1
|
Dean B, Duce J, Li QX, Masters CL, Scarr E. Lower levels of soluble β-amyloid precursor protein, but not β-amyloid, in the frontal cortex in schizophrenia. Psychiatry Res 2024; 331:115656. [PMID: 38071879 DOI: 10.1016/j.psychres.2023.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
We identified a sub-group (25%) of people with schizophrenia (muscarinic receptor deficit schizophrenia (MRDS)) that are characterised because of markedly lower levels of cortical muscarinic M1 receptors (CHRM1) compared to most people with the disorder (non-MRDS). Notably, bioinformatic analyses of our cortical gene expression data shows a disturbance in the homeostasis of a biochemical pathway that regulates levels of CHRM1. A step in this pathway is the processing of β-amyloid precursor protein (APP) and therefore we postulated there would be altered levels of APP in the frontal cortex from people with MRDS. Here we measure levels of CHRM1 using [3H]pirenzepine binding, soluble APP (sAPP) using Western blotting and amyloid beta peptides (Aβ1-40 and Aβ1-42) using ELISA in the frontal cortex (Brodmann's area 6: BA 6; MRDS = 14, non-MRDS = 14, controls = 14). We confirmed the MRDS cohort in this study had the expected low levels of [3H]pirenzepine binding. In addition, we showed that people with schizophrenia, independent of their sub-group status, had lower levels of sAPP compared to controls but did not have altered levels of Aβ1-40 or Aβ1-42. In conclusion, whilst changes in sAPP are not restricted to MRDS our data could indicate a role of APP, which is important in axonal and synaptic pruning, in the molecular pathology of the syndrome of schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - James Duce
- MSD Discovery Centre, 120 Moorgate, London, UK
| | - Qiao-Xin Li
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, Parkville, Victoria, Australia; The University of Melbourne of Melbourne Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Baret-Rose C, Tréluyer JM, Abdoul H, Gelé P, Delmaire C, Blanc F, Mangin JF, Buée L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert P, Godefroy O, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A. Plasma amyloid beta predicts conversion to dementia in subjects with mild cognitive impairment: The BALTAZAR study. Alzheimers Dement 2022; 18:2537-2550. [PMID: 35187794 DOI: 10.1002/alz.12613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Blood-based biomarkers are the next challenge for Alzheimer's disease (AD) diagnosis and prognosis. METHODS Mild cognitive impairment (MCI) participants (N = 485) of the BALTAZAR study, a large-scale longitudinal multicenter cohort, were followed-up for 3 years. A total of 165 of them converted to dementia (95% AD). Associations of conversion and plasma amyloid beta (Aβ)1-42 , Aβ1-40 , Aβ1-42 /Aβ1-40 ratio were analyzed with logistic and Cox models. RESULTS Converters to dementia had lower level of plasma Aβ1-42 (37.1 pg/mL [12.5] vs. 39.2 [11.1] , P value = .03) and lower Aβ1-42 /Aβ1-40 ratio than non-converters (0.148 [0.125] vs. 0.154 [0.076], P value = .02). MCI participants in the highest quartile of Aβ1-42 /Aβ1-40 ratio (>0.169) had a significant lower risk of conversion (hazard ratio adjusted for age, sex, education, apolipoprotein E ε4, hippocampus atrophy = 0.52 (95% confidence interval [0.31-0.86], P value = .01). DISCUSSION In this large cohort of MCI subjects we identified a threshold for plasma Aβ1-42 /Aβ1-40 ratio that may detect patients with a low risk of conversion to dementia within 3 years.
Collapse
Affiliation(s)
- Olivier Hanon
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Jean-Sébastien Vidal
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Sylvain Lehmann
- CHU Montpellier, LBPC, Inserm, Université de Montpellier, Montpellier, France
| | - Stéphanie Bombois
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Bernadette Allinquant
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Christiane Baret-Rose
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Jean-Marc Tréluyer
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Hendy Abdoul
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Patrick Gelé
- CHU Lille, CRB/CIC1403, Université de Lille, Inserm, Lille, France
| | - Christine Delmaire
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Fredéric Blanc
- CM2R, pôle de Gériatrie, Laboratoire ICube, FMTS, CNRS, équipe IMIS, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-François Mangin
- Neurospin, CEA, CNRS, cati-neuroimaging.com, CATI Multicenter Neuroimaging Platform, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Luc Buée
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Jacques Touchon
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Jacques Hugon
- APHP, Groupe Hospitalier Saint Louis-Lariboisière Fernand Widal, Center of Cognitive Neurology, Université de Paris, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Midi-Pyrénées, Université de Toulouse III, CHU La Grave-Casselardit, Toulouse, France
| | - Evelyne Galbrun
- Department of Gérontology 2, Sorbonne Université, APHP, Centre Hospitalier Dupuytren, Draveil, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Lorraine, Université de Lorraine, CHRU de Nancy, Vandoeuvre-lès-Nancy, France
| | - Gilles Berrut
- Department of Clinical Gerontology, Memory Research Resource Center of Nantes, Université de Nantes, EA 4334 Movement-Interactions-Performance, CHU Nantes, Nantes, France
| | - Elena Paillaud
- Service de Gériatrie, Université de Paris, APHP, Hôpital Europeen Georges Pompidou, Paris, France
| | - David Wallon
- CHU de Rouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, CIC-CRB1404, Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | | | - Lisette Volpe-Gillot
- Service de Neuro-Psycho-Gériatrie, Memory Clinic, Hôpital Léopold Bellan, Paris, France
| | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Poitiers, France
| | - Philippe Robert
- Memory Research Resource Center of Nice, CoBTek lab, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Olivier Godefroy
- Memory Resource and Research Centre of Amiens Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - Vincent Camus
- CHRU de Tours, UMR Inserm U1253, Université François-Rabelais de Tours, Tours, France
| | - Joël Belmin
- Service de Gériatrie Ambulatoire, Sorbonne Université, APHP, Hôpitaux Universitaires Pitie-Salpêtrière-Charles Foix, Paris, France
| | - Pierre Vandel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, CHU de Besançon, Memory Resource and Research Centre of Besançon Franche-Comté, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean-Luc Novella
- Memory Resource and Research Centre of Champagne-Ardenne, Université de Reims Champagne-Ardenne, EA 3797, CHU de Reims, Reims, France
| | - Emmanuelle Duron
- Département de gériatrie, Équipe MOODS, Inserm 1178, Université Paris-Saclay, APHP, Hôpital Paul Brousse, Villejuif, France
| | - Anne-Sophie Rigaud
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | | | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
3
|
Dobrowolska Zakaria JA, Bateman RJ, Lysakowska M, Khatri A, Jean-Gilles D, Kennedy ME, Vassar R. The metabolism of human soluble amyloid precursor protein isoforms is quantifiable by a stable isotope labeling-tandem mass spectrometry method. Sci Rep 2022; 12:14985. [PMID: 36056033 PMCID: PMC9440206 DOI: 10.1038/s41598-022-18869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that β-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPβ and amyloid-β, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPβ, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPβ and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPβ and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Collapse
Affiliation(s)
- Justyna A Dobrowolska Zakaria
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Lysakowska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ammaarah Khatri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Matthew E Kennedy
- Deparment of Neuroscience, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Yan X, Mai L, Lin C, He W, Yin G, Yu J, Huang L, Pan S. CSF-Based Analysis for Identification of Potential Serum Biomarkers of Neural Tube Defects. Neurosci Bull 2017; 33:436-444. [PMID: 28695418 DOI: 10.1007/s12264-017-0154-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023] Open
Abstract
The protein composition of cerebrospinal fluid (CSF) in neural tube defects (NTDs) remains unknown. We investigated the protein composition of CSF from 9 infants with NTDs using isobaric tags for relative and absolute quantitation (iTRAQ). We identified 568 proteins in the CSF of infants with spina bifida, which is the most common type of NTD. Among these, 18 proteins were associated with neural tube closure in the CSF during human embryonic neurulation and 5 were involved in NTDs. Based on these results, an animal model was further utilized to investigate early serum biomarkers for NTDs. We found that the myristoylated alanine-rich C-kinase substrate, Kunitz-type protease inhibitor 2, and apolipoprotein B-100 protein levels were decreased in both embryos and the sera of pregnant Sprague-Dawley rats carrying embryos with NTDs. CSF proteins may be useful in the discovery of potential serum biomarkers for NTDs.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Lixin Mai
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Changchun Lin
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China
| | - Wenji He
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China.,Department of Anatomy, Gannan Medical University, Ganzhou, 341000, China
| | - Gengsheng Yin
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiakang Yu
- Department of Pediatric Surgery, Guangzhou Children's Hospital, Guangzhou, 510623, China
| | - Lian Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Sanqiang Pan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Xiao T, Zhang W, Jiao B, Pan CZ, Liu X, Shen L. The role of exosomes in the pathogenesis of Alzheimer' disease. Transl Neurodegener 2017; 6:3. [PMID: 28184302 PMCID: PMC5289036 DOI: 10.1186/s40035-017-0072-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small vesicles secreted by most cell types including neurons that function in intercellular communication through transfer of their cargo or encapsulate and eliminate unnecessary cellular components and therefore have a broad impact on nerve development, activation and regeneration. In addition, exosomes have been observed to be involved in spreading pathological misfolded proteins, thereby leading to the onset and propagation of disease. Alzheimer disease (AD) is the most common form of dementia and characterized by two types of lesions: amyloid plaques and neurofibrillary tangles. Accumulating evidence has demonstrated that exosomes are associated with amyloid precursor (APP) and Tau proteins and play a controversial role in Alzheimer’s disease process. In this review, we will discuss the role of exosomes in the metabolism and secretion of APP and Tau proteins and their subsequent impact on AD pathogenesis.
Collapse
Affiliation(s)
- Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chu-Zheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,State Key Laboratory of Medical Genetics, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|