1
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Deantoni M, Villemonteix T, Balteau E, Schmidt C, Peigneux P. Post-Training Sleep Modulates Topographical Relearning-Dependent Resting State Activity. Brain Sci 2021; 11:brainsci11040476. [PMID: 33918574 PMCID: PMC8069225 DOI: 10.3390/brainsci11040476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Continuation of experience-dependent neural activity during offline sleep and wakefulness episodes is a critical component of memory consolidation. Using functional magnetic resonance imaging (fMRI), offline consolidation effects have been evidenced probing behavioural and neurophysiological changes during memory retrieval, i.e., in the context of task practice. Resting state fMRI (rsfMRI) further allows investigating the offline evolution of recently learned information without the confounds of online task-related effects. We used rsfMRI to investigate sleep-related changes in seed-based resting functional connectivity (FC) and amplitude of low frequency fluctuations (ALFF) after spatial navigation learning and relearning. On Day 1, offline resting state activity was measured immediately before and after topographical learning in a virtual town. On Day 4, it was measured again before and after relearning in an extended version of the town. Navigation-related activity was also recorded during target retrieval, i.e., online. Participants spent the first post-training night under regular sleep (RS) or sleep deprivation (SD) conditions. Results evidence FC and ALFF changes in task-related neural networks, indicating the continuation of navigation-related activity in the resting state. Although post-training sleep did not modulate behavioural performance, connectivity analyses evidenced increased FC after post-training SD between navigation-related brain structures during relearning in the extended environment. These results suggest that memory traces were less efficiently consolidated after post-learning SD, eventually resulting in the use of compensatory brain resources to link previously stored spatial elements with the newly presented information.
Collapse
Affiliation(s)
- Michele Deantoni
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- Psychopathology and Neuropsychology Lab, Paris 8 University, Rue de la Liberté 2, 93,526 Saint-Denis, France
| | - Evelyne Balteau
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Christina Schmidt
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Psychology and Neurosciences of Cognition (PsyNCog), Université de Liège, Quartier Agora, Place des Orateurs, 3, Bâtiment B33, 4000 Liège, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Correspondence:
| |
Collapse
|
3
|
König SU, Schumann F, Keyser J, Goeke C, Krause C, Wache S, Lytochkin A, Ebert M, Brunsch V, Wahn B, Kaspar K, Nagel SK, Meilinger T, Bülthoff H, Wolbers T, Büchel C, König P. Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception. PLoS One 2016; 11:e0166647. [PMID: 27959914 PMCID: PMC5154504 DOI: 10.1371/journal.pone.0166647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation.
Collapse
Affiliation(s)
- Sabine U. König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Frank Schumann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France
| | - Johannes Keyser
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Caspar Goeke
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Carina Krause
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Susan Wache
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Aleksey Lytochkin
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Manuel Ebert
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Vincent Brunsch
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Basil Wahn
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Kai Kaspar
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Department of Psychology, University of Cologne, Cologne, Germany
| | - Saskia K. Nagel
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Tobias Meilinger
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Thomas Wolbers
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christian Büchel
- NeuroImage Nord, Department of Systems Neuroscience, Hamburg University Hospital Eppendorf, Hamburg, Germany
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Shi J, Collignon O, Xu L, Wang G, Kang Y, Leporé F, Lao Y, Joshi AA, Leporé N, Wang Y. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry. Neuroinformatics 2016; 13:321-336. [PMID: 25649876 DOI: 10.1007/s12021-014-9259-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling's T(2) test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Liang Xu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gang Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Yue Kang
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Franco Leporé
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Yi Lao
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anand A Joshi
- Signal and Image Processing Institute, Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA
| | - Natasha Leporé
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology & Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Schinazi VR, Thrash T, Chebat DR. Spatial navigation by congenitally blind individuals. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 7:37-58. [PMID: 26683114 PMCID: PMC4737291 DOI: 10.1002/wcs.1375] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/16/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022]
Abstract
Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over‐reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. WIREs Cogn Sci 2016, 7:37–58. doi: 10.1002/wcs.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Victor R Schinazi
- Department of Humanities, Social, and Political Sciences, ETH Zürich, Zürich, Switzerland
| | - Tyler Thrash
- Department of Humanities, Social, and Political Sciences, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|