1
|
Eura N, Matsui TK, Luginbühl J, Matsubayashi M, Nanaura H, Shiota T, Kinugawa K, Iguchi N, Kiriyama T, Zheng C, Kouno T, Lan YJ, Kongpracha P, Wiriyasermkul P, Sakaguchi YM, Nagata R, Komeda T, Morikawa N, Kitayoshi F, Jong M, Kobashigawa S, Nakanishi M, Hasegawa M, Saito Y, Shiromizu T, Nishimura Y, Kasai T, Takeda M, Kobayashi H, Inagaki Y, Tanaka Y, Makinodan M, Kishimoto T, Kuniyasu H, Nagamori S, Muotri AR, Shin JW, Sugie K, Mori E. Brainstem Organoids From Human Pluripotent Stem Cells. Front Neurosci 2020; 14:538. [PMID: 32670003 PMCID: PMC7332712 DOI: 10.3389/fnins.2020.00538] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 01/10/2023] Open
Abstract
The brainstem is a posterior region of the brain, composed of three parts, midbrain, pons, and medulla oblongata. It is critical in controlling heartbeat, blood pressure, and respiration, all of which are life-sustaining functions, and therefore, damages to or disorders of the brainstem can be lethal. Brain organoids derived from human pluripotent stem cells (hPSCs) recapitulate the course of human brain development and are expected to be useful for medical research on central nervous system disorders. However, existing organoid models are limited in the extent hPSCs recapitulate human brain development and hence are not able to fully elucidate the diseases affecting various components of the brain such as brainstem. Here, we developed a method to generate human brainstem organoids (hBSOs), containing midbrain/hindbrain progenitors, noradrenergic and cholinergic neurons, dopaminergic neurons, and neural crest lineage cells. Single-cell RNA sequence (scRNA-seq) analysis, together with evidence from proteomics and electrophysiology, revealed that the cellular population in these organoids was similar to that of the human brainstem, which raises the possibility of making use of hBSOs in investigating central nervous system disorders affecting brainstem and in efficient drug screenings.
Collapse
Affiliation(s)
- Nobuyuki Eura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takeshi K. Matsui
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Joachim Luginbühl
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Naohiko Iguchi
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Yan Jun Lan
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Pornparn Kongpracha
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Pattama Wiriyasermkul
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | | | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Komeda
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Naritaka Morikawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Miyong Jong
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiko Kasai
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Maiko Takeda
- Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Yusuke Inagaki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Laboratory of Biomolecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara, Japan
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jay W. Shin
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama,Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Effects of chronic Δ 9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain. Saudi Pharm J 2017; 25:1078-1081. [PMID: 29158718 PMCID: PMC5681306 DOI: 10.1016/j.jsps.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022] Open
Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC) shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoid system and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.
Collapse
|
3
|
Yao J, Wang X, Yan H, Cai X, Wang M, Tu Y, Yang C. Enhanced Expression of Serotonin Receptor 5-Hydroxytryptamine 2C is Associated with Increased Feather Damage in Dongxiang Blue-Shelled Layers. Behav Genet 2017; 47:369-374. [PMID: 28275879 DOI: 10.1007/s10519-017-9839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
The gene encoding the serotonin receptor 5-hydroxytraptamine 2C (HTR2C) has been implicated in behavioral phenotypes in a number of species. In previous studies, a mutation in the chicken HTR2C gene was found to be associated with feather condition, thereby suggesting a relationship between the gene and receiving feather pecking activity. The present study analyzed the chicken HTR2C gene at both the genomic make-up and expression level in Dongxiang blue-shelled layer. A significant association between the single nucleotide polymorphism (SNP) rs13640917 (C/T) and feather condition was confirmed in the Chinese local layer. Enhanced HTR2C gene expression (151.1-fold) that was associated with high feather damage indicated that the right cerebrum might be the critical region for HTR2C to participate in the regulation of receiving feather pecking behavior.
Collapse
Affiliation(s)
- Junfeng Yao
- Shanghai Academy of Agricultural Sciences, No. 2901 Beidi road, Minghang Qu, Shanghai, 201106, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, No. 2901 Beidi road, Minghang Qu, Shanghai, 201106, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Huangxiang Yan
- Shanghai Academy of Agricultural Sciences, No. 2901 Beidi road, Minghang Qu, Shanghai, 201106, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, No. 2901 Beidi road, Minghang Qu, Shanghai, 201106, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Min Wang
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, No. 2901 Beidi road, Minghang Qu, Shanghai, 201106, China. .,National Poultry Engineer Research Center, Shanghai, China.
| |
Collapse
|
4
|
Larsen K, Momeni J, Farajzadeh L, Bendixen C. Differential A-to-I RNA editing of the serotonin-2C receptor G-protein-coupled, HTR2C, in porcine brain tissues. Biochimie 2015; 121:189-96. [PMID: 26707647 DOI: 10.1016/j.biochi.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/13/2015] [Indexed: 02/07/2023]
Abstract
The HTR2C gene encodes the 5-Hydroxytryptamine (serotonin) receptor 2C, G-protein-coupled protein which functions as a serotonin receptor. The HTR2C mRNA is subject to A-to-I RNA editing mediated by adenosine deaminases acting on RNA 1 and 2 (ADAR1 and ADAR2). In the current study we examined the molecular characteristics of the porcine HTR2C gene and determined the mRNA editing of the HTR2C transcript in different tissues. The A-to-I RNA editing of HTR2C was shown to be conserved in the porcine homologue with five nucleotides edited in exon 5. A differential editing was demonstrated with a high editing frequency in the frontal cortex, parietal cortex, occipital cortex, hypothalamus, brain stem and spinal cord and significantly lower in the cerebellum. No editing was seen in the liver and kidney. The porcine HTR2C gene was found to be exclusively expressed in brain tissues. The HTR2C gene was mapped to pig chromosome X. The methylation status of the HTR2C gene was examined in brain and liver by bisulfate sequencing and a high degree of methylation was found in the two tissues, at 89 and 72%, respectively. Our data describe differences in RNA editing in various regions of the porcine brain. The differences might reflect functional differences. Similarities between pigs and humans in differential RNA editing support the use of the pig as a model organism for the study of neurological diseases.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
5
|
Ma Y, Zhang H, Zhang Q, Ding X. Identification of selection footprints on the X chromosome in pig. PLoS One 2014; 9:e94911. [PMID: 24740293 PMCID: PMC3989256 DOI: 10.1371/journal.pone.0094911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/21/2014] [Indexed: 11/18/2022] Open
Abstract
Identifying footprints of selection can provide a straightforward insight into the mechanism of artificial selection and further dig out the causal genes related to important traits. In this study, three between-population and two within-population approaches, the Cross Population Extend Haplotype Homozygosity Test (XPEHH), the Cross Population Composite Likelihood Ratio (XPCLR), the F-statistics (Fst), the Integrated Haplotype Score (iHS) and the Tajima's D, were implemented to detect the selection footprints on the X chromosome in three pig breeds using Illumina Porcine60K SNP chip. In the detection of selection footprints using between-population methods, 11, 11 and 7 potential selection regions with length of 15.62 Mb, 12.32 Mb and 9.38 Mb were identified in Landrace, Chinese Songliao and Yorkshire by XPEHH, respectively, and 16, 13 and 17 potential selection regions with length of 15.20 Mb, 13.00 Mb and 19.21 Mb by XPCLR, 4, 2 and 4 potential selection regions with length of 3.20 Mb, 1.60 Mb and 3.20 Mb by Fst. For within-population methods, 7, 10 and 9 potential selection regions with length of 8.12 Mb, 8.40 Mb and 9.99 Mb were identified in Landrace, Chinese Songliao and Yorkshire by iHS, and 4, 3 and 2 potential selection regions with length of 3.20 Mb, 2.40 Mb and 1.60 Mb by Tajima's D. Moreover, the selection regions from different methods were partly overlapped, especially the regions around 22∼25 Mb were detected under selection in Landrace and Yorkshire while no selection in Chinese Songliao by all three between-population methods. Only quite few overlap of selection regions identified by between-population and within-population methods were found. Bioinformatics analysis showed that the genes relevant with meat quality, reproduction and immune were found in potential selection regions. In addition, three out of five significant SNPs associated with hematological traits reported in our genome-wide association study were harbored in potential selection regions.
Collapse
Affiliation(s)
- Yunlong Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Haihan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens HJ, Silió L, Rodríguez MC, Groenen MAM, Ramos-Onsins SE, Pérez-Enciso M. Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics 2013; 14:148. [PMID: 23497037 PMCID: PMC3601988 DOI: 10.1186/1471-2164-14-148] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/21/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In contrast to international pig breeds, the Iberian breed has not been admixed with Asian germplasm. This makes it an important model to study both domestication and relevance of Asian genes in the pig. Besides, Iberian pigs exhibit high meat quality as well as appetite and propensity to obesity. Here we provide a genome wide analysis of nucleotide and structural diversity in a reduced representation library from a pool (n=9 sows) and shotgun genomic sequence from a single sow of the highly inbred Guadyerbas strain. In the pool, we applied newly developed tools to account for the peculiarities of these data. RESULTS A total of 254,106 SNPs in the pool (79.6 Mb covered) and 643,783 in the Guadyerbas sow (1.47 Gb covered) were called. The nucleotide diversity (1.31x10-3 per bp in autosomes) is very similar to that reported in wild boar. A much lower than expected diversity in the X chromosome was confirmed (1.79x10-4 per bp in the individual and 5.83x10-4 per bp in the pool). A strong (0.70) correlation between recombination and variability was observed, but not with gene density or GC content. Multicopy regions affected about 4% of annotated pig genes in their entirety, and 2% of the genes partially. Genes within the lowest variability windows comprised interferon genes and, in chromosome X, genes involved in behavior like HTR2C or MCEP2. A modified Hudson-Kreitman-Aguadé test for pools also indicated an accelerated evolution in genes involved in behavior, as well as in spermatogenesis and in lipid metabolism. CONCLUSIONS This work illustrates the strength of current sequencing technologies to picture a comprehensive landscape of variability in livestock species, and to pinpoint regions containing genes potentially under selection. Among those genes, we report genes involved in behavior, including feeding behavior, and lipid metabolism. The pig X chromosome is an outlier in terms of nucleotide diversity, which suggests selective constraints. Our data further confirm the importance of structural variation in the species, including Iberian pigs, and allowed us to identify new paralogs for known gene families.
Collapse
Affiliation(s)
- Anna Esteve-Codina
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Luca Ferretti
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
| | | | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, Madrid, 28040, Spain
| | | | - Martein AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | | | - Miguel Pérez-Enciso
- Center for Research in Agricultural Genomics (CRAG), Campus UAB, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Carrer de Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|