1
|
Leone CM, Truini A. Understanding neuropathic pain: the role of neurophysiological tests in unveiling underlying mechanisms. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:77. [PMID: 39558394 PMCID: PMC11575013 DOI: 10.1186/s44158-024-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Neuropathic pain, arising from lesions of the somatosensory nervous system, presents with diverse symptoms including ongoing pain, paroxysmal pain, and provoked pain, usually accompanied by sensory deficits. Understanding the pathophysiological mechanisms behind these symptoms is crucial for targeted treatment strategies. Neurophysiological techniques such as nerve conduction studies, reflexes, and evoked potentials help elucidate these mechanisms by assessing large myelinated non-nociceptive fibres and small nociceptive fibres. This argumentative review highlights the importance of tailored neurophysiological assessments for improving our understanding of the pathophysiological mechanisms behind neuropathic pain symptoms.
Collapse
Affiliation(s)
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Kan P, Zhu YF, Ma J, Singh G. Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain. Front Comput Neurosci 2024; 18:1327986. [PMID: 38784679 PMCID: PMC11111952 DOI: 10.3389/fncom.2024.1327986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Peter Kan
- Department of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yong Fang Zhu
- Department of Health Sciences, Redeemer University, Hamilton, ON, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Sun L, Chen C, Xiang X, Guo S, Yang G. Generalized modality responses in primary sensory neurons of awake mice during the development of neuropathic pain. Front Neurosci 2024; 18:1368507. [PMID: 38690372 PMCID: PMC11058805 DOI: 10.3389/fnins.2024.1368507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Peripheral sensory neurons serve as the initial responders to the external environment. How these neurons react to different sensory stimuli, such as mechanical or thermal forces applied to the skin, remains unclear. Methods Using in vivo two-photon Ca2+ imaging in the lumbar 4 dorsal root ganglion (DRG) of awake Thy1.2-GCaMP6s mice, we assessed neuronal responses to various mechanical (punctate or dynamic) and thermal forces (heat or cold) sequentially applied to the paw plantar surface. Results Our data indicate that in normal awake male mice, approximately 14 and 38% of DRG neurons respond to either single or multiple modalities of stimulation. Anesthesia substantially reduces the number of responsive neurons but does not alter the ratio of cells exhibiting single-modal responses versus multi-modal responses. Following peripheral nerve injury, DRG cells exhibit a more than 5.1-fold increase in spontaneous neuronal activity and a 1.5-fold increase in sensory stimulus-evoked activity. As neuropathic pain resulting from nerve injury progresses, the polymodal nature of sensory neurons intensifies. The polymodal population increases from 39.1 to 56.9%, while the modality-specific population decreases from 14.7 to 5.0% within a period of 5 days. Discussion Our study underscores polymodality as a significant characteristic of primary sensory neurons, which becomes more pronounced during the development of neuropathic pain.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Chao Chen
- Department of Physiology and Neuroscience, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
| | - Xuwu Xiang
- Department of Physiology and Neuroscience, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
| | - Shengyang Guo
- Department of Neurobiology, School of Basic Medicine, Peking University, Beijing, China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Lopez JA, Romero LO, Kaung WL, Maddox JW, Vásquez V, Lee A. Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice. J Neurosci 2024; 44:e1402232023. [PMID: 38262725 PMCID: PMC10919251 DOI: 10.1523/jneurosci.1402-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged MA currents with lower mechanical thresholds in dorsal root ganglion neurons (DRGNs). The expression pattern of caldendrin in the DRG parallels that of the major MA channel required for touch sensation, PIEZO2. In transfected cells, caldendrin interacts with and inhibits the activity of PIEZO2 in a manner that requires an alternatively spliced sequence in the N-terminal domain of caldendrin. Moreover, targeted genetic deletion of caldendrin in Piezo2-expressing DRGNs phenocopies the tactile hypersensitivity of complete Cabp1 KO mice. We conclude that caldendrin is an endogenous repressor of PIEZO2 channels and their contributions to touch sensation in DRGNs.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Luis O Romero
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis 38163, Tennessee
| | - Wai-Lin Kaung
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - J Wesley Maddox
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Valeria Vásquez
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| |
Collapse
|
5
|
Sas D, Gaudel F, Verdier D, Kolta A. Hyperexcitability of muscle spindle afferents in jaw-closing muscles in experimental myalgia: Evidence for large primary afferents involvement in chronic pain. Exp Physiol 2024; 109:100-111. [PMID: 38103003 PMCID: PMC10988680 DOI: 10.1113/ep090769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100β, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.
Collapse
Affiliation(s)
- Dar'ya Sas
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Fanny Gaudel
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Dorly Verdier
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Arlette Kolta
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
- Faculté de Médecine DentaireUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
6
|
Zhu YF, Kan P, Singh G. Differences and Similarities in Spontaneous Activity Between Animal Models of Cancer-Induced Pain and Neuropathic Pain. J Pain Res 2022; 15:3179-3187. [PMID: 36258759 PMCID: PMC9572504 DOI: 10.2147/jpr.s383373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Background Clinical data on cancer-induced pain (CIP) demonstrate widespread changes in sensory function. It is characterized in humans not only by stimulus-invoked pain, but also by spontaneous pain. In our previous studies in an animal model of CIP, we observed changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) sensory neurons corresponding to mechanical allodynia and hyperalgesia, of which abnormal activities of Aβ-fiber sensory neurons are consistent in a rat model of peripheral neuropathic pain (NEP). Objective To investigate whether there are related peripheral neural mechanisms between the CIP and NEP models of spontaneous pain, we compared the electrophysiological properties of DRG sensory neurons at 2–3 weeks after CIP and NEP model induction. Methods CIP models were induced with metastasis tumour-1 rat breast cancer cells implanted into the distal epiphysis of the femur. NEP models were induced with a polyethylene cuff implanted around the sciatic nerve. Spontaneous pain in animals is measured by spontaneous foot lifting (SFL). After measurement of SFL, the animals were prepared for electrophysiological recordings of spontaneous activity (SA) in DRG neurons in vivo. Results Our data showed that SFL and SA occurred in both models. The proportion of SFL and SA of C-fiber sensory neurons in CIP was more significantly increased than in NEP models. There was no difference in duration of SFL and the rate of SA between the two models. The duration of SFL is related to the rate of SA in C-fiber in both models. Conclusion Thus, SFL may result from SA activity in C-fiber neurons in CIP and NEP rats. The differences and similarities in spontaneous pain between CIP and NEP rats is related to the proportion and rate of SA in C-fibers, respectively.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Peter Kan
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada,Correspondence: Gurmit Singh, Email
| |
Collapse
|
7
|
Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neurosci Lett 2021; 765:136233. [PMID: 34506882 PMCID: PMC8579816 DOI: 10.1016/j.neulet.2021.136233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
8
|
Okutsu Y, Yamada A, Tonomura S, Vaden RJ, Gu JG. Electrophysiological properties of maxillary trigeminal Aβ-afferent neurons of rats. Mol Pain 2021; 17:17448069211021271. [PMID: 34056968 PMCID: PMC8168172 DOI: 10.1177/17448069211021271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aβ-afferents in maxillary or V2 trigeminal ganglion (TG) neurons are somatosensory neurons that may be involved in both non-nociceptive and nociceptive functions in orofacial regions. However, electrophysiological properties of these V2 trigeminal Aβ-afferent neurons have not been well characterized so far. Here, we used rat ex vivo trigeminal nerve preparations and applied patch-clamp recordings to large-sized V2 TG neurons to characterize their electrophysiological properties. All the cells recorded had afferent conduction velocities in the range of Aβ-afferent conduction speeds. However, these V2 trigeminal Aβ-afferent neurons displayed different action potential (AP) properties. APs showed fast kinetics in some cells but slow kinetics with shoulders in repolarization phases in other cells. Based on the derivatives of voltages in AP repolarization with time (dV/dt), we classified V2 trigeminal Aβ-afferent neurons into four types: type I, type II, type IIIa and type IIIb. Type I V2 trigeminal Aβ-afferent neurons had the largest dV/dt of repolarization, the fastest AP conduction velocities, the shortest AP and afterhyperpolarization (AHP) durations, and the highest AP success rates. In contrast, type IIIb V2 trigeminal Aβ-afferent neurons had the smallest dV/dt of AP repolarization, the slowest AP conduction velocities, the longest AP and AHP durations, and the lowest AP success rates. The type IIIb cells also had significantly lower voltage-activated K+ currents. For type II and type IIIa V2 trigeminal Aβ-afferent neurons, AP parameters were in the range between those of type I and type IIIb V2 trigeminal Aβ-afferent neurons. Our electrophysiological classification of V2 trigeminal Aβ-afferent neurons may be useful in future to study their non-nociceptive and nociceptive functions in orofacial regions.
Collapse
Affiliation(s)
- Yuya Okutsu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sotatsu Tonomura
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan J Vaden
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Sex-Dependent Reduction in Mechanical Allodynia in the Sural-Sparing Nerve Injury Model in Mice Lacking Merkel Cells. J Neurosci 2021; 41:5595-5619. [PMID: 34031166 DOI: 10.1523/jneurosci.1668-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aβ slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aβ SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation. However, it remains unknown whether this complex plays a role in the mechanical hypersensitivity caused by peripheral nerve injury. In this study, we characterized the distribution of Merkel cells and associated afferent neurons across four diverse domains of mouse hind paw skin, including a recently described patch of plantar hairy skin. We also showed that in the spared nerve injury (SNI) model of neuropathic pain, Merkel cells are lost from the denervated tibial nerve territory but are relatively preserved in nearby hairy skin innervated by the spared sural nerve. Using a genetic Merkel cell KO mouse model, we subsequently examined the importance of intact Merkel cell-Aβ complexes to SNI-associated mechanical hypersensitivity in skin innervated by the spared neurons. We found that, in the absence of Merkel cells, mechanical allodynia was partially reduced in male mice, but not female mice, under sural-sparing SNI conditions. Our results suggest that Merkel cell-Aβ afferent complexes partially contribute to mechanical allodynia produced by peripheral nerve injury, and that they do so in a sex-dependent manner.SIGNIFICANCE STATEMENT Merkel discs or Merkel cell-Aβ afferent complexes are mechanosensory end organs in mammalian skin. Yet, it remains unknown whether Merkel cells or their associated sensory neurons play a role in the mechanical hypersensitivity caused by peripheral nerve injury. We found that male mice genetically lacking Merkel cell-Aβ afferent complexes exhibited a reduction in mechanical allodynia after nerve injury. Interestingly, this behavioral phenotype was not observed in mutant female mice. Our study will facilitate understanding of mechanisms underlying neuropathic pain.
Collapse
|
10
|
Zhu YF, Linher-Melville K, Wu J, Fazzari J, Miladinovic T, Ungard R, Zhu KL, Singh G. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain 2021; 16:1744806920911536. [PMID: 32133928 PMCID: PMC7059229 DOI: 10.1177/1744806920911536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously identified that several cancer cell lines known to induce
nociception in mouse models release glutamate in vitro. Although the mechanisms
of glutamatergic signalling have been characterized primarily in the central
nervous system, its importance in the peripheral nervous system has been
recognized in various pathologies, including cancer pain. We therefore
investigated the effect of glutamate on intracellular electrophysiological
characteristics of peripheral sensory neurons in an immunocompetent rat model of
cancer-induced pain based on surgical implantation of mammary rat metastasis
tumour-1 cells into the distal epiphysis of the right femur. Behavioural
evidence of nociception was detected using von Frey tactile assessment. Activity
of sensory neurons was measured by intracellular electrophysiological recordings
in vivo. Glutamate receptor expression at the mRNA level in relevant dorsal root
ganglia was determined by reverse transcription polymerase chain reaction using
rat-specific primers. Nociceptive and non-nociceptive mechanoreceptor neurons
exhibiting changes in neural firing patterns associated with increased
nociception due to the presence of a bone tumour rapidly responded to
sulphasalazine injection, an agent that pharmacologically blocks non-vesicular
glutamate release by inhibiting the activity of the system
xC− antiporter. In addition, both types of
mechanoreceptor neurons demonstrated excitation in response to intramuscular
glutamate injection near the femoral head, which corresponds to the location of
cancer cell injection to induce the bone cancer-induced pain model. Therefore,
glutamatergic signalling contributes to cancer pain and may be a factor in
peripheral sensitization and induced tactile hypersensitivity associated with
bone cancer-induced pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
12
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
13
|
Linher-Melville K, Zhu YF, Sidhu J, Parzei N, Shahid A, Seesankar G, Ma D, Wang Z, Zacal N, Sharma M, Parihar V, Zacharias R, Singh G. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PLoS One 2020; 15:e0234176. [PMID: 32497151 PMCID: PMC7272035 DOI: 10.1371/journal.pone.0234176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023] Open
Abstract
Chronic neuropathic pain (NP) is a growing clinical problem for which effective treatments, aside from non-steroidal anti-inflammatory drugs and opioids, are lacking. Cannabinoids are emerging as potentially promising agents to manage neuroimmune effects associated with nociception. In particular, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination are being considered as therapeutic alternatives for treatment of NP. This study aimed to examine whether sex affects long-term outcomes on persistent mechanical hypersensitivity 7 weeks after ceasing cannabinoid administration. Clinically relevant low doses of THC, CBD, and a 1:1 combination of THC:CBD extracts, in medium chain triglyceride (MCT) oil, were orally gavaged for 14 consecutive days to age-matched groups of male and female sexually mature Sprague Dawley rats. Treatments commenced one day after surgically inducing a pro-nociceptive state using a peripheral sciatic nerve cuff. The analgesic efficacy of each phytocannabinoid was assessed relative to MCT oil using hind paw mechanical behavioural testing once a week for 9 weeks. In vivo intracellular electrophysiology was recorded at endpoint to characterize soma threshold changes in primary afferent sensory neurons within dorsal root ganglia (DRG) innervated by the affected sciatic nerve. The thymus, spleen, and DRG were collected post-sacrifice and analyzed for long-term effects on markers associated with T lymphocytes at the RNA level using qPCR. Administration of cannabinoids, particularly the 1:1 combination of THC, elicited a sustained mechanical anti-hypersensitive effect in males with persistent peripheral NP, which corresponded to beneficial changes in myelinated Aβ mechanoreceptive fibers. Specific immune cell markers associated with T cell differentiation and pro-inflammatory cytokines, previously implicated in repair processes, were differentially up-regulated by cannabinoids in males treated with cannabinoids, but not in females, warranting further investigation into sexual dimorphisms that may underlie treatment outcomes.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gireesh Seesankar
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Danny Ma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhi Wang
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Zacal
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Vikas Parihar
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Ramesh Zacharias
- Michael G. DeGroote Pain Clinic, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Boada MD, Martin TJ, Parker R, Houle TT, Eisenach JC, Ririe DG. Recovery from nerve injury induced behavioral hypersensitivity in rats parallels resolution of abnormal primary sensory afferent signaling. Pain 2020; 161:949-959. [PMID: 32040074 PMCID: PMC7166146 DOI: 10.1097/j.pain.0000000000001781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain and hypersensitivity months after peripheral injury reflect abnormal input from peripheral afferents likely in conjunction with central sensitization. We hypothesize that peripheral changes occur in defined sensory afferents and resolve as behavioral response to injury resolves. Male Sprague-Dawley rats underwent sham or partial L5 spinal nerve ligation, and paw withdrawal threshold (PWT) was sequentially measured during recovery. At 2, 4, 8, and 12 weeks after injury, randomized animals underwent electrophysiologic assessment of L4 fast-conducting high- and low-threshold mechanoreceptors, and individual neuronal mechanical thresholds (MTs) were contrasted with PWTs in the same animals. Paw withdrawal thresholds decreased after injury and resolved over time (P < 0.001). Similarly, MTs of fast-conducting high-threshold mechanoreceptors decreased after injury and resolved over time (P < 0.001). By contrast, MTs of low-threshold mechanoreceptors increased after injury and resolved over time (P < 0.001). Distributions of recordings from each afferent subtype were perturbed after injury, and this too resolved over time. After resolution of behavioral changes, several electrical abnormalities persisted in both neuronal subtypes. These data extend previous findings that mechanically sensitive nociceptors are sensitized, whereas tactile, largely Aβ afferents are desensitized after nerve injury by showing that the time course of resolution of these changes mirrors that of behavioral hypersensitivity in a surgical injury including neural damage. These data support a role of abnormal peripheral input, from both nociceptor and tactile afferents, during recovery from peripheral injury and underscore the potential importance of both classes of afferents as potential targets for pain treatment.
Collapse
Affiliation(s)
- M Danilo Boada
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Renee Parker
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Timothy T Houle
- Department of Anesthesiology and Perioperative Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - James C Eisenach
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Douglas G Ririe
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Zhu YF, Linher-Melville K, Niazmand MJ, Sharma M, Shahid A, Zhu KL, Parzei N, Sidhu J, Haj C, Mechoulam R, Singh G. An evaluation of the anti-hyperalgesic effects of cannabidiolic acid-methyl ester in a preclinical model of peripheral neuropathic pain. Br J Pharmacol 2020; 177:2712-2725. [PMID: 31981216 DOI: 10.1111/bph.14997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NEP) is associated with growing therapeutic cannabis use. To promote quality of life without psychotropic effects, cannabinoids other than Δ9-tetrahydrocannabidiol, including cannabidiol and its precursor cannabidiolic acid (CBDA), are being evaluated. Due to its instability, CBDA has been understudied, particularly as an anti-nociceptive agent. Adding a methyl ester group (CBDA-ME) significantly enhances its stability, facilitating analyses of its analgesic effects in vivo. This study examines early treatment efficacy of CBDA-ME in a rat model of peripherally induced NEP and evaluates sex as a biological variable. EXPERIMENTAL APPROACH After 14 consecutive days of intraperitoneal CBDA-ME administration at 0.01, 0.1 and 1 μg·kg-1 , commencing 1 day after surgically implanting a sciatic nerve-constricting cuff to induce NEP, the anti-nociceptive efficacy of this cannabinoid was assessed in male and female Sprague-Dawley rats relative to vehicle-treated counterparts. In females, 2 and 4 μg·kg-1 daily doses of CBDA-ME were also evaluated. Behavioural tests were performed for hind paw mechanical and thermal withdrawal thresholds once a week for 8 weeks. At endpoint, in vivo electrophysiological recordings were obtained to characterize soma threshold changes in primary sensory neurons. KEY RESULTS In males, CBDA-ME elicited a significant concentration-dependent chronic anti-hyperalgesic effect, also influencing both nociceptive and non-nociceptive mechanoreceptors, which were not observed in females at any of the concentrations tested. CONCLUSION AND IMPLICATIONS Initiating treatment of a peripheral nerve injury with CBDA-ME at an early stage post-surgery provides anti-nociception in males, warranting further investigation into potential sexual dimorphisms underlying this response.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad Javad Niazmand
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ayesha Shahid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jesse Sidhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christeene Haj
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute for Cannabinoid Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Ungard RG, Zhu YF, Yang S, Nakhla P, Parzei N, Zhu KL, Singh G. Response to pregabalin and progesterone differs in male and female rat models of neuropathic and cancer pain. CANADIAN JOURNAL OF PAIN-REVUE CANADIENNE DE LA DOULEUR 2020; 4:39-58. [PMID: 33987485 PMCID: PMC7951160 DOI: 10.1080/24740527.2020.1724776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Cancer pain involves nervous system damage and pathological neurogenesis. Neuropathic pain arises from damage to the nervous system and is driven by ectopic signaling. Both progesterone and pregabalin are neuroprotective in animal models, and there is evidence that both drugs bind to and inhibit voltage-gated calcium channels. Aims: This study was designed to characterize the effects of progesterone and pregabalin in preclinical models of cancer and neuropathic pain in both sexes. Methods: We measured peripheral sensory signaling by intracellular in vivo electrophysiology and behavioral indicators of pain in rat models of cancer-induced bone pain and neuropathic pain. Results: Female but not male models of cancer pain showed a behavioral response to treatment and pregabalin reduced excitability in C and A high-threshold but not low-threshold sensory neurons of both sexes. Male models of neuropathic pain treated with pregabalin demonstrated higher signaling thresholds only in A high-threshold neurons, and behavioral data indicated a clear recovery to baseline mechanical withdrawal thresholds in all treatment groups. Female rat treatment groups did not show excitability changes in sensory neurons, but all demonstrated higher mechanical withdrawal thresholds than vehicle-treated females, although not to baseline levels. Athymic female rat models of neuropathic pain showed no behavioral or electrophysiological responses to treatment. Conclusions: Both pregabalin and progesterone showed evidence of efficacy in male models of neuropathic pain. These results add to the evidence demonstrating differential effects of treatments for pain in male and female animals and widely differing responses in models of cancer and neuropathic pain.
Collapse
Affiliation(s)
- Robert G Ungard
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Yang
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Nakhla
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalka Parzei
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Linher-Melville K, Singh G. Evaluating the efficacy of cannabidiol to manage surgically induced neuropathic pain in a preclinical rat model: Are T cells a sexually dimorphic target? Can J Pain 2019; 3:44-48. [PMID: 35005418 PMCID: PMC8730578 DOI: 10.1080/24740527.2019.1612235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Considering the poorly understood etiology and complex symptoms of chronic neuropathic pain (NP), the lack of effective treatments, and sex-dependent differences in the neuroimmune system as well as in antinociceptive responses to existing pharmacological agents, the potential to therapeutically target the endocannabinoid system as a means of treating this type of intractable pain is clinically relevant and timely. Chronic NP may involve the utilization of distinct immune cell populations in males and females that differentially affect supraspinal and spinal neuromodulation. It is therefore important to investigate the effects of cannabidiol (CBD) on chronic NP-induced nociceptive responses in both sexes. Aims: Evaluating whether the expression of markers associated with CD4+ T cells are affected by CBD in a sexually dimorphic manner will provide key insights into the contribution of these adaptive immune cells to the onset and progression of NP. Methods: Future research will be directed toward examining the potential sex-dependent effects of this nonpsychotropic cannabinoid relative to vehicle in a preclinical model of chronic postsurgical NP. Specifically, (1) differences in nociceptive behavior, (2) chronic changes in neural firing patterns, and (3) up- or downregulation of markers associated with CD4+ T cells in relevant tissues will be evaluated to better understand CBD-mediated neuroimmune modulatory effects in males and females. Conclusions: Chronic postsurgical pain is a growing clinical problem. Current treatment strategies rely on opioid-based therapeutics, which affect patient quality of life and are associated with addiction and withdrawal. Treatment of nerve injuries with CBD could provide an effective alternative to manage NP. Understanding its mechanisms of action will provide important insights into the sex-dependent application of this nonpsychoactive cannabinoid, setting the groundwork for large-scale Canadian clinical trials in women and men presenting with chronic pain.
Collapse
Affiliation(s)
- K. Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - G. Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Miaskowski C, Paul SM, Mastick J, Abrams G, Topp K, Smoot B, Kober KM, Chesney M, Schumacher M, Conley YP, Hammer M, Cheung S, Borsook D, Levine JD. Contribution of Loss of Large Fiber Function to Pain in 2 Samples of Oncology Patients. Clin J Pain 2019; 35:37-42. [PMID: 30247200 PMCID: PMC6309865 DOI: 10.1097/ajp.0000000000000649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Numbness associated with neuropathic pain suggests the loss of function in myelinated, large diameter sensory neurons. The purpose of this study was to examine the relationships between pain severity and subjective (ie, severity of numbness) and objective (ie, loss of light touch sensations, vibration thresholds) measures of loss of large fiber function in adult survivors with chemotherapy-induced peripheral neuropathy (CIPN, n=426) and breast cancer patients with persistent postsurgical pain (n=80). MATERIAL AND METHODS For both samples, average pain and numbness were evaluated using a 0 to 10 numeric rating scale. Loss of light touch sensations in the hands and feet of patients with CIPN and in the upper arm of patients at 5 and 6 months following breast cancer surgery were assessed using Semmes Weinstein monofilaments. Loss of vibration in the hands and feet of patients with CIPN was assessed using a biothesiometer. Pearson Product Moment correlation coefficients were calculated between average pain and the number or percentage of sites with loss of light touch sensations, mean vibration thresholds, and the severity of numbness. RESULTS For both pain conditions, average pain scores were significantly correlated with objective measures of large fiber function (r=0.12 to 0.34; all P<0.05) and numbness (r=0.22 to 0.52; all P<0.008). DISCUSSION Our findings, in 2 independent samples of oncology patients, suggest that loss of function of myelinated, large diameter fibers contributes to the severity of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marilyn Hammer
- Department of Nursing, Mount Sinai Hospital, New York, NY
| | | | - David Borsook
- Boston Children’s Hospital
- Harvard Medical School, Boston, MA
| | - Jon D. Levine
- School of Medicine
- School of Dentistry, University of California, San Francisco, CA
| |
Collapse
|
19
|
Odem MA, Bavencoffe AG, Cassidy RM, Lopez ER, Tian J, Dessauer CW, Walters ET. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain 2018; 159:2347-2362. [PMID: 30015712 PMCID: PMC6193853 DOI: 10.1097/j.pain.0000000000001341] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ongoing pain has been linked to ongoing activity (OA) in human C-fiber nociceptors, but rodent models of pain-related OA have concentrated on allodynia rather than ongoing pain, and on OA generated in non-nociceptive Aβ fibers rather than C-fiber nociceptors. Little is known about how ongoing pain or nociceptor OA is generated. To define neurophysiological alterations underlying nociceptor OA, we have used isolated dorsal root ganglion neurons that continue to generate OA after removal from animals displaying ongoing pain. We subclassify OA as either spontaneous activity generated solely by alterations intrinsic to the active neuron or as extrinsically driven OA. Both types of OA were implicated previously in nociceptors in vivo and after isolation following spinal cord injury, which produces chronic ongoing pain. Using novel automated algorithms to analyze irregular changes in membrane potential, we have found, in a distinctive, nonaccommodating type of probable nociceptor, induction by spinal cord injury of 3 alterations that promote OA: (1) prolonged depolarization of resting membrane potential, (2) a hyperpolarizing shift in the voltage threshold for action potential generation, and (3) an increase in the incidence of large depolarizing spontaneous fluctuations (DSFs). Can DSFs also be enhanced acutely to promote OA in neurons from uninjured animals? A low dose of serotonin failed to change resting membrane potential but lowered action potential threshold. When combined with artificial depolarization to model inflammation, serotonin also strongly potentiated DSFs and OA. These findings reveal nociceptor specializations for generating OA that may promote ongoing pain in chronic and acute conditions.
Collapse
Affiliation(s)
- Max A. Odem
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Ryan M. Cassidy
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
20
|
Zhu YF, Kwiecien JM, Dabrowski W, Ungard R, Zhu KL, Huizinga JD, Henry JL, Singh G. Cancer pain and neuropathic pain are associated with A β sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord. Mol Pain 2018; 14:1744806918810099. [PMID: 30324862 PMCID: PMC6243409 DOI: 10.1177/1744806918810099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence suggests that there are both nociceptive and neuropathic components of cancer-induced pain. We have observed that changes in intrinsic membrane properties and excitability of normally non-nociceptive Aβ sensory neurons are consistent in rat models of peripheral neuropathic pain and cancer-induced pain. This has prompted a comparative investigation of the intracellular electrophysiological characteristics of sensory neurons and of the ultrastructural morphology of the dorsal horn in rat models of neuropathic pain and cancer-induced pain. Neuropathic pain model rats were induced with a polyethylene cuff implanted around a sciatic nerve. Cancer-induced pain model rats were induced with mammary rat metastasis tumour-1 rat breast cancer or MATLyLu rat prostate cancer cells implanted into the distal epiphysis of a femur. Behavioural evidence of nociception was detected using von Frey tactile assessment. Aβ-fibre low threshold mechanoreceptor neurons in both cancer-induced pain and neuropathic pain models exhibited slower dynamics of action potential genesis, including a wider action potential duration and lower action potential amplitude compared to those in control animals. Enhanced excitability of Aβ-fibre low threshold mechanoreceptor neurons was also observed in cancer-induced pain and neuropathic pain models. Furthermore, both cancer-induced pain and neuropathic pain models showed abundant abnormal axonal sprouting in bundles of myelinated axons in the ipsilateral spinal laminae IV and V. The patterns of changes show consistency between rat models of cancer-induced pain and neuropathic pain. These findings add to the body of evidence that animal models of cancer-induced pain and neuropathic pain share features that may contribute to the peripheral and central sensitization and tactile hypersensitivity in both pain states.
Collapse
Affiliation(s)
- Yong Fang Zhu
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacek M Kwiecien
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,3 Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- 4 Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Robert Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- 5 Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - James L Henry
- 6 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Falowski S, Pope JE, Raza A. Early US Experience With Stimulation of the Dorsal Root Ganglia for the Treatment of Peripheral Neuropathy in the Lower Extremities: A Multicenter Retrospective Case Series. Neuromodulation 2018; 22:96-100. [DOI: 10.1111/ner.12860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/10/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
|
22
|
Xie RG, Chu WG, Hu SJ, Luo C. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States. Int J Mol Sci 2018; 19:ijms19010161. [PMID: 29303989 PMCID: PMC5796110 DOI: 10.3390/ijms19010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Guang Chu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - San-Jue Hu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
23
|
Rat model of cancer-induced bone pain: changes in nonnociceptive sensory neurons in vivo. Pain Rep 2017; 2:e603. [PMID: 29392218 PMCID: PMC5741358 DOI: 10.1097/pr9.0000000000000603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 01/31/2023] Open
Abstract
Nonnociceptive sensory neurons relate to transient episodes of intense pain that characterize neuropathic pain. They are involved in the peripheral sensitization and tactile hypersensitivity. Introduction: Clinical data on cancer-induced bone pain (CIBP) suggest extensive changes in sensory function. In a previous investigation of an animal model of CIBP, we have observed that changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) nociceptive neurons correspond to mechanical allodynia and hyperalgesia. Objectives: To investigate the mechanisms underlying changes in nonnociceptive sensory neurons in this model, we have compared the electrophysiological properties of primary nonnociceptive sensory neurons at <1 and >2 weeks after CIBP model induction with properties in sham control animals. Methods: Copenhagen rats were injected with 106 MAT-LyLu rat prostate cancer cells into the distal femur epiphysis to generate a model of CIBP. After von Frey tactile measurement of mechanical withdrawal thresholds, the animals were prepared for acute electrophysiological recordings of mechanically sensitive neurons in the DRG in vivo. Results: The mechanical withdrawal threshold progressively decreased in CIBP model rats. At <1 week after model induction, there were no changes observed in nonnociceptive Aβ-fiber DRG neurons between CIBP model rats and sham rats. However, at >2 weeks, the Aβ-fiber low-threshold mechanoreceptors (LTMs) in CIBP model rats exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and lower AP amplitude compared with sham rats. Furthermore, enhanced excitability of Aβ-fiber LTM neurons was observed as an excitatory discharge in response to intracellular injection of depolarizing current into the soma. Conclusion: After induction of the CIBP model, Aβ-fiber LTMs at >2 weeks but not <1 week had undergone changes in electrophysiological properties. Importantly, changes observed are consistent with observations in models of peripheral neuropathy. Thus, Aβ-fiber nonnociceptive primary sensory neurons might be involved in the peripheral sensitization and tumor-induced tactile hypersensitivity in CIBP.
Collapse
|
24
|
Liu DL, Wang X, Chu WG, Lu N, Han WJ, Du YK, Hu SJ, Bai ZT, Wu SX, Xie RG, Luo C. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( I h) in large-diameter dorsal root ganglion neurons. Mol Pain 2017; 13:1744806917707127. [PMID: 28587505 PMCID: PMC5466279 DOI: 10.1177/1744806917707127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cervical radiculopathic pain is a very common symptom that may occur with cervical
spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain
and is inadequately treated with current therapies. However, the precise mechanisms
underlying cervical radiculopathic pain-associated mechanical allodynia have remained
elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal
root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in
mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic
changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these
changes are yet to be known. With combination of patch-clamp recording,
immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon
chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root
ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability.
Quantitative analysis of hyperpolarization-activated cation current
(Ih) revealed that Ih was
greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic
pain rats. This increased Ih was supported by the enhanced
expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3
in large dorsal root ganglion neurons. Blockade of Ih with
selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated
with cervical radiculopathic pain. This study sheds new light on the functional plasticity
of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel
mechanism that could underlie the mechanical allodynia associated with cervical
radiculopathy.
Collapse
Affiliation(s)
- Da-Lu Liu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,2 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Guang Chu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Na Lu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,4 ART Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen-Juan Han
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Yi-Kang Du
- 5 The First Brigade, Fourth Military Medical University, Xi'an, China
| | - San-Jue Hu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- 3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies. Pain 2016; 157 Suppl 1:S53-S59. [PMID: 26785156 DOI: 10.1097/j.pain.0000000000000367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.
Collapse
|
26
|
Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, Wang XL, Lin Q, Chen J. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology 2016; 113:217-230. [PMID: 27743933 DOI: 10.1016/j.neuropharm.2016.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022]
Abstract
Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (Ih) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of Ih in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing Ih through activation of COX-1.
Collapse
Affiliation(s)
- Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Qing Lin
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China; Beijing Institute for Brain Disorders, Beijing 100069, PR China.
| |
Collapse
|
27
|
Hulse RP, Drake RAR, Bates DO, Donaldson LF. The control of alternative splicing by SRSF1 in myelinated afferents contributes to the development of neuropathic pain. Neurobiol Dis 2016; 96:186-200. [PMID: 27616424 PMCID: PMC5113660 DOI: 10.1016/j.nbd.2016.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is integral to the processing of nociceptive information in the spinal cord. Neuropathic pain develops following a partial saphenous nerve ligation injury, at which time SRSF1 is activated in damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1 inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization. SRSF1 was principally expressed in large diameter myelinated (NF200-rich) dorsal root ganglia sensory neurons and their excitatory central terminals (vGLUT1+ve) within the dorsal horn of the lumbar spinal cord. Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated, and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-mRNA splicing at the spinal level could lead to a novel target for analgesic development.
Collapse
Affiliation(s)
- Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Robert A R Drake
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - David O Bates
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Lucy F Donaldson
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 7UH, United Kingdom.
| |
Collapse
|
28
|
L5 spinal nerve axotomy induces sensitization of cutaneous L4 Aβ-nociceptive dorsal root ganglion neurons in the rat in vivo. Neurosci Lett 2016; 624:72-7. [DOI: 10.1016/j.neulet.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/21/2022]
|
29
|
Liput DJ, Lu VB, Davis MI, Puhl HL, Ikeda SR. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep 2016; 6:25137. [PMID: 27118437 PMCID: PMC4846870 DOI: 10.1038/srep25137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Van B. Lu
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Margaret I. Davis
- Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Henry L. Puhl
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Stephen R. Ikeda
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| |
Collapse
|
30
|
Zhu YF, Ungard R, Seidlitz E, Zacal N, Huizinga J, Henry JL, Singh G. Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain. Mol Pain 2016; 12:12/0/1744806916628778. [PMID: 27030711 PMCID: PMC4994860 DOI: 10.1177/1744806916628778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022] Open
Abstract
Background Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model. Results In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test. Subsequently, we recorded intracellularly from dorsal root ganglion neurons in vivo in anesthetized animals. Neurons remained connected to their peripheral receptive terminals and were classified on the basis of action potential properties, responses to dorsal root stimulation, and to mechanical stimulation of the respective peripheral receptive fields. Neurons included C-, Aδ-, and Aβ-fibre nociceptors, identified by their expression of substance P. We suggest that bone tumour may induce phenotypic changes in peripheral nociceptors and that these could contribute to bone cancer pain. Conclusions This work represents a significant technical and conceptual advance in the study of peripheral nociceptor functions in the development of cancer-induced bone pain. This is the first study to report that changes in sensitivity and excitability of dorsal root ganglion primary afferents directly correspond to mechanical allodynia and hyperalgesia behaviours following prostate cancer cell injection into the femur of rats. Furthermore, our unique combination of techniques has allowed us to follow, in a single neuron, mechanical pain-related behaviours, electrophysiological changes in action potential properties, and dorsal root substance P expression. These data provide a more complete understanding of this unique pain state at the cellular level that may allow for future development of mechanism-based treatments for cancer-induced bone pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Seidlitz
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Zacal
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jan Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James L Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
|
32
|
Boada MD, Gutierrez S, Aschenbrenner CA, Houle TT, Hayashida KI, Ririe DG, Eisenach JC. Nerve injury induces a new profile of tactile and mechanical nociceptor input from undamaged peripheral afferents. J Neurophysiol 2014; 113:100-9. [PMID: 25274350 DOI: 10.1152/jn.00506.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic pain after nerve injury is often accompanied by hypersensitivity to mechanical stimuli, yet whether this reflects altered input, altered processing, or both remains unclear. Spinal nerve ligation or transection results in hypersensitivity to mechanical stimuli in skin innervated by adjacent dorsal root ganglia, but no previous study has quantified the changes in receptive field properties of these neurons in vivo. To address this, we recorded intracellularly from L4 dorsal root ganglion neurons of anesthetized young adult rats, 1 wk after L5 partial spinal nerve ligation (pSNL) or sham surgery. One week after pSNL, hindpaw mechanical withdrawal threshold in awake, freely behaving animals was decreased in the L4 distribution on the nerve-injured side compared with sham controls. Electrophysiology revealed that high-threshold mechanoreceptive cells of A-fiber conduction velocity in L4 were sensitized, with a seven-fold reduction in mechanical threshold, a seven-fold increase in receptive field area, and doubling of maximum instantaneous frequency in response to peripheral stimuli, accompanied by reductions in after-hyperpolarization amplitude and duration. Only a reduction in mechanical threshold (minimum von Frey hair producing neuronal activity) was observed in C-fiber conduction velocity high-threshold mechanoreceptive cells. In contrast, low-threshold mechanoreceptive cells were desensitized, with a 13-fold increase in mechanical threshold, a 60% reduction in receptive field area, and a 40% reduction in instantaneous frequency to stimulation. No spontaneous activity was observed in L4 ganglia, and the likelihood of recording from neurons without a mechanical receptive field was increased after pSNL. These data suggest massively altered input from undamaged sensory afferents innervating areas of hypersensitivity after nerve injury, with reduced tactile and increased nociceptive afferent response. These findings differ importantly from previous preclinical studies, but are consistent with clinical findings in most patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carol A Aschenbrenner
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Timothy T Houle
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ken-Ichiro Hayashida
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Douglas G Ririe
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
33
|
Yalcin I, Megat S, Barthas F, Waltisperger E, Kremer M, Salvat E, Barrot M. The sciatic nerve cuffing model of neuropathic pain in mice. J Vis Exp 2014. [PMID: 25078668 PMCID: PMC4217571 DOI: 10.3791/51608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.
Collapse
Affiliation(s)
- Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique;
| | - Salim Megat
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique; Université de Strasbourg
| | - Florent Barthas
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique; Université de Strasbourg
| | - Elisabeth Waltisperger
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique
| | - Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique; Université de Strasbourg
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique; Université de Strasbourg; Hôpitaux Universitaires de Strasbourg
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives UPR3212, Centre National de la Recherche Scientifique
| |
Collapse
|
34
|
Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology 2014; 120:1463-75. [PMID: 24534904 DOI: 10.1097/aln.0000000000000176] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanism of chemotherapy-induced peripheral neuropathy after paclitaxel treatment is not well understood. Given the poor penetration of paclitaxel into central nervous system, peripheral nervous system is most at risk. METHODS Intrinsic membrane properties of dorsal root ganglion neurons were studied by intracellular recordings. Multiple-gene real-time polymerase chain reaction array was used to investigate gene expression of dorsal root ganglion neuronal ion channels. RESULTS Paclitaxel increased the incidence of spontaneous activity from 4.8 to 27.1% in large-sized and from 0 to 33.3% in medium-sized neurons. Paclitaxel decreased the rheobase (nA) from 1.6 ± 0.1 to 0.8 ± 0.1 in large-sized, from 1.5 ± 0.2 to 0.6 ± 0.1 in medium-sized, and from 1.6 ± 0.2 to 1.0 ± 0.1 in small-sized neurons. After paclitaxel treatment, other characteristics of membrane properties in each group remained the same except that Aδ neurons showed shorter action potential fall time (ms) (1.0 ± 0.2, n = 10 vs. 1.8 ± 0.3, n = 9, paclitaxel vs. vehicle). Meanwhile, real-time polymerase chain reaction array revealed an alteration in expression of some neuronal ion channel genes including up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 1 (fold change 1.76 ± 0.06) and Nav1.7 (1.26 ± 0.02) and down-regulation of Kir channels (Kir1.1, 0.73 ± 0.05, Kir3.4, 0.66 ± 0.06) in paclitaxel-treated animals. CONCLUSION The increased neuronal excitability and the changes in gene expression of some neuronal ion channels in dorsal root ganglion may provide insight into the molecular and cellular basis of paclitaxel-induced neuropathy, which may lead to novel therapeutic strategies.
Collapse
|
35
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
36
|
Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms. Nat Rev Neurol 2013; 9:572-82. [PMID: 24018479 DOI: 10.1038/nrneurol.2013.180] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathic pain--that is, pain arising directly from a lesion or disease that affects the somatosensory system--is a common clinical problem, and typically causes patients intense distress. Patients with neuropathic pain have sensory abnormalities on clinical examination and experience pain of diverse types, some spontaneous and others provoked. Spontaneous pain typically manifests as ongoing burning pain or paroxysmal electric shock-like sensations. Provoked pain includes pain induced by various stimuli or even gentle brushing (dynamic mechanical allodynia). Recent clinical and neurophysiological studies suggest that the various pain types arise through distinct pathophysiological mechanisms. Ongoing burning pain primarily reflects spontaneous hyperactivity in nociceptive-fibre pathways, originating from 'irritable' nociceptors, regenerating nerve sprouts or denervated central neurons. Paroxysmal sensations can be caused by several mechanisms; for example, electric shock-like sensations probably arise from high-frequency bursts generated in demyelinated non-nociceptive Aβ fibres. Most human and animal findings suggest that brush-evoked allodynia originates from Aβ fibres projecting onto previously sensitized nociceptive neurons in the dorsal horn, with additional contributions from plastic changes in the brainstem and thalamus. Here, we propose that the emerging mechanism-based approach to the study of neuropathic pain might aid the tailoring of therapy to the individual patient, and could be useful for drug development.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Neurology and Psychiatry, Sapienza University, Viale Università 30, 00185 Rome, Italy
| | | | | |
Collapse
|
37
|
Leone M, Cecchini AP, Franzini A, Bussone G. Neurostimulators for the treatment of primary headaches. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurostimulation techniques have increased our therapeutic armamentarium, providing additional options for the treatment of patients with drug-resistant headache. Occipital nerve stimulation can be considered in drug-resistant chronic cluster headache and, with more caution, in drug-resistant chronic migraine. Approximately 12 years after its introduction, hypothalamic stimulation is a valid option for drug-resistant chronic cluster headache to be considered when occipital nerve stimulation fails. Several other peripheral stimulation approaches (in addition to occipital nerve stimulation) have been introduced in recent years; however, for the most part, appropriate studies supporting their efficacy are lacking. Transcranial magnetic stimulation, transcutaneous supraorbital nerve stimulation, sphenopalatine ganglion stimulation and vagal nerve stimulation have all been tried, but results are not wholly convincing, and more extensive evaluations are required.
Collapse
Affiliation(s)
- Massimo Leone
- Department of Neurology, Headache Centre & Pain Neuromodulation Unit, Fondazione Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Alberto Proietti Cecchini
- Department of Neurology, Headache Centre & Pain Neuromodulation Unit, Fondazione Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione Istituto Nazionale Neurologico Carlo Besta, Milan, Italy
| | - Gennaro Bussone
- Department of Neurology, Headache Centre & Pain Neuromodulation Unit, Fondazione Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| |
Collapse
|
38
|
Involvement of EphB1 receptors signalling in models of inflammatory and neuropathic pain. PLoS One 2013; 8:e53673. [PMID: 23341972 PMCID: PMC3547059 DOI: 10.1371/journal.pone.0053673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies.
Collapse
|
39
|
Eijkelkamp N, Linley J, Torres J, Bee L, Dickenson A, Gringhuis M, Minett M, Hong G, Lee E, Oh U, Ishikawa Y, Zwartkuis F, Cox J, Wood J. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 2013; 4:1682. [PMID: 23575686 PMCID: PMC3644070 DOI: 10.1038/ncomms2673] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023] Open
Abstract
Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1-/- mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1-Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain.
Collapse
Affiliation(s)
- N Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht 3584 EA, The Netherlands
- There authors shared first authorship
| | - J.E. Linley
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- There authors shared first authorship
| | - J.M. Torres
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Granada, Granada 18012, Spain
| | - L. Bee
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - A.H. Dickenson
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - M. Gringhuis
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - M.S. Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - G.S. Hong
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - E. Lee
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - U. Oh
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| | - Y. Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - F.J. Zwartkuis
- Department of Physiological Chemistry, University Medical Center Utrecht, Center for Biomedical Genetics and Cancer Genomics Center, Utrecht 3584 CG, The Netherlands
| | - J.J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - J.N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
40
|
Enhanced SCN7A/Nax expression contributes to bone cancer pain by increasing excitability of neurons in dorsal root ganglion. Neuroscience 2012; 227:80-9. [PMID: 23026072 DOI: 10.1016/j.neuroscience.2012.09.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022]
Abstract
Bone pain is one of the most common complications in cancer patients with bone metastases, and has the most significant impact on quality of life for patients. Patients with bone cancer pain may be difficult to treat due to the poor understanding of the mechanisms; therefore, the mechanisms of bone cancer pain required elucidation for developing new therapeutics. Recent studies show that SCN7A/Nax channel serves as a sodium-level sensor of the body fluid that controls the Na-intake behavior by changing the excitability of neurons. In the current study, the expression of SCN7A/Nax and the excitability of primary sensory neurons in bone cancer pain rats were examined. The analgesic effects of knockdown SCN7A/Nax channel using RNAi lentivirus intrathecal treatment were evaluated with a behavioral test. The results showed that implantation of sarcoma induced ongoing and movement-evoked pain behaviors, whereas SCN7A/Nax knockdown prevented the onset of these hyperalgesia. Immunohistochemistry showed that SCN7A/Nax was located in the medium- to large-sized neurons in dorsal root ganglions (DRGs). The proportion of SCN7A/Nax-positive cells was significantly increased in DRGs ipsilateral to sarcoma implantation. Immunostaining results were further confirmed by Western blot and real time-polymerase chain reaction (RT-PCR) analyses. Recording from primary sensory neurons in excised rat dorsal root ganglias, we found that most of SCN7A/Nax-positive neurons exhibited subthreshold oscillations, depolarized resting membrane potential and more negative threshold of action potential. These electrophysiological changes of neurons increased ectopic spike discharge which was thought to be an important generator of chronic pain, however, the hyperexcitability was completely reversed by SCN7A/Nax knockdown. These results demonstrate that enhanced expression of SCN7A/Nax channel within distinct subpopulation of DRG neurons contributes to bone cancer pain by increasing the excitability of these neurons. These findings may lead to novel strategies for the treatment of bone cancer pain.
Collapse
|
41
|
Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors. Mol Pain 2012; 8:62. [PMID: 22963123 PMCID: PMC3495672 DOI: 10.1186/1744-8069-8-62] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans. Findings Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch “puffed” cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls. Conclusions These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models.
Collapse
|