1
|
Chen J, Lu J, Wang Q, Chu C, Zeng L, Zhao J. Research progress of metalloporphyrin against neurodegen-erative diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024:1-10. [PMID: 39608792 DOI: 10.3724/zdxbyxb-2024-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Neurodegenerative disorders are a group of diseases caused by the degeneration and apoptosis of neurons in the brain and spinal cord, which seriously affect human ability of motion perception, memory and cognition. Peroxynitrite can cause oxidative damage in the brain exhibiting neurotoxicity, and its excussive accumulation is closely related to neurodegenerative diseases. Therefore, effectively scavenging peroxynitrite may become a therapeutic strategy for neurodegenerative diseases. Due to their high peroxynitrite scavenging ability, some water-soluble metalloporphyrins have recently attracted much attention. Metalloporphyrins such as iron porphyrins and manganese porphyrins have certain neuroprotective effects, including inhibiting amyloid plaque accumulation, alleviating oxidative stress and neuroinflammatory damage, improving mitochondrial function and reducing neuronal apoptosis. However, there are certain limitations for metalloporphyrins as neuroprotective drugs, and some metal porphyrins have poor blood-brain barrier penetration. To overcome the obstacle, in addition to traditional synthesis processes, metalloporphyrins can also be prepared into nanoparticles to improve bioavailability in vivo. Here, we will review the mechanisms underlying the neuroprotective effects of metalloporphyrin and explore its therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jie Chen
- Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jing Lu
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingyi Wang
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chu Chu
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou 310015, China
| | - Jie Zhao
- School of Medicine, Hangzhou City University, Hangzhou 310015, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou 310015, China.
| |
Collapse
|
2
|
Hernandez-Reynoso AG, Sturgill BS, Hoeferlin GF, Druschel LN, Krebs OK, Menendez DM, Thai TTD, Smith TJ, Duncan J, Zhang J, Mittal G, Radhakrishna R, Desai MS, Cogan SF, Pancrazio JJ, Capadona JR. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays. Biomaterials 2023; 303:122351. [PMID: 37931456 PMCID: PMC10842897 DOI: 10.1016/j.biomaterials.2023.122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress. First, we assessed the in vitro cytotoxicity of modified sample substrates. Then, we implanted 36 rats with uncoated, MnTBAP-coated ("Coated"), or (3-Aminopropyl)triethoxysilane (APTES)-coated devices - an intermediate step in the coating process. We assessed electrode performance during the acute (1-5 weeks), sub-chronic (6-11 weeks), and chronic (12-16 weeks) phases after implantation. Three subsets of animals were euthanized at different time points to assess the acute, sub-chronic and chronic immunohistological responses. Results showed that MnTBAP coatings were not cytotoxic in vitro, and their implantation in vivo improved the proportion of electrodes during the sub-chronic and chronic phases; APTES coatings resulted in failure of the neural interface during the chronic phase. In addition, MnTBAP coatings improved the quality of the signal throughout the study and reduced the neuroinflammatory response around the implant as early as two weeks, an effect that remained consistent for months post-implantation. Together, these results suggest that MnTBAP coatings are a potentially useful modification to improve MEA reliability.
Collapse
Affiliation(s)
- Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Brandon S Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - George F Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Olivia K Krebs
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Teresa T D Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Thomas J Smith
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Gaurav Mittal
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Mrudang Spandan Desai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| |
Collapse
|
3
|
Zhang S, Yang Y, Lv X, Liu W, Zhu S, Wang Y, Xu H. Unraveling the Intricate Roles of Exosomes in Cardiovascular Diseases: A Comprehensive Review of Physiological Significance and Pathological Implications. Int J Mol Sci 2023; 24:15677. [PMID: 37958661 PMCID: PMC10650316 DOI: 10.3390/ijms242115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Exosomes, as potent intercellular communication tools, have garnered significant attention due to their unique cargo-carrying capabilities, which enable them to influence diverse physiological and pathological functions. Extensive research has illuminated the biogenesis, secretion, and functions of exosomes. These vesicles are secreted by cells in different states, exerting either protective or harmful biological functions. Emerging evidence highlights their role in cardiovascular disease (CVD) by mediating comprehensive interactions among diverse cell types. This review delves into the significant impacts of exosomes on CVD under stress and disease conditions, including coronary artery disease (CAD), myocardial infarction, heart failure, and other cardiomyopathies. Focusing on the cellular signaling and mechanisms, we explore how exosomes mediate multifaceted interactions, particularly contributing to endothelial dysfunction, oxidative stress, and apoptosis in CVD pathogenesis. Additionally, exosomes show great promise as biomarkers, reflecting differential expressions of NcRNAs (miRNAs, lncRNAs, and circRNAs), and as therapeutic carriers for targeted CVD treatment. However, the specific regulatory mechanisms governing exosomes in CVD remain incomplete, necessitating further exploration of their characteristics and roles in various CVD-related contexts. This comprehensive review aims to provide novel insights into the biological implications of exosomes in CVD and offer innovative perspectives on the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (Y.Y.); (X.L.); (W.L.); (S.Z.)
| | - Hongfei Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (Y.Y.); (X.L.); (W.L.); (S.Z.)
| |
Collapse
|
4
|
Li Y, Cheng S, Wen H, Xiao L, Deng Z, Huang J, Zhang Z. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Acta Biomater 2023; 168:400-415. [PMID: 37479156 DOI: 10.1016/j.actbio.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/24/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
After spinal cord injury (SCI), endogenous neural stem cells (NSCs) near the damaged site are activated, but few NSCs migrate to the injury epicenter and differentiate into neurons because of the harsh microenvironment. It has demonstrated that implantation of hydrogel scaffold loaded with multiple cues can enhance the function of endogenous NSCs. However, programming different cues on request remains a great challenge. Herein, a time-programmed linear hierarchical structure scaffold is developed for spinal cord injury recovery. The scaffold is obtained through coaxial 3D printing by encapsulating a dual-network hydrogel (composed of hyaluronic acid derivatives and N-cadherin modified sodium alginate, inner layer) into a temperature responsive gelatin/cellulose nanofiber hydrogel (Gel/CNF, outer layer). The reactive species scavenger, metalloporphyrin, loaded in the outer layer is released rapidly by the degradation of Gel/CNF, inhibiting the initial oxidative stress at lesion site to protect endogenous NSCs; while the inner hydrogel with appropriate mechanical support, linear topology structure and bioactive cues facilitates the migration and neuronal differentiation of NSCs at the later stage of SCI treatment, thereby promoting motor functional restorations in SCI rats. This study offers an innovative strategy for fabrication of multifunctional nerve regeneration scaffold, which has potential for clinical treatment of SCI. STATEMENT OF SIGNIFICANCE: Two major challenges facing the recovery from spinal cord injury (SCI) are the low viability of endogenous neural stem cells (NSCs) within the damaged microenvironment, as well as the difficulty of neuronal regeneration at the injured site. To address these issues, a spinal cord-like coaxial scaffold was fabricated with free radical scavenging agent metalloporphyrin Mn (III) tetrakis (4-benzoic acid) porphyrin and chemokine N-cadherin. The scaffold was constructed by 3D bioprinting for time-programmed protection and modulation of NSCs to effectively repair SCI. This 3D coaxially bioprinted biomimetic construct enables multi-factor on-demand repair and may be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Huilong Wen
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Longyi Xiao
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
5
|
Qu D, Hu D, Zhang J, Yang G, Guo J, Zhang D, Qi C, Fu H. Identification and Validation of Ferroptosis-Related Genes in Patients with Acute Spinal Cord Injury. Mol Neurobiol 2023; 60:5411-5425. [PMID: 37316756 DOI: 10.1007/s12035-023-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Ferroptosis plays crucial roles in the pathology of spinal cord injury (SCI). The purpose of this study was to identify differentially expressed ferroptosis-related genes (DE-FRGs) in human acute SCI by bioinformatics analysis and validate the hub DE-FRGs in non-SCI and SCI patients. The GSE151371 dataset was downloaded from the Gene Expression Omnibus and difference analysis was performed. The differentially expressed genes (DEGs) in GSE151371 overlapped with the ferroptosis-related genes (FRGs) obtained from the Ferroptosis Database. A total of 41 DE-FRGs were detected in 38 SCI samples and 10 healthy samples in GSE151371. Then, enrichment analyses of these DE-FRGs were performed for functional annotation. The GO enrichment results showed that upregulated DE-FRGs were mainly associated with reactive oxygen species and redox reactions, and the KEGG enrichment analysis indicated involvement in some diseases and ferroptosis pathways. Protein-protein interaction (PPI) analysis and lncRNA-miRNA-mRNA regulatory network were performed to explore the correlations between genes and regulatory mechanisms. The relationship between DE-FRGs and differentially expressed mitochondria-related genes (DE-MRGs) was also analyzed. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the hub DE-FRGs in clinical blood samples from acute SCI patients and healthy controls. Consistent with the bioinformatics results, qRT-PCR of the clinical samples indicated similar expression levels of TLR4, STAT3, and HMOX1. This study identified DE-FRGs in blood samples from SCI patients, and the results could improve our understanding of the molecular mechanisms of ferroptosis in SCI. These candidate genes and pathways could be therapeutic targets for SCI.
Collapse
Affiliation(s)
- Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Die Hu
- Qingdao Eye Hospital of Shandong First Medical University, 5 Yan'er Island Road, Qingdao, 266071, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guodong Yang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jia Guo
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Dongfang Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
6
|
Lackovic J, Jeevakumar V, Burton M, Price TJ, Dussor G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J Neurosci 2023; 43:1627-1642. [PMID: 36697259 PMCID: PMC10008057 DOI: 10.1523/jneurosci.1366-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Vivek Jeevakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Michael Burton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
7
|
Lee HR, Lee YS, You YS, Huh JY, Kim K, Hong YC, Kim CH. Antimicrobial effects of microwave plasma-activated water with skin protective effect for novel disinfectants in pandemic era. Sci Rep 2022; 12:5968. [PMID: 35396389 PMCID: PMC8992786 DOI: 10.1038/s41598-022-10009-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Skin antiseptics have important implications for public health and medicine. Although conventional antiseptics have considerable antimicrobial activity, skin toxicity and the development of resistance are common problems. Plasma-treated water has sterilization and tissue-regenerative effects. Therefore, the aim of this study was to identify whether plasma-activated water (PAW) manufactured by our microwave plasma system can be used as a novel antiseptic solution for skin protection. PAW was produced by dissolving reactive nitrogen oxide gas using microwave plasma in deionized water. The antibacterial effects of PAW against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Salmonella typhimurium and effective concentrations were investigated by a solid agar plate assay. The factors mediating the effects of PAW were evaluated by the addition of reactive species scavengers. Cytotoxicity and cell viability assays were performed to examine the protective effect of PAW on normal skin cells. PAW exhibited excellent sterilization and no toxicity in normal skin cells. Experiments also confirmed the potential of PAW as a sanitizer for SARS-CoV-2. Our findings support the use of PAW as an effective skin disinfectant with good safety in the current situation of a global pandemic.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World-Cup Street, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Young Suk You
- Plarit Co., Ltd., 443 Samnye-ro Samnye-eup, Wanju-gun, Jeollabuk-do, 565-701, Republic of Korea
| | - Jin Young Huh
- ICD Co., Ltd., 274 Manse-ro, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17542, Republic of Korea
| | - Kangil Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 814-2 Ohsikdo-dong, Gunsan, 573-540, Republic of Korea
| | - Yong Cheol Hong
- Division of Applied Technology Research, National Fusion Research Institute, 113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World-Cup Street, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
8
|
Zhang Q, Liu Y, Wu J, Zeng L, Wei J, Fu S, Ye H, Li H, Gao Z. Structure and mechanism behind the inhibitory effect of water soluble metalloporphyrins on Aβ1-42 aggregation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01434j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the exact molecular mechanism of the pathogenesis of Alzheimer’s disease (AD) is still unclear, compounds that can inhibit the aggregation of amyloid-β peptide (Aβ1-42) or scavenge the highly toxic...
Collapse
|
9
|
Li J, Wei J, Gao Z, Yin G, Li H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics 2021; 13:6134099. [PMID: 33576808 DOI: 10.1093/mtomcs/mfab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
Understanding the toxicological properties of MnIII-porphyrins (MnTPPS, MnTMPyP, or MnTBAP) can provide important biochemical rationales in developing them as the therapeutic drugs against protein tyrosine nitration-induced inflammation diseases. Here, we present a comprehensive understanding of the pH-dependent redox behaviors of these MnIII-porphyrins and their structural effects on catalyzing bovine serum albumin (BSA) nitration in the presence of H2O2 and NO2-. It was found that both MnTPPS and MnTBAP stand out in catalyzing BSA nitration at physiologically close condition (pH 8), yet they are less effective at pH 6 and 10. MnTMPyP was shown to have no ability to catalyze BSA nitration under all tested pHs (pH 6, 8, and 10). The kinetics and active intermediate determination through electrochemistry method revealed that both the pH-dependent redox behavior of the central metal cation and the antioxidant capability of porphin derivative contribute to the catalytic activities of three MnIII-porphyrins in BSA nitration in the presence of H2O2/NO2-. These comprehensive studies on the oxidative reactivity of MnIII-porphyrins toward BSA nitration may provide new clues for searching the manganese-based therapeutic drugs against the inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayu Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingjing Wei
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhonghong Gao
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hailing Li
- Hubei Provincial Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Kiskurno S, Ryan RM, Paturi B, Wang H, Kumar VH. Antioxidant MnTBAP does not protect adult mice from neonatal hyperoxic lung injury. Respir Physiol Neurobiol 2020; 282:103545. [PMID: 32927098 DOI: 10.1016/j.resp.2020.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Oxygen therapy and mechanical ventilation are important predisposing factors for the development of bronchopulmonary dysplasia (BPD), leading to increased morbidity and mortality in premature infants. Oxygen toxicity mediated by reactive oxygen species (ROS) may play an important part in the development of BPD. We studied the effects of MnTBAP, a catalytic antioxidant on airway responsiveness and alveolar simplification in adult mice following neonatal hyperoxia. METHODS Mice litters were randomized to 85 %O2 or room air (RA) on D3 for 12 days to receive either MnTBAP (10 mg/kg/d) or saline intraperitoneally. Methacholine challenge (MCC) performed at 8 and 12 weeks of age by whole-body plethysmography to assess airway reactivity. Alveolarization quantified on lung sections by radial alveolar count (RAC) and mean linear intercept (MLI). Cell counts assessed from bronchoalveolar lavage (BAL) performed at 15 weeks. RESULTS Mice exposed to hyperoxia and MnTBAP (OXMN) had significantly higher airway reactivity post-MCC at 8 weeks compared to RA and O2 groups. At 12 weeks, airway reactivity was higher post-MCC in both hyperoxia and OXMN groups. MnTBAP did not attenuate hyperoxia-induced airway reactivity in adult mice. Hyperoxia exposed mice demonstrated large and distended alveoli on histopathology at 2 and 15 weeks. MnTBAP did not ameliorate hyperoxia-induced lung injury as assessed by RAC/MLI. Absolute lymphocyte count was significantly higher in BAL in the hyperoxia and OXMN groups. CONCLUSIONS MnTBAP, a catalytic antioxidant, did not afford protection from hyperoxia-induced lung injury in adult mice.
Collapse
Affiliation(s)
- Sergei Kiskurno
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Rita M Ryan
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Babu Paturi
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Huamei Wang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
11
|
Bighinati A, Focarete ML, Gualandi C, Pannella M, Giuliani A, Beggiato S, Ferraro L, Lorenzini L, Giardino L, Calzà L. Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. J Neurotrauma 2020; 37:1708-1719. [PMID: 32212901 DOI: 10.1089/neu.2019.6949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is an incurable condition, in which a cascade of cellular and molecular events triggered by inflammation and excitotoxicity impairs endogenous regeneration, namely remyelination and axonal outgrowth. We designed a treatment solution based on an implantable biomaterial (electrospun poly (l-lactic acid) [PLLA]) loaded with ibuprofen and triiodothyronine (T3) to counteract inflammation, thus improving endogenous regeneration. In vivo efficacy was tested by implanting the drug-loaded PLLA in the rat model of T8 contusion SCI. We observed the expected recovery of locomotion beginning on day 7. In PLLA-implanted rats (i.e., controls), the recovery stabilized at 21 days post-lesion (DPL), after which no further improvement was observed. On the contrary, in PLLA + ibuprofen (Ibu) + T3 (PLLA-Ibu-T3) rats a further recovery and a significant treatment effect were observed, also confirmed by the gait analysis on 49 DPL. Glutamate release at 24 h and 8 DPL was reduced in PLLA-Ibu-T3- compared to PLLA-implanted rats, such as the estimated lesion volume at 60 DPL. The myelin- and 200-neurofilament-positive area fraction was higher in PLLA-Ibu-T3-implanted rats, where the percentage of astrocytes was significantly reduced. The implant of a PLLA electrospun scaffold loaded with Ibu and T3 significantly improves the endogenous regeneration, leading to an improvement of functional locomotion outcome in the SCI.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Department of Chemistry "Giacomo Ciamician" and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Alessandro Giuliani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products, University of Ferrara, Ferrara, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy
| | - Laura Calzà
- Health Sciences and Technologies (HST) CIRI-SDV, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Iret Foundation, Ozzano Emilia, Emilia, Italy.,Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Eccardt AM, Pelzel RJ, Mattathil L, Moon YA, Mannino MH, Janowiak BE, Fisher JS. A peroxidase mimetic protects skeletal muscle cells from peroxide challenge and stimulates insulin signaling. Am J Physiol Cell Physiol 2020; 318:C1214-C1225. [PMID: 32348172 DOI: 10.1152/ajpcell.00167.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species such as hydrogen peroxide have been implicated in causing metabolic dysfunction such as insulin resistance. Heme groups, either by themselves or when incorporated into proteins, have been shown to scavenge peroxide and demonstrate protective effects in various cell types. Thus, we hypothesized that a metalloporphyrin similar in structure to heme, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), would be a peroxidase mimetic that could defend cells against oxidative stress. After demonstrating that FeTBAP has peroxidase activity with reduced nicotinamide adenine dinucleotide phosphate (NADPH) and NADH as reducing substrates, we determined that FeTBAP partially rescued C2C12 myotubes from peroxide-induced insulin resistance as measured by phosphorylation of AKT (S473) and insulin receptor substrate 1 (IRS-1, Y612). Furthermore, we found that FeTBAP stimulates insulin signaling in myotubes and mouse soleus skeletal muscle to about the same level as insulin for phosphorylation of AKT, IRS-1, and glycogen synthase kinase 3β (S9). We found that FeTBAP lowers intracellular peroxide levels and protects against carbonyl formation in myotubes exposed to peroxide. Additionally, we found that FeTBAP stimulates glucose transport in myotubes and skeletal muscle to about the same level as insulin. We conclude that a peroxidase mimetic can blunt peroxide-induced insulin resistance and also stimulate insulin signaling and glucose transport, suggesting a possible role of peroxidase activity in regulation of insulin signaling.
Collapse
Affiliation(s)
- Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Ross J Pelzel
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Lyn Mattathil
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Yerin A Moon
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | - Mark H Mannino
- Department of Biology, Saint Louis University, St. Louis, Missouri
| | | | | |
Collapse
|
13
|
Cao X, Luo D, Li T, Huang Z, Zou W, Wang L, Lian K, Lin D. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts. J Bone Miner Metab 2020; 38:27-37. [PMID: 31493249 DOI: 10.1007/s00774-019-01038-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
The development of postmenopausal osteoporosis is thought to be closely related to oxidative stress. Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase (SOD) mimetic, could protect osteoblasts from cytotoxicity and dysfunction caused by oxidative stress. However, it is still unclear whether MnTBAP has effect on the development of postmenopausal osteoporosis. Here, we demonstrated that MnTBAP can inhibit bone mass loss and bone microarchitecture alteration, and increase the number of osteoblasts while reducing osteoclasts number, as well as improve the BMP-2 expression level in ovariectomized rat model. Additionally, MnTBAP can also prevent oxidative stress status up-regulation induced by ovariotomy and hydrogen peroxide (H2O2). Furthermore, MnTBAP reduced the effect of oxidative stress on osteoblasts differentiation and increased BMP-2 expression levels with a dose-dependent manner, via reducing the levels of mitochondrial oxidative stress in osteoblasts. Taken together, our findings provide new insights that MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts, and maybe a potential drug in postmenopausal osteoporosis therapy.
Collapse
Affiliation(s)
- Xiangchang Cao
- Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Teng Li
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Zunxian Huang
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Weitao Zou
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Lei Wang
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Kejian Lian
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China.
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China.
| |
Collapse
|
14
|
Da Rocha S, Bigot J, Onodi F, Cosette J, Corre G, Poupiot J, Fenard D, Gjata B, Galy A, Neildez-Nguyen TMA. Temporary Reduction of Membrane CD4 with the Antioxidant MnTBAP Is Sufficient to Prevent Immune Responses Induced by Gene Transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:285-299. [PMID: 31497619 PMCID: PMC6718808 DOI: 10.1016/j.omtm.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022]
Abstract
Unexpectedly, the synthetic antioxidant MnTBAP was found to cause a rapid and reversible downregulation of CD4 on T cells in vitro and in vivo. This effect resulted from the internalization of membrane CD4 T cell molecules into clathrin-coated pits and involved disruption of the CD4/p56Lck complex. The CD4 deprivation induced by MnTBAP had functional consequences on CD4-dependent infectious processes or immunological responses as shown in various models, including gene therapy. In cultured human T cells, MnTBAP-induced downregulation of CD4 functionally suppressed gp120- mediated lentiviral transduction in a model relevant for HIV infection. The injection of MnTBAP in mice reduced membrane CD4 on lymphocytes in vivo within 5 days of treatment, preventing OVA peptide T cell immunization while allowing subsequent immunization once treatment was stopped. In a mouse gene therapy model, MnTBAP treatment at the time of adenovirus-associated virus (AAV) vector administration, successfully controlled the induction of anti-transgene and anti-capsid immune responses mediated by CD4+ T cells, enabling the redosing mice with the same vector. These functional data provide new avenues to develop alternative therapeutic immunomodulatory strategies based on temporary regulation of CD4. These could be particularly useful for AAV gene therapy in which novel strategies for redosing are needed.
Collapse
Affiliation(s)
- Sylvie Da Rocha
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Jérémy Bigot
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Fanny Onodi
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | | | - Guillaume Corre
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Jérôme Poupiot
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - David Fenard
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | | | - Anne Galy
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| | - Thi My Anh Neildez-Nguyen
- Ecole Pratique des Hautes Etudes, PSL Research University, INTEGRARE UMR_S951, INSERM, Généthon, Univ-Evry, 91002 Evry, France
| |
Collapse
|
15
|
Circulating Exosomes Isolated from Septic Mice Induce Cardiovascular Hyperpermeability Through Promoting Podosome Cluster Formation. Shock 2019. [PMID: 28650928 DOI: 10.1097/shk.0000000000000928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Septic shock increases vascular permeability, leading to multiple organ failure including cardiac dysfunction, a major contributor to septic death. Podosome, an actin-based dynamic membrane structure, plays critical roles in extracellular matrix degradation and angiogenesis. However, whether podosome contributes to endothelial barrier dysfunction during septic shock remains unknown. In this study, we found that the endothelial hyperpermeability, stimulated by phorbol 12-myristate 13-acetate and thrombin, was accompanied by increased formation of podosome clusters at the cell periphery, indicating a positive correlation between podosome clusters and endothelial leakage. Interestingly, we observed that circulating exosomes collected from septic mice were able to stimulate podosome cluster formation in cardiac endothelial cells, together with increased permeability in vitro/in vivo and cardiac dysfunction. Mechanistically, we identified that septic exosomes contained higher levels of reactive oxygen species (ROS) than normal ones, which were effectively transported to endothelial cells (ECs). Depletion of ROS in septic exosomes significantly reduced their capacity for promoting podosome cluster formation and thereby dampened vascular leakage. Finally, we elucidated that podosome cluster-induced endothelial hyperpermeability was associated with fragmentation/depletion of zonula occludens-1 (ZO-1) at the cell periphery. Our results demonstrate that septic exosomes were enriched with high amounts of ROS, which can be transported to ECs, leading to the generation of podosome clusters in target ECs and thereby, causing ZO-1 relocation, vascular leakage, and cardiac dysfunction.
Collapse
|
16
|
Metallothionein-I + II Reduces Oxidative Damage and Apoptosis after Traumatic Spinal Cord Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3265918. [PMID: 30524652 PMCID: PMC6247576 DOI: 10.1155/2018/3265918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 01/21/2023]
Abstract
After spinal cord injury (SCI), some self-destructive mechanisms start leading to irreversible neurological deficits. It is known that oxidative stress and apoptosis play a major role in increasing damage after SCI. Metallothioneins I and II (MT) are endogenous peptides with known antioxidant, neuroprotective capacities. Taking advantage of those capacities, we administered exogenous MT to rats after SCI in order to evaluate the protective effects of MT on the production of reactive oxygen species (ROS) and lipid peroxidation (LP), as markers of oxidative stress. The activities of caspases-9 and -3 and the number of annexin V and TUNEL-positive cells in the spinal cord tissue were also measured as markers of apoptosis. Rats were subjected to either sham surgery or SCI and received vehicle or two doses of MT (10 μg per rat) at 2 and 8 h after surgical procedure. The results showed a significant increase in levels of MT protein by effect of SCI and SCI plus treatment at 12 h, while at 24 h an increase of MT was observed only in the injury plus treatment group (p < 0.05). ROS production was decreased by effect of MT in lesioned tissue; likewise, we observed diminished LP levels by MT effect both in the sham group and in the group with SCI. Also, the results showed an increase in the activity of caspase-9 due to SCI, without changes by effect of MT, as compared to the sham group. Caspase-3 activity was increased by SCI, and again, MT treatment reduced this effect only at 24 h after injury. Finally, the results of the number of cells positive to annexin V and TUNEL showed a reduction due to MT treatment both at 24 and 72 h after the injury. With the findings of this work, we conclude that exogenously administered MT has antioxidant and antiapoptotic effects after SCI.
Collapse
|
17
|
Metzner C, Mäki-Marttunen T, Zurowski B, Steuber V. Modules for Automated Validation and Comparison of Models of
Neurophysiological and Neurocognitive Biomarkers of Psychiatric Disorders:
ASSRUnit—A Case Study. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1162/cpsy_a_00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018; 13:024105. [PMID: 29155409 PMCID: PMC5824690 DOI: 10.1088/1748-605x/aa9bbb] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nature of traumatic spinal cord injury (SCI) often involves limited recovery and long-term quality of life complications. The initial injury sets off a variety of secondary cascades, which result in an expanded lesion area. Ultimately, the native tissue fails to regenerate. As treatments are developed in the laboratory, the management of this secondary cascade is an important first step in achieving recovery of normal function. Current literature identifies four broad targets for intervention: inflammation, oxidative stress, disruption of the blood-spinal cord barrier, and formation of an inhibitory glial scar. Because of the complex and interconnected nature of these events, strategies that combine multiple therapies together show much promise. Specifically, approaches that rely on biomaterials to perform a variety of functions are generating intense research interest. In this review, we examine each target and discuss how biomaterials are currently used to address them. Overall, we show that there are an impressive amount of biomaterials and combinatorial treatments which show good promise for slowing secondary events and improving outcomes. If more emphasis is placed on growing our understanding of how materials can manage secondary events, treatments for SCI can be designed in an increasingly rational manner, ultimately improving their potential for translation to the clinic.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Biomedical Engineering, Auburn Science and Engineering Center 275, West Tower, University of Akron, Akron, OH 44325-3908, United States of America
| | | |
Collapse
|
19
|
Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 2018; 87:25-31. [DOI: 10.1016/j.jchemneu.2017.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
20
|
Nazari M, Xi M, Lerch S, Alizadeh MH, Ettinger C, Akiyama H, Gillespie C, Gummuluru S, Erramilli S, Reinhard BM. Plasmonic Enhancement of Selective Photonic Virus Inactivation. Sci Rep 2017; 7:11951. [PMID: 28931903 PMCID: PMC5607298 DOI: 10.1038/s41598-017-12377-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
Femtosecond (fs) pulsed laser irradiation techniques have attracted interest as a photonic approach for the selective inactivation of virus contaminations in biological samples. Conventional pulsed laser approaches require, however, relatively long irradiation times to achieve a significant inactivation of virus. In this study, we investigate the enhancement of the photonic inactivation of Murine Leukemia Virus (MLV) via 805 nm femtosecond pulses through gold nanorods whose localized surface plasmon resonance overlaps with the excitation laser. We report a plasmonically enhanced virus inactivation, with greater than 3.7-log reduction measured by virus infectivity assays. Reliable virus inactivation was obtained for 10 s laser exposure with incident laser powers ≥0.3 W. Importantly, the fs-pulse induced inactivation was selective to the virus and did not induce any measurable damage to co-incubated antibodies. The loss in viral infection was associated with reduced viral fusion, linking the loss in infectivity with a perturbation of the viral envelope. Based on the observations that physical contact between nanorods and virus particles was not required for viral inactivation and that reactive oxygen species (ROS) did not participate in the detected viral inactivation, a model of virus inactivation based on plasmon enhanced shockwave generation is proposed.
Collapse
Affiliation(s)
- Mina Nazari
- Departments of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Min Xi
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Sarah Lerch
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - M H Alizadeh
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States.,The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Chelsea Ettinger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Shyamsunder Erramilli
- Departments of Physics, Boston University, Boston, MA, 02215, United States. .,The Photonics Center, Boston University, Boston, MA, 02215, United States.
| | - Björn M Reinhard
- Departments of Chemistry, Boston University, Boston, MA, 02215, United States. .,The Photonics Center, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
21
|
KOFF MARCOANTONIOEDUARDO, AJIBOYE LUKMANOLALEKAN, LISBOA NATÁLIADIEL, FALAVIGNA ASDRUBAL. SYSTEMATIC REVIEW OF RECOVERY OF SPINAL CORD INJURY WITH ANTIOXIDANT THERAPY. COLUNA/COLUMNA 2017. [DOI: 10.1590/s1808-1851201716011171639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of the paper is to analyze the frequency and efficacy of experimental studies with antioxidant therapy. A search was conducted in the pubmed.gov database using the keywords "antioxidants" AND "spinal cord injury", from January 2000 to December 2015, resulting in 686 articles. Studies of non-traumatic injuries, non-antioxidant therapies, absence of neurological and functional evaluation, and non-experimental studies were excluded, leaving a total of 43 articles. The most used therapies were melatonin (16.2%), quercetin (9.3%), epigallocatechin and edaravone (6.9%). The most frequent route of administration was intraperitoneal (72.09%). The dose and mode of administration varied greatly, with a single dose being the most commonly used (39.53%). The time elapsed from trauma to treatment was 0-15 minutes (41.8%), 15-60 minutes (30%) and over 60 minutes (10.6%). Histological analysis was performed in 32 studies (74.41%). The BBB scale was the main functional measure applied (55.8%), followed by the inclined plane test (16.2%) and the Tarlov scale (13.9%). Positive outcomes were observed in 37 studies (86.04%). The heterogeneity of antioxidant therapy, with different types, doses, and measurements observed, limits the comparison of efficacy. Standardized protocols are required to make clinical translation possible.
Collapse
|
22
|
Quan M, Cai CL, Valencia GB, Aranda JV, Beharry KD. MnTBAP or Catalase Is More Protective against Oxidative Stress in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia than Their Co-Administration (EUK-134). REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 3:47-65. [PMID: 29806034 PMCID: PMC5967656 DOI: 10.20455/ros.2017.801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinopathy of prematurity is a blinding disease that affects extremely low gestational age neonates. Its etiology is due to extrauterinehyperoxia in an immature antioxidant system culminating as oxidative stress on the retina. Our aim is to elucidate the role of pharmacological antioxidants in modulating the biochemical and molecular response of human retinal microvascular endothelial cells (HRECs) exposed to oxidative stress. HRECs were treated with MnTBAP [a superoxide dismutase (SOD) mimetic], catalase, EUK-134 (SOD + catalase), or saline prior to exposure to normoxia (Nx), hyperoxia (Hx), or intermittent hypoxia (IH). Media levels of SOD, catalase, glutathione peroxidase (GPx), 8-isoPGF2α, and H2O2; cellular SOD and catalase; cellular function (migration and tube formation); and antioxidant gene expression were assessed. Pharmacological antioxidants had delayed suppressive effect on 8-isoPGF2α. MnTBAP and catalase were more effective for H2O2 scavenging in the media than co-administration in the form of EUK-134. A delayed response was noted in SOD and catalase media activity in MnTBAP- and catalase-treated cells, respectively in 50% and IH. MnTBAP had progressively increased media GPx in all oxygen conditions. Antioxidants resulted in normal, but more abundant tubulogenesis in IH and Hx. The distinct temporal response to oxidative stress reflected the respective antioxidant's potency and catalytic properties. The cell permeability of the antioxidants limited the ability to scavenge intracellular free radicals. The results support that MnTBAP or catalase may be more effective for the prevention of oxidative stress in oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Michelle Quan
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| |
Collapse
|
23
|
Ramos RCDV, Alegrete N. O papel da farmacoterapia na modificação do estado neurológico de traumatizados vértebro‐medulares. Rev Bras Ortop 2015. [DOI: 10.1016/j.rbo.2014.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
do Vale Ramos RC, Alegrete N. The role of pharmacotherapy in modifying the neurological status of patients with spinal and spinal cord injuries. Rev Bras Ortop 2015; 50:617-24. [PMID: 27218071 PMCID: PMC4866940 DOI: 10.1016/j.rboe.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 01/03/2023] Open
Abstract
The aim here was to conduct a review of the literature on pharmacological therapies for modifying the neurological status of patients with spinal cord injuries. The PubMed database was searched for articles with the terms "spinal cord injury AND methylprednisolone/GM1/apoptosis inhibitor/calpain inhibitor/naloxone/tempol/tirilazad", in Portuguese or in English, published over the last five years. Older studies were included because of their historical importance. The pharmacological groups were divided according to their capacity to interfere with the physiopathological mechanisms of secondary injuries. Use of methylprednisolone needs to be carefully weighed up: other anti-inflammatory agents have shown benefits in humans or in animals. GM1 does not seem to have greater efficacy than methylprednisolone, but longer-term studies are needed. Many inhibitors of apoptosis have shown benefits in in vitro studies or in animals. Naloxone has not shown benefits. Tempol inhibits the main consequences of oxidation at the level of the spinal cord and other antioxidant drugs seem to have an effect superior to that of methylprednisolone. There is an urgent need to find new treatments that improve the neurological status of patients with spinal cord injuries. The benefits from treatment with methylprednisolone have been questioned, with concerns regarding its safety. Other drugs have been studied, and some of these may provide promising alternatives. Additional studies are needed in order to reach conclusions regarding the benefits of these agents in clinical practice.
Collapse
|
25
|
Kertmen H, Gürer B, Yilmaz ER, Kanat MA, Arikok AT, Ergüder BI, Hasturk AE, Ergil J, Sekerci Z. Antioxidant and antiapoptotic effects of darbepoetin-α against traumatic brain injury in rats. Arch Med Sci 2015; 11:1119-28. [PMID: 26528358 PMCID: PMC4624756 DOI: 10.5114/aoms.2015.54869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION In this study, we tried to determine whether darbepoetin-α would protect the brain from oxidative stress and apoptosis in a rat traumatic brain injury model. MATERIAL AND METHODS The animals were randomized into four groups; group 1 (sham), group 2 (trauma), group 3 (darbepoetin α), group 4 (methylprednisolone). In the sham group only the skin incision was performed. In all the other groups, a moderate traumatic brain injury modelwas applied. RESULTS Following trauma both glutathione peroxidase, superoxide dismutase levels decreased (p < 0.001 for both); darbepoetin-α increased the activity of both antioxidant enzymes (p = 0.001 and p < 0.001 respectively). Trauma caused significant elevation in the nitric oxide synthetase and xanthine oxidase levels (p < 0.001 for both). Administration of darbepoetin-α significantly decreased the levels of nitric oxide synthetase and xanthine oxidase (p < 0.001 for both). Also, trauma caused significant elevation in the nitric oxide levels (p < 0.001); darbepoetin-α administration caused statistically significant reduction in the nitric oxide levels (p < 0.001). On the other hand, malondialdehyde levels were increased following trauma (p < 0.001), and darbepoetin α significantly reduced the malondialdehyde levels (p < 0.001). Due to the elevated apoptotic activity following the injury, caspase-3 activity increased significantly. Darbepoetin-α treatment significantly inhibited apoptosis by lowering the caspase-3 activity (p < 0.001). In the darbepoetin group, histopathological score was lower than the trauma group (p = 0.016). CONCLUSIONS In this study, darbepoetin-α was shown to be at least as effective as methylprednisolone in protecting brain from oxidative stress, lipid peroxidation and apoptosis.
Collapse
Affiliation(s)
- Hayri Kertmen
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Mehmet Ali Kanat
- Ministry of Health, Refik Saydam National Public Health Agency, Ankara, Turkey
| | - Ata Türker Arikok
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | - Askin Esen Hasturk
- Department of Neurosurgery, Ministry of Health, Oncology Training and Research Hospital, Ankara, Turkey
| | - Julide Ergil
- Department of Anesthesiology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Zeki Sekerci
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| |
Collapse
|
26
|
Brestoff JR, Brodsky T, Sosinsky AZ, McLoughlin R, Stansky E, Fussell L, Sheppard A, DiSanto-Rose M, Kershaw EE, Reynolds TH. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity. PLoS One 2015; 10:e0137388. [PMID: 26397111 PMCID: PMC4580604 DOI: 10.1371/journal.pone.0137388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression.
Collapse
Affiliation(s)
- Jonathan R. Brestoff
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Tim Brodsky
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Alexandra Z. Sosinsky
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Ryan McLoughlin
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Elena Stansky
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Leila Fussell
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Aaron Sheppard
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Maria DiSanto-Rose
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
| | - Erin E. Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas H. Reynolds
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gaudet AD, Sweet DR, Polinski NK, Guan Z, Popovich PG. Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci 2014; 64:84-94. [PMID: 25542813 DOI: 10.1016/j.mcn.2014.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Galectin (Gal)-1 is a small carbohydrate-binding protein and immune modulatory cytokine that is synthesized locally at the site of peripheral nerve injury. In this environment, Gal1 can promote regeneration of injured peripheral axons, in part by modifying the function of macrophages recruited to the site of injury. Unlike in injured peripheral nerves, macrophages do not promote axon regeneration in the injured central nervous system (CNS), perhaps because Gal1 levels are not regulated appropriately. Because the dynamics and cellular localization of endogenous Gal1 have not been rigorously characterized after CNS injury, we examined the spatio-temporal distribution of Gal1 in rat spinal cords subjected to a standardized contusion injury. Whereas Gal1 was not expressed in uninjured spinal cord, it was significantly upregulated after SCI, especially within the lesion core. Gal1 was expressed in ~40% of lesion-localized macrophages at 3-28 days post-injury (dpi), and in ~45% of astrocytes in the lesion border at 7-28 dpi. Most lesion-localized Gal1+ macrophages did not express the phagocytosis marker ED1, and Gal1+ cells contained less phagocytosed lipids. These data suggest that time- and location-dependent regulation of Gal1 by macrophages (and astrocytes) could be important for modulating phagocytosis, inflammation/gliosis, and axon growth after SCI.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Center for Brain and Spinal Cord Repair, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA.
| | - David R Sweet
- Center for Brain and Spinal Cord Repair, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA
| | - Nicole K Polinski
- Center for Brain and Spinal Cord Repair, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA
| | - Zhen Guan
- Center for Brain and Spinal Cord Repair, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Room 670, Biomedical Research Tower, 460W. 12th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin. Neuroscience 2014; 285:81-96. [PMID: 25451281 DOI: 10.1016/j.neuroscience.2014.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023]
Abstract
We previously demonstrated that hydrogen peroxide concentration ([H2O2]) significantly increases after spinal cord injury (SCI). The present study explored (1) whether SCI-elevated [H2O2] is sufficient to induce oxidation and cell death, (2) if apoptosis is a pathway of H2O2-induced cell death, and (3) whether H2O2-induced oxidation and cell death could be reversed by treatment with the catalytic antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). H2O2 was perfused through a microcannula into the uninjured rat spinal cord to mimic the conditions induced by SCI. Protein and DNA oxidation, membrane phospholipids peroxidation (MLP), cell death and apoptosis were characterized by histochemical and immunohistochemical staining with antibodies against markers of oxidation and apoptosis. Stained cells were quantified in sections of H2O2-, or artificial cerebrospinal fluid (ACSF)-exposed with vehicle-, or MnTBAP-treated groups. Compared with ACSF-exposed animals, SCI-elevated [H2O2] significantly increased intracellular protein and DNA oxidation by threefold and MLP by eightfold in neurons, respectively. H2O2-elevated extracellular malondialdehyde was measured by microdialysis sampling. We demonstrated that SCI-elevated [H2O2] significantly increased extracellular malondialdehyde above pre-injury levels. H2O2 also significantly increased cell loss and the numbers of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-(dUTP)-biotin nick end labeling (TUNEL)-positive and active caspase-3-positive neurons by 2.3-, 2.8-, and 5.6-fold compared to ACSF controls, respectively. Our results directly and unequivocally demonstrate that SCI-elevated [H2O2] contributes to post-SCI MLP, protein, and DNA oxidation to induce cell death. Therefore, we conclude that (1) the role of H2O2 in secondary SCI is pro-oxidation and pro-cell death, (2) apoptosis is a pathway for SCI-elevated [H2O2] to induce cell death, (3) caspase activation is a mechanism of H2O2-induced apoptosis after SCI, and (4) MnTBAP treatment significantly decreased H2O2-induced oxidation, cell loss, and apoptosis to the levels of ACSF controls, further supporting MnTBAP's ability to scavenge H2O2 by in vivo evidence.
Collapse
|
29
|
Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CC, Reboucas JS, Radi R, Spasojevic I, Benov L, Batinic-Haberle I. Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 2014; 53:11467-83. [PMID: 25333724 PMCID: PMC4220860 DOI: 10.1021/ic501329p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP(5+), MnTnHexOE-2-PyP(5+), MnTE-2-PyPhP(5+), and MnTPhE-2-PyP(5+)) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP(5+), MnTE-3-PyP(5+), and MnTBAP(3-). All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for Mn(III)P/Mn(II)P redox couple, ranging from -194 to +340 mV versus NHE, log kcat(O2(•-)) from 3.16 to 7.92, and log kred(ONOO(-)) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range -1.67 to -7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2(•-) specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5-10 μM range. At up to 200 μM, MnTBAP(3-) (E1/2 = -194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP(5+) with 129 mV more positive E1/2 (-65 mV vs NHE) was fully efficacious at 50 μM. The E1/2 of Mn(III)P/Mn(II)P redox couple is proportional to the log kcat(O2(•-)), i.e., the SOD-like activity of MnPs. It is further proportional to kred(ONOO(-)) and the ability of MnPs to prevent lipid peroxidation. In turn, the inhibition of lipid peroxidation by MnPs is also proportional to their SOD-like activity. In an in vivo S. cerevisiae assay, however, while E1/2 predominates, lipophilicity significantly affects the efficacy of MnPs. MnPs of similar log POW and E1/2, that have linear alkyl or alkoxyalkyl pyridyl substituents, distribute more easily within a cell and in turn provide higher protection to S. cerevisiae in comparison to MnP with bulky cyclic substituents. The bell-shape curve, with MnTE-2-PyP(5+) exhibiting the highest ability to catalyze ascorbate oxidation, has been established and discussed. Our data support the notion that the SOD-like activity of MnPs parallels their therapeutic potential, though species other than O2(•-), such as peroxynitrite, H2O2, lipid reactive species, and cellular reductants, may be involved in their mode(s) of action(s).
Collapse
Affiliation(s)
- Artak Tovmasyan
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Sebastian Carballal
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Robert Ghazaryan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Lida Melikyan
- Department of Organic Chemistry, Faculty
of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Tin Weitner
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Clarissa
G. C. Maia
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Julio S. Reboucas
- Departamento de Quimica, CCEN, Universidade
Federal de Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical
Research, Facultad de Medicina, Universidad
de la República, Montevideo, Uruguay
| | - Ivan Spasojevic
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ines Batinic-Haberle
- Departments of Radiation Oncology and Medicine, Duke University Medical Center, Research Drive, 281b MSRB I, Durham, North Carolina 27710, United States
| |
Collapse
|
30
|
Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 2014; 48:1426-42. [PMID: 25185063 DOI: 10.3109/10715762.2014.960865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.
Collapse
Affiliation(s)
- T Celic
- Department of Anatomy, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bedreag OH, Rogobete AF, Sărăndan M, Cradigati A, Păpurică M, Roşu OM, Dumbuleu CM, Săndesc D. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Rom J Anaesth Intensive Care 2014; 21:123-129. [PMID: 28913444 PMCID: PMC5505350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Spinal cord injury (SCI) is often accompanied by motor, vegetative and sensitive dysfunctions that can significantly decrease the chance of the complete recovery of the patients. The pathophysiological implication of these dysfunctions is represented by the increased production of the reactive species that are extremely aggressive to the surrounding tissue. The combination of massive production of free radicals, low concentration of antioxidants and the hypermetabolism present in patients with SCI leads to enhancement of the oxidative stress. Current studies are focused on several biological active compounds that are able to reduce the effects of free radicals - tissue necrosis, inflammation, infection, apoptosis. In this paper, the mechanism of the action of several biological active compounds that are able to significantly reduce oxidative stress in critical patients with spinal cord injury is presented.
Collapse
Affiliation(s)
- Ovidiu Horea Bedreag
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| | - Alexandru Florin Rogobete
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
- Faculty of Chemistry, Biology, Geography, West University of Timişoara, Romania
| | - Mirela Sărăndan
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Alina Cradigati
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Marius Păpurică
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| | - Oana Maria Roşu
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Corina Maria Dumbuleu
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
| | - Dorel Săndesc
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
32
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
33
|
Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal 2014; 20:2416-36. [PMID: 23964890 PMCID: PMC4005499 DOI: 10.1089/ars.2013.5576] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Half a century of research provided unambiguous proof that superoxide and species derived from it-reactive oxygen species (ROS)-play a central role in many diseases and degenerative processes. This stimulated the search for pharmaceutical agents that are capable of preventing oxidative damage, and methods of assessing their therapeutic potential. RECENT ADVANCES The limitations of superoxide dismutase (SOD) as a therapeutic tool directed attention to small molecules, SOD mimics, that are capable of catalytically scavenging superoxide. Several groups of compounds, based on either metal complexes, including metalloporphyrins, metallocorroles, Mn(II) cyclic polyamines, and Mn(III) salen derivatives, or non-metal based compounds, such as fullerenes, nitrones, and nitroxides, have been developed and studied in vitro and in vivo. Very few entered clinical trials. CRITICAL ISSUES AND FUTURE DIRECTIONS Development of SOD mimics requires in-depth understanding of their mechanisms of biological action. Elucidation of both molecular features, essential for efficient ROS-scavenging in vivo, and factors limiting the potential side effects requires biologically relevant and, at the same time, relatively simple testing systems. This review discuses the advantages and limitations of genetically engineered SOD-deficient unicellular organisms, Escherichia coli and Saccharomyces cerevisiae as tools for investigating the efficacy and mechanisms of biological actions of SOD mimics. These simple systems allow the scrutiny of the minimal requirements for a functional SOD mimic: the association of a high catalytic activity for superoxide dismutation, low toxicity, and an efficient cellular uptake/biodistribution.
Collapse
Affiliation(s)
- Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
34
|
Ling X, Bao F, Qian H, Liu D. The temporal and spatial profiles of cell loss following experimental spinal cord injury: effect of antioxidant therapy on cell death and functional recovery. BMC Neurosci 2013; 14:146. [PMID: 24238557 PMCID: PMC3924333 DOI: 10.1186/1471-2202-14-146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background Traumatic spinal cord injury (SCI)-induced overproduction of endogenous deleterious substances triggers secondary cell death to spread damage beyond the initial injury site. Substantial experimental evidence supports reactive species (RS) as important mediators of secondary cell death after SCI. This study established quantitative temporal and spatial profiles of cell loss, characterized apoptosis, and evaluated the effectiveness of a broad spectrum RS scavenger - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and a combination of MnTBAP plus nitro-L-arginine to prevent cell loss and neurological dysfunction following contusion SCI to the rat spinal cord. Results By counting the number of surviving cells in spinal cord sections removed at 1, 6, 12, 24, 48, 72 h and 1 week post-SCI and at 0 – 4 mm from the epicenter, the temporal and spatial profiles of motoneuron and glia loss were established. Motoneurons continued to disappear over a week and the losses decreased with increasing distance from the epicenter. Significant glia loss peaked at 24 to 48 h post-SCI, but only at sections 0–1.5 mm from the epicenter. Apoptosis of neurons, motoneurons and astrocytes was characterized morphologically by double immuno-staining with cell-specific markers and apoptosis indicators and confirmed by transmission electron microscopy. DNA laddering, ELISA quantitation and caspase-3 activation in the spinal cord tissue indicated more intense DNA fragments and greater caspase-3 activation in the epicenter than at 1 and 2 cm away from the epicenter or the sham-operated sections. Intraperitoneal treatment with MnTBAP + nitro-L-arginine significantly reduced motoneuron and cell loss and apoptosis in the gray and white matter compared with the vehicle-treated group. MnTBAP alone significantly reduced the number of apoptotic cells and improved functional recovery as evaluated by three behavioral tests. Conclusions Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd,, Rt, 0881, Galveston, TX 77555-0881, USA.
| | | | | | | |
Collapse
|