1
|
Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, Sebastián-Díaz MA. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44:21. [PMID: 38349562 PMCID: PMC10864563 DOI: 10.1007/s10571-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.
Collapse
Affiliation(s)
| | | | | | - Fernando Sotelo-Díaz
- Epilepsy Clinic. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Multiple Sclerosis Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Julio Sotelo
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mario A Sebastián-Díaz
- Nephrology Department, South Central High Specialty Hospital PEMEX, Anillo Periférico 4019 Fuentes del Pedregal, Tlalpan, 1440, Mexico City, Mexico.
| |
Collapse
|
2
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
3
|
Guan Y, Han F. Key Mechanisms and Potential Targets of the NLRP3 Inflammasome in Neurodegenerative Diseases. Front Integr Neurosci 2020; 14:37. [PMID: 32792920 PMCID: PMC7393579 DOI: 10.3389/fnint.2020.00037] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are neuronal disorders characterized by the loss of a large number of neurons in the human brain. Innate immunity-mediated neuroinflammation actively contributes to the onset and progression of neurodegenerative diseases. Inflammasomes are involved in the progression of the innate immune response and are responsible for the maturation of caspase-1 and inflammatory cytokines during neuroinflammation. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome, which is one of the most intensively investigated inflammasomes, has been reported to play a key role in neurodegenerative diseases. Here, we reviewed the mechanisms, role, and latest developments regarding the NLRP3 inflammasome with respect to three neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Patient and animal model studies have found that abnormal protein aggregation of Aβ, synuclein, or copper–zinc superoxide dismutase-1 (SOD1), which are the main proteins expressed in the three diseases, respectively, can activate microglial cells, induce increased interleukin-1β (IL-1β) release, and activate the NLRP3 pathway, leading to neurodegeneration. In contrast, a deficiency of the components of the NLRP3 pathway may inhibit Aβ, synuclein, or SOD1-induced microglial activation. These studies indicate a positive correlation between NLRP3 levels and abnormal protein aggregation. However, in the case of ALS, not only microglia but also astrocytes express increased NLRP3 levels and contribute to activation of the NLRP3 pathway. In addition, in this review article, we also focus on the therapeutic implications of targeting novel inhibitors of the NLRP3 inflammasome or of novel drugs that mediate the NLRP3 pathway, which could play a role via NLRP3 in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yadi Guan
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China.,Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical University, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
5
|
Thomsen GM, Avalos P, Ma AA, Alkaslasi M, Cho N, Wyss L, Vit JP, Godoy M, Suezaki P, Shelest O, Bankiewicz KS, Svendsen CN. Transplantation of Neural Progenitor Cells Expressing Glial Cell Line-Derived Neurotrophic Factor into the Motor Cortex as a Strategy to Treat Amyotrophic Lateral Sclerosis. Stem Cells 2018; 36:1122-1131. [PMID: 29656478 DOI: 10.1002/stem.2825] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Early dysfunction of cortical motor neurons may underlie the initiation of amyotrophic lateral sclerosis (ALS). As such, the cortex represents a critical area of ALS research and a promising therapeutic target. In the current study, human cortical-derived neural progenitor cells engineered to secrete glial cell line-derived neurotrophic factor (GDNF) were transplanted into the SOD1G93A ALS rat cortex, where they migrated, matured into astrocytes, and released GDNF. This protected motor neurons, delayed disease pathology and extended survival of the animals. These same cells injected into the cortex of cynomolgus macaques survived and showed robust GDNF expression without adverse effects. Together this data suggests that introducing cortical astrocytes releasing GDNF represents a novel promising approach to treating ALS. Stem Cells 2018;36:1122-1131.
Collapse
Affiliation(s)
- Gretchen M Thomsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Annie A Ma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mor Alkaslasi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Noell Cho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Livia Wyss
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marlesa Godoy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Patrick Suezaki
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Letter to the Editor: Autoimmune pathogenic mechanisms in Amyotrophic Lateral Sclerosis. Autoimmun Rev 2018. [PMID: 29526629 DOI: 10.1016/j.autrev.2018.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2350-2361. [PMID: 28357805 DOI: 10.1007/s12035-017-0502-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023]
Abstract
Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.
Collapse
|
8
|
Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci 2015; 34:15587-600. [PMID: 25411487 DOI: 10.1523/jneurosci.2037-14.2014] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease.
Collapse
|
9
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
10
|
Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, Popoli P, D'Ambrosi N, Volonté C. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis Model Mech 2014; 7:1101-9. [PMID: 25038061 PMCID: PMC4142730 DOI: 10.1242/dmm.017038] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by interfering with the neuroinflammatory component of the disease.
Collapse
Affiliation(s)
- Savina Apolloni
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Susanna Amadio
- Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Chiara Parisi
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | - Alessandra Matteucci
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Rosa L Potenza
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Monica Armida
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Patrizia Popoli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nadia D'Ambrosi
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | - Cinzia Volonté
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| |
Collapse
|
11
|
Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 2014; 8:117. [PMID: 24904276 PMCID: PMC4033073 DOI: 10.3389/fncel.2014.00117] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial–neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell–cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
12
|
Nikodemova M, Small AL, Smith SMC, Mitchell GS, Watters JJ. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 2013; 69:43-53. [PMID: 24269728 DOI: 10.1016/j.nbd.2013.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Activation of microglia, CNS resident immune cells, is a pathological hallmark of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting motor neurons. Despite evidence that microglia contribute to disease progression, the exact role of these cells in ALS pathology remains unknown. We immunomagnetically isolated microglia from different CNS regions of SOD1(G93A) rats at three different points in disease progression: presymptomatic, symptom onset and end-stage. We observed no differences in microglial number or phenotype in presymptomatic rats compared to wild-type controls. Although after disease onset there was no macrophage infiltration, there were significant increases in microglial numbers in the spinal cord, but not cortex. At disease end-stage, microglia were characterized by high expression of galectin-3, osteopontin and VEGF, and concomitant downregulated expression of TNFα, IL-6, BDNF and arginase-1. Flow cytometry revealed the presence of at least two phenotypically distinct microglial populations in the spinal cord. Immunohistochemistry showed that galectin-3/osteopontin positive microglia were restricted to the ventral horns of the spinal cord, regions with severe motor neuron degeneration. End-stage SOD1(G93A) microglia from the cortex, a less affected region, displayed similar gene expression profiles to microglia from wild-type rats, and displayed normal responses to systemic inflammation induced by LPS. On the other hand, end-stage SOD1(G93A) spinal microglia had blunted responses to systemic LPS suggesting that in addition to their phenotypic changes, they may also be functionally impaired. Thus, after disease onset, microglia acquired unique characteristics that do not conform to typical M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. This transformation was observed only in the most affected CNS regions, suggesting that overexpression of mutated hSOD1 is not sufficient to trigger these changes in microglia. These novel observations suggest that microglial regional and phenotypic heterogeneity may be an important consideration when designing new therapeutic strategies targeting microglia and neuroinflammation in ALS.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Alissa L Small
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Gordon S Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
13
|
Chiu IM, Morimoto ETA, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013; 4:385-401. [PMID: 23850290 DOI: 10.1016/j.celrep.2013.06.018] [Citation(s) in RCA: 491] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/24/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022] Open
Abstract
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
Collapse
Affiliation(s)
- Isaac M Chiu
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schlachetzki JC, Saliba SW, Oliveira ACPD. Studying neurodegenerative diseases in culture models. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S92-100. [DOI: 10.1590/1516-4446-2013-1159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carrì MT. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012; 17:1277-330. [PMID: 22413952 DOI: 10.1089/ars.2011.4328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.
Collapse
|
16
|
Mancuso R, Oliván S, Rando A, Casas C, Osta R, Navarro X. Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 2012; 9:814-26. [PMID: 22935988 PMCID: PMC3480575 DOI: 10.1007/s13311-012-0140-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disorder characterized by progressive weakness, muscle atrophy, and paralysis due to the loss of upper and lower motoneurons (MNs). Sigma-1 receptor (sigma-1R) activation promotes neuroprotection after ischemic and traumatic injuries to the central nervous system. We recently reported that sigma-1R agonist (PRE-084) improves the survival of MNs after root avulsion injury in rats. Moreover, a mutation of the sigma-1R leading to frontotemporal lobar degeneration/amyotrophic lateral sclerosis (ALS) was recently described in human patients. In the present study, we analyzed the potential therapeutic effect of the sigma-1R agonist (PRE-084) in the SOD1(G93A) mouse model of ALS. Mice were daily administered with PRE-084 (0.25 mg/kg) from 8 to 16 weeks of age. Functional outcome was assessed by electrophysiological tests and computerized analysis of locomotion. Histological, immunohistochemical analyses and Western blot of the spinal cord were performed. PRE-084 administration from 8 weeks of age improved the function of MNs, which was manifested by maintenance of the amplitude of muscle action potentials and locomotor behavior, and preserved neuromuscular connections and MNs in the spinal cord. Moreover, it extended survival in both female and male mice by more than 15 %. Delayed administration of PRE-084 from 12 weeks of age also significantly improved functional outcome and preservation of the MNs. There was an induction of protein kinase C-specific phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor in SOD1(G93A) animals, and a reduction of the microglial reactivity compared with untreated mice. PRE-084 exerts a dual therapeutic contribution, modulating NMDA Ca(2+) influx to protect MNs, and the microglial reactivity to ameliorate the MN environment. In conclusion, sigma-1R agonists, such as PRE-084, may be promising candidates for a therapeutical strategy of ALS.
Collapse
Affiliation(s)
- Renzo Mancuso
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, 08193 Spain
| | - Sara Oliván
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, 50013 Spain
| | - Amaya Rando
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, 50013 Spain
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, 08193 Spain
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, 50013 Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, 08193 Spain
| |
Collapse
|
17
|
Gerber YN, Sabourin JC, Hugnot JP, Perrin FE. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes. PLoS One 2012; 7:e45503. [PMID: 23029057 PMCID: PMC3447796 DOI: 10.1371/journal.pone.0045503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/21/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under investigation for many years, whether physical exercise is beneficial or harmful is still under debate. METHODS AND FINDINGS We investigated the effect of three different intensities of running exercises on the survival of SOD1(G93A) mice. At the early-symptomatic stage (P60), males were isolated and randomly assigned to 5 conditions: 2 sedentary groups ("sedentary" and "sedentary treadmill" placed on the inert treadmill), and 3 different training intensity groups (5 cm/s, 10 cm/s and 21 cm/s; 15 min/day, 5days/week). We first demonstrated that an appropriate "control" of the environment is of the utmost importance since comparison of the two sedentary groups evidenced an 11.6% increase in survival in the "sedentary treadmill" group. Moreover, we showed by immunohistochemistry that this increased lifespan is accompanied with motoneurons survival and increased glial reactivity in the spinal cord. In a second step, we showed that when compared with the proper control, all three running-based training did not modify lifespan of the animals, but result in motoneurons preservation and changes in glial cells activation. CONCLUSIONS/SIGNIFICANCE We demonstrate that increase in survival induced by a slight daily modification of the environment is associated with motoneurons preservation and strong glial modifications in the lumbar spinal cord of SOD1(G93A). Using the appropriate control, we then demonstrate that all running intensities have no effect on the survival of ALS mice but induce cellular modifications. Our results highlight the critical importance of the control of the environment in ALS studies and may explain discrepancy in the literature regarding the effect of exercise in ALS.
Collapse
Affiliation(s)
- Yannick N. Gerber
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jean-Charles Sabourin
- Integrative Biology of Neurodegeneration, Neuroscience Department, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Jean-Philippe Hugnot
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
| | - Florence E. Perrin
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Integrative Biology of Neurodegeneration, Neuroscience Department, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
18
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|