod Cherax quadricarinatus, CqDscam does not behave like a typical, immediately-acting, short-lived innate immune factor: CqDscam was not induced within hours after challenge with a lethal virus, but instead was only up-regulated after 2-5 days. This initial response faded within ∼ 2 weeks, but another maximum was reached ∼ 1 month later. At around 2 months after the initial challenge, the virus-induced CqDscam bound to the virus virion and acted to neutralize the virus However, although CqDscam helped crayfish to survive during persistent infection, it nevertheless failed to provide any enhanced protection against a subsequent WSSV challenge. Thus, CqDscam is capable of supporting extended anti-virus immune memory in arthropods. Also, during a persistent virus infection, the balance of "immune firepower" in crayfish appears to be altered such that the general immune factors become depleted while CqDscam becomes relatively predominant.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Yi Hung
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jia-Hung Lin
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ning Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Chu Chuang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
21
|
Brenneis G, Scholtz G. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS One 2014; 9:e95435. [PMID: 24736377 PMCID: PMC3988247 DOI: 10.1371/journal.pone.0095435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented 'opisthosoma' during pycnogonid evolution.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Berlin, Germany
| |
Collapse
|
22
|
Kim YF, Sandeman DC, Benton JL, Beltz BS. Birth, survival and differentiation of neurons in an adult crustacean brain. Dev Neurobiol 2013; 74:602-15. [PMID: 24339155 DOI: 10.1002/dneu.22156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
Life-long neurogenesis is a characteristic feature of many vertebrate and invertebrate species. In decapod crustaceans, new neurons are added throughout life to two cell clusters containing local (cluster 9) and projection (cluster 10) interneurons in the olfactory pathway. Adult-born neurons in clusters 9 and 10 in crayfish have the anatomical properties and chemistry of mature neurons by 6 months after birth. Here we use 5-bromo-2'-deoxyuridine (BrdU) incorporation to pulse label mitotically active cells in these cell clusters, followed by a survival time of up to 8 months, during which crayfish (Cherax destructor) were sacrificed at intervals and the numbers of BrdU-labeled cells quantified. We find a decrease in the numbers of BrdU-labeled cells in cell cluster 10 between the first and second weeks following BrdU exposure, suggesting a period of cell death shortly after proliferation. Additional delayed cell divisions in both cell clusters are indicated by increases in labeled cells long after the BrdU clearing time. The differentiation time of these cells into neurons was defined by detection of the first immunoreactivity for the transmitter SIFamide in cluster 10 BrdU-labeled cells, which begins at 4 weeks after BrdU labeling; the numbers of SIFamide-labeled cells continues to increase over the following month. Experiments testing whether proliferation and survival of Cluster 10 cells are influenced by locomotor activity provided no evidence of a correlation between activity levels and cell proliferation, but suggest a strong influence of locomotor activity on cell survival.
Collapse
Affiliation(s)
- Youngmi Faith Kim
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts, 02481
| | | | | | | |
Collapse
|
23
|
Noonin C, Watthanasurorot A, Winberg S, Söderhäll I. Circadian regulation of melanization and prokineticin homologues is conserved in the brain of freshwater crayfish and zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:218-226. [PMID: 23500514 DOI: 10.1016/j.dci.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
Circadian clock is important to living organisms to adjust to the external environment. This clock has been extensively studied in mammals, and prokineticin 2 (Prok2) acts as one of the messenger between the central nervous system and peripheral tissues. In this study, expression profiles of Prok1 and Prok2 were investigated in a non-mammalian vertebrate brain, zebrafish, and the expression was compared to the Prok homologues, astakines (Ast1 and Ast2) in crayfish. These transcripts exhibited circadian oscillation in the brain, and Ast1 had similar pattern to Prok2. In addition, the expression of tyrosinase, an enzyme which expression is regulated by E-box elements like in Prok2, was also examined in zebrafish brain and was compared with the expression of prophenoloxidase (proPO), the melanization enzyme, in crayfish brain. Interestingly, the expressions of both Tyr and proPO displayed circadian rhythm in a similar pattern to Prok2 and Ast1, respectively. Therefore, this study shows that circadian oscillation of prokineticin homologues and enzymes involved in melanization are conserved.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyv. 18A, 752 36 Uppsala, Sweden
| | | | | | | |
Collapse
|
24
|
Chaves da Silva PG, Benton JL, Sandeman DC, Beltz BS. Adult Neurogenesis in the Crayfish Brain: The Hematopoietic Anterior Proliferation Center Has Direct Access to the Brain and Stem Cell Niche. Stem Cells Dev 2013. [DOI: 10.1089/scd.2012.0583] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Paula Grazielle Chaves da Silva
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeanne L. Benton
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| | | | - Barbara S. Beltz
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts
| |
Collapse
|
25
|
First-generation neuronal precursors in the crayfish brain are not self-renewing. Int J Dev Neurosci 2012; 31:657-66. [PMID: 23219763 DOI: 10.1016/j.ijdevneu.2012.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/17/2012] [Accepted: 11/23/2012] [Indexed: 12/13/2022] Open
Abstract
Adult-born neurons in crayfish (Procambarus clarkii) are the progeny of 1st-generation precursor cells (functionally analogous to neuronal stem cells in vertebrates) that are located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate along the processes of bipolar niche cells to proliferation zones in the cell clusters where the somata of the olfactory interneurons reside. Here they divide again, producing offspring that differentiate into olfactory local and projection neurons. The features of this neuronal assembly line, and the fact that it continues to function when the brain is isolated and perfused or maintained in organotypic culture, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains. Further, we have determined that the 1st-generation precursor cells are not a self-renewing population, and that the niche is, nevertheless, not depleted as the animals grow and age. We conclude, therefore, that the niche is not a closed system and that there must be an extrinsic source of neuronal stem cells. Based on in vitro studies demonstrating that cells extracted from the hemolymph are attracted to the niche, as well as the intimate relationship between the niche and vasculature, we hypothesize that the hematopoietic system is a likely source of these cells.
Collapse
|
26
|
Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships. PLoS One 2012; 7:e39267. [PMID: 22723980 PMCID: PMC3378523 DOI: 10.1371/journal.pone.0039267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/22/2012] [Indexed: 01/06/2023] Open
Abstract
The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues.
Collapse
|
27
|
Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I. Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 2012; 21:3173-86. [PMID: 22564088 DOI: 10.1089/scd.2012.0077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During evolution, the innate and adaptive immune systems were developed to protect organisms from non-self substances. The innate immune system is phylogenetically more ancient and is present in most multicellular organisms, whereas adaptive responses are restricted to vertebrates. Arthropods lack the blood cells of the lymphoid lineage and oxygen-carrying erythrocytes, making them suitable model animals for studying the regulation of the blood cells of the innate immune system. Many crustaceans have a long life span and need to continuously synthesize blood cells, in contrast to many insects. The hematopoietic tissue (HPT) of Pacifastacus leniusculus provides a simple model for studying hematopoiesis, because the tissue can be isolated, and the proliferation of stem cells and their differentiation can be studied both in vivo and in vitro. Here, we demonstrate new findings of a physical link between the HPT and the brain. Actively proliferating cells were localized to an anterior proliferation center (APC) in the anterior part of the tissue near the area linking the HPT to the brain, whereas more differentiated cells were detected in the posterior part. The central areas of HPT expand in response to lipopolysaccharide-induced blood loss. Cells isolated from the APC divide rapidly and form cell clusters in vitro; conversely, the cells from the remaining HPT form monolayers, and they can be induced to differentiate in vitro. Our findings offer an opportunity to learn more about invertebrate hematopoiesis and its connection to the central nervous system, thereby obtaining new information about the evolution of different blood and nerve cell lineages.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Beltz BS, Zhang Y, Benton JL, Sandeman DC. Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci 2012; 34:870-83. [PMID: 21929622 DOI: 10.1111/j.1460-9568.2011.07802.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the first-generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors co-exist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the first-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the first-generation precursor pool, because although these cells divide and produce a continuous efflux of second-generation cells from the niche, the population of first-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that, in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition.
Collapse
Affiliation(s)
- Barbara S Beltz
- Neuroscience Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| | | | | | | |
Collapse
|
29
|
Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S. Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 2012; 7:1. [PMID: 22225949 PMCID: PMC3266201 DOI: 10.1186/1749-8104-7-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/06/2012] [Indexed: 12/13/2022] Open
Abstract
Background In the decapod crustacean brain, neurogenesis persists throughout the animal's life. After embryogenesis, the central olfactory pathway integrates newborn olfactory local and projection interneurons that replace old neurons or expand the existing population. In crayfish, these neurons are the descendants of precursor cells residing in a neurogenic niche. In this paper, the development of the niche was documented by monitoring proliferating cells with S-phase-specific markers combined with immunohistochemical, dye-injection and pulse-chase experiments. Results Between the end of embryogenesis and throughout the first post-embryonic stage (POI), a defined transverse band of mitotically active cells (which we will term 'the deutocerebral proliferative system' (DPS) appears. Just prior to hatching and in parallel with the formation of the DPS, the anlagen of the niche appears, closely associated with the vasculature. When the hatchling molts to the second post-embryonic stage (POII), the DPS differentiates into the lateral (LPZ) and medial (MPZ) proliferative zones. The LPZ and MPZ are characterized by a high number of mitotically active cells from the beginning of post-embryonic life; in contrast, the developing niche contains only very few dividing cells, a characteristic that persists in the adult organism. Conclusions Our data suggest that the LPZ and MPZ are largely responsible for the production of new neurons in the early post-embryonic stages, and that the neurogenic niche in the beginning plays a subordinate role. However, as the neuroblasts in the proliferation zones disappear during early post-embryonic life, the neuronal precursors in the niche gradually become the dominant and only mechanism for the generation of new neurons in the adult brain.
Collapse
Affiliation(s)
- Silvia Sintoni
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|