1
|
Tirassa P, Rosso P, Fico E, Marenco M, Mallone F, Gharbiya M, Lambiase A, Severini C. Perspective role of Substance P in Amyotrophic Lateral Sclerosis: From neuronal vulnerability to neuroprotection. Neurosci Biobehav Rev 2024; 167:105914. [PMID: 39374680 DOI: 10.1016/j.neubiorev.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
The neuropeptide Substance P (SP) and its preferred Neurokinin1 Receptor (NK1R) are known to participate in the physiopathology of neurodegenerative diseases and mainly exert a neuroprotective role. In the present work, we have described the involvement of SP and NK1R in Amyotrophic Lateral Sclerosis (ALS). This was demonstrated by the detection of altered levels of SP in the brain, spinal cord and cerebrospinal fluid (CSF) of patients and preclinical models of ALS, and by its ability to inhibit excitotoxicity-induced neurodegeneration in ALS animal models. These data are supported by results indicating an excitatory effect of SP at the motor neuron (MN) level, which promotes locomotor activity. ALS patients are characterized by a differential susceptibility to MNs degeneration, since sphincters and extraocular muscles are classically spared. It is hypothesized that SP may play a role in the maintenance of the ocular system and the innervation of the pelvic floor by contributing directly or indirectly to the selective resistance of this subset of MNs.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Magda Gharbiya
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy.
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome 00015, Italy.
| |
Collapse
|
2
|
Kim HK, Chung KM, Xing J, Kim HY, Youn DH. The Trigeminal Sensory System and Orofacial Pain. Int J Mol Sci 2024; 25:11306. [PMID: 39457088 PMCID: PMC11508441 DOI: 10.3390/ijms252011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The trigeminal sensory system consists of the trigeminal nerve, the trigeminal ganglion, and the trigeminal sensory nuclei (the mesencephalic nucleus, the principal nucleus, the spinal trigeminal nucleus, and several smaller nuclei). Various sensory signals carried by the trigeminal nerve from the orofacial area travel into the trigeminal sensory system, where they are processed into integrated sensory information that is relayed to higher sensory brain areas. Thus, knowledge of the trigeminal sensory system is essential for comprehending orofacial pain. This review elucidates the individual nuclei that comprise the trigeminal sensory system and their synaptic transmission. Additionally, it discusses four types of orofacial pain and their relationship to the system. Consequently, this review aims to enhance the understanding of the mechanisms underlying orofacial pain.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ki-myung Chung
- Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Juping Xing
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
3
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
4
|
Jayaprakash N, Song W, Toth V, Vardhan A, Levy T, Tomaio J, Qanud K, Mughrabi I, Chang YC, Rob M, Daytz A, Abbas A, Nassrallah Z, Volpe BT, Tracey KJ, Al-Abed Y, Datta-Chaudhuri T, Miller L, Barbe MF, Lee SC, Zanos TP, Zanos S. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul 2023; 16:484-506. [PMID: 36773779 DOI: 10.1016/j.brs.2023.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.
Collapse
Affiliation(s)
| | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Todd Levy
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yao-Chuan Chang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Moontahinaz Rob
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anna Daytz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Adam Abbas
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Larry Miller
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Sunhee C Lee
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
5
|
Duque-Díaz E, Coveñas R. Mapping of folic acid in the children brainstem. Anat Cell Biol 2021; 54:340-349. [PMID: 33967031 PMCID: PMC8493014 DOI: 10.5115/acb.21.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Using highly specific antisera, the neuroanatomical distribution of folic acid (FA) and retinoic acid (RA) has been studied for the first time in the children brainstem. Neither immunoreactive structures containing RA nor immunoreactive fibers containing FA were found. FA-immunoreactive perikarya (fusiform, small/medium in size, one short dendrite) were only found in the pons in three regions: central gray, reticular formation, and locus coeruleus. The number of cell bodies decreased with age. In the first case studied (2 years), a moderate density of cell bodies was observed in the central gray and reticular formation, whereas a low density was found in the locus coeruleus. In the second case (6 years), a low density of these perikarya was observed in the central gray, reticular formation, and locus coeruleus. In the third case (7 years), a low density of FA-immunoreactive cell bodies was found in the central gray and reticular formation, whereas in the locus coeruleus no immunoreactive cell bodies were observed. The distribution of FA in the central nervous system of humans and monkeys is different and, in addition, in these species the vitamin was located in different parts of the nerve cells. The restricted distribution of FA suggests that the vitamin is involved in specific physiological mechanisms.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Laboratory of Neurosciences, School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain.,Grupo GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Abstract
INTRODUCTION The tachykinin family of peptides (substance P, neurokinin A) via the neurokinin-1 (NK-1), NK-2, and NK-3 receptors is involved in many physiological/physiopathological actions. Antagonists of these receptors may be used to treat many human pathologies. AREAS COVERED This review offers an overview (from 2014 to present) of the actions exerted by NK receptor (NK-R) antagonists on emesis, pruritus, cardiomyopathy, respiratory tract diseases, bacterial infection, cancer, ocular pain, corneal neovascularization, excess of body fat/weight, conditioned fear, social isolation stress, hot flush, melanogenesis, follicle development, fish reproduction, and sex-hormone-dependent diseases. EXPERT OPINION From 2014, no invention has been published using NK-2R antagonists. Although the tachykinin/NK receptor system is involved in a great number of mechanisms, to date, the use of only five NK-1R antagonists have been approved in humans but no NK-2R or NK-3R antagonist. NK receptor antagonists are safe in human trials and are potential therapeutic agents, but this potential is currently minimized. In humans, more studies on molecules acting as NK receptor antagonists and exerting a potential therapeutic action must be carried out. The antipruritic or antitumor action of NK-1R antagonists must be explored in greater depth: the highest safe dose and the time of administration (for a long period of time) of these antagonists must be well established.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen Del Rocío University Hospital (IBIS) , Seville, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla Y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca , Salamanca, Spain
| |
Collapse
|
7
|
Marcos P, Coveñas R. Neuroanatomical relationship between the cholinergic and tachykininergic systems in the adult human brainstem: An immunohistochemical study. J Chem Neuroanat 2019; 102:101701. [PMID: 31585148 DOI: 10.1016/j.jchemneu.2019.101701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
The cholinergic system plays an important role in brain homeostasis and interacts with the neuropeptidergic systems, and the functional relationships between both systems are well known. However, in the brainstem the possible physiological interactions between neurokinins and acetylcholine are unknown, although both substances have been detected in the same brainstem nuclei and have been implicated in similar functions controlled from brainstem regions such as some cranial motor nuclei. The aim of this work is to determine whether these possible physiological interactions might have a neuroanatomical basis by means of the double immunohistochemical detection of neurokinins (NK) and the enzyme choline acetyl-transferase (ChAT) in the human brainstem. No double-labelled structures were detected, although both NK and ChAT were observed in cell bodies and fibers of the same brainstem nuclei. The distribution of immunoreactive fibers is widespread, and NK and ChAT were observed in several motor cranial nerves as well as in the substantia nigra. The results obtained in the present work provide a neuroanatomical basis for possible physiological interactions between NK and ChAT that may be carried out by volume-transmission mechanisms. These interactions might participate in motor regulation or in limbic pathways as well as influence on other neurotransmitter systems such as the dopaminergic system.
Collapse
Affiliation(s)
- P Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, CRIB (Regional Centre of Biomedical Research), Avenida de Almansa 14, 02006 Albacete, Spain.
| | - R Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
McFadden WC, Walsh H, Richter F, Soudant C, Bryce CH, Hof PR, Fowkes M, Crary JF, McKenzie AT. Perfusion fixation in brain banking: a systematic review. Acta Neuropathol Commun 2019; 7:146. [PMID: 31488214 PMCID: PMC6728946 DOI: 10.1186/s40478-019-0799-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background Perfusing fixatives through the cerebrovascular system is the gold standard approach in animals to prepare brain tissue for spatial biomolecular profiling, circuit tracing, and ultrastructural studies such as connectomics. Translating these discoveries to humans requires examination of postmortem autopsy brain tissue. Yet banked brain tissue is routinely prepared using immersion fixation, which is a significant barrier to optimal preservation of tissue architecture. The challenges involved in adopting perfusion fixation in brain banks and the extent to which it improves histology quality are not well defined. Methodology We searched four databases to identify studies that have performed perfusion fixation in human brain tissue and screened the references of the eligible studies to identify further studies. From the included studies, we extracted data about the methods that they used, as well as any data comparing perfusion fixation to immersion fixation. The protocol was preregistered at the Open Science Framework: https://osf.io/cv3ys/. Results We screened 4489 abstracts, 214 full-text publications, and identified 35 studies that met our inclusion criteria, which collectively reported on the perfusion fixation of 558 human brains. We identified a wide variety of approaches to perfusion fixation, including perfusion fixation of the brain in situ and ex situ, perfusion fixation through different sets of blood vessels, and perfusion fixation with different washout solutions, fixatives, perfusion pressures, and postfixation tissue processing methods. Through a qualitative synthesis of data comparing the outcomes of perfusion and immersion fixation, we found moderate confidence evidence showing that perfusion fixation results in equal or greater subjective histology quality compared to immersion fixation of relatively large volumes of brain tissue, in an equal or shorter amount of time. Conclusions This manuscript serves as a resource for investigators interested in building upon the methods and results of previous research in designing their own perfusion fixation studies in human brains or other large animal brains. We also suggest several future research directions, such as comparing the in situ and ex situ approaches to perfusion fixation, studying the efficacy of different washout solutions, and elucidating the types of brain donors in which perfusion fixation is likely to result in higher fixation quality than immersion fixation. Electronic supplementary material The online version of this article (10.1186/s40478-019-0799-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Bright FM, Vink R, Byard RW. The potential role of substance P in brainstem homeostatic control in the pathogenesis of sudden infant death syndrome (SIDS). Neuropeptides 2018; 70:1-8. [PMID: 29908886 DOI: 10.1016/j.npep.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Victims of sudden infant death syndrome (SIDS) are believed to have an underlying dysfunction in medullary homeostatic control that impairs critical responses to life threatening challenges such as hypoxia, hypercarbia and asphyxia, often during a sleep period. This failure is thought to result from abnormalities in a network of neural pathways in the medulla oblongata that control respiration, chemosensitivity, autonomic function and arousal. Studies have mainly focused on the role of serotonin, 5-hydroxytyptamine (5HT), although the neuropeptide substance P (SP) has also been shown to play an integral role in the modulation of medullary homeostatic function, often in conjunction with 5-HT. Actions of SP include regulation of respiratory rhythm generation, integration of cardiovascular control, modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may, therefore, also play a significant role in homeostatic dysfunction of the neurotransmitter network in SIDS. This review focuses on the pathways within the medulla involving SP and its tachykinin NK1 receptor, their potential relationship with the medullary 5-HT system, and possible involvement in the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Fiona M Bright
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Roger W Byard
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, SA, Australia
| |
Collapse
|
10
|
Del Fiacco M, Serra MP, Boi M, Poddighe L, Demontis R, Carai A, Quartu M. TRPV1-Like Immunoreactivity in the Human Locus K, a Distinct Subregion of the Cuneate Nucleus. Cells 2018; 7:cells7070072. [PMID: 29986526 PMCID: PMC6071077 DOI: 10.3390/cells7070072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/02/2023] Open
Abstract
The presence of transient receptor potential vanilloid type-1 receptor (TRPV1)-like immunoreactivity (LI), in the form of nerve fibres and terminals, is shown in a set of discrete gray matter subregions placed in the territory of the human cuneate nucleus. We showed previously that those subregions share neurochemical and structural features with the protopathic nuclei and, after the ancient name of our town, collectively call them Locus Karalis, and briefly Locus K. TRPV1-LI in the Locus K is codistributed, though not perfectly overlapped, with that of the neuropeptides calcitonin gene-related peptide and substance P, the topography of the elements immunoreactive to the three markers, in relation to each other, reflecting that previously described in the caudal spinal trigeminal nucleus. Myelin stainings show that myelinated fibres, abundant in the cuneate, gracile and trigeminal magnocellular nuclei, are scarce in the Locus K as in the trigeminal substantia gelatinosa. Morphometric analysis shows that cell size and density of Locus K neurons are consistent with those of the trigeminal substantia gelatinosa and significantly different from those of the magnocellular trigeminal, solitary and dorsal column nuclei. We propose that Locus K is a special component of the human dorsal column nuclei. Its functional role remains to be determined, but TRPV1 appears to play a part in it.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Roberto Demontis
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Antonio Carai
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy.
| |
Collapse
|
11
|
Abstract
Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.
Collapse
Affiliation(s)
- Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| | - Gregory D Funk
- Department of Physiology, Neuroscience and Mental Health Institute, Women's and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Bright FM, Byard RW, Vink R, Paterson DS. Normative distribution of substance P and its tachykinin neurokinin-1 receptor in the medullary serotonergic network of the human infant during postnatal development. Brain Res Bull 2018; 137:319-328. [PMID: 29331576 DOI: 10.1016/j.brainresbull.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Substance P (SP) and its tachykinin NK1 receptor (NK1R) function within key medullary nuclei to regulate cardiorespiratory and autonomic control. We examined the normative distribution of SP and NK1R in the serotonergic (5-Hydroxytryptamine, [5-HT]) network of the human infant medulla during postnatal development, to provide a baseline to facilitate future analysis of the SP/NK1R system and its interaction with 5-HT within pediatric brainstem disorders in early life. [125I] labelled Bolton Hunter SP (BH-SP) tissue receptor autoradiography (n = 15), single label immunohistochemistry (IHC) and double label immunofluorescence (IF) (n = 10) were used to characterize the normative distribution profile of SP and NK1R in the 5-HT network of the human infant medulla during postnatal development. Tissue receptor autoradiography revealed extensive distribution of SP and NK1R in nuclei intimately related to cardiorespiratory function and autonomic control, with significant co-distribution and co-localization with 5-HT in the medullary network in the normal human infant during development. A trend for NK1R binding to decrease with age was observed with significantly higher binding in premature and male infants. We provide further evidence to suggest a significant role for SP/NK1R in the early postnatal period in the modulation of medullary cardiorespiratory and autonomic control in conjunction with medullary 5-HT mediated pathways and provide a baseline for future analysis of the potential consequences of abnormalities in these brainstem neurotransmitter networks during development.
Collapse
Affiliation(s)
- Fiona M Bright
- Harvard University Medical School, Boston, MA, USA; School of Medicine, University of Adelaide SA, Australia; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Roger W Byard
- School of Medicine, University of Adelaide SA, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - David S Paterson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Mapping of methionine-enkephalin-arg6-gly7-leu8 in the human diencephalon. Neuroscience 2016; 334:245-258. [DOI: 10.1016/j.neuroscience.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
|
14
|
De Souza E, Sánchez ML, Aguilar LÁ, Díaz-Cabiale Z, Narváez JÁ, Coveñas R. Mapping of somatostatin-28 (1-12) in the alpaca (Lama pacos) brainstem. Microsc Res Tech 2015; 78:363-74. [PMID: 25754727 DOI: 10.1002/jemt.22482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/07/2022]
Abstract
Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin-28 (1-12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin-28 (1-12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin-28 (1-12) is involved in multiple physiological actions in the alpaca brainstem.
Collapse
Affiliation(s)
- Eliana De Souza
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Onaga T. Tachykinin: recent developments and novel roles in health and disease. Biomol Concepts 2014; 5:225-243. [PMID: 25372755 DOI: 10.1515/bmc-2014-0008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/14/2014] [Indexed: 01/05/2025] Open
Abstract
Over 80 years has passed since the discovery of substance P (SP), and a variety of peptides of the tachykinin (TK) family have been found and investigated. SP, neurokinin A (NKA), and neurokinin B (NKB) are representative peptides in mammalian species. SP and NKA are major excitatory neurotransmitters in the peripheral nervous system, while NKB is primarily involved in the central nervous system (CNS). Moreover, TK peptides play roles not only as neurotransmitters but also as local factors and are involved in almost all aspects of the regulation of physiological functions and pathophysiological processes. The role of SP as a mediator of pain processing and inflammation in peripheral tissues in coordination with transient receptor potential channels is well established, while novel aspects of TKs in relation to hematopoiesis, venous thromboembolism, tendinopathy, and taste perception have been clarified. In the CNS, the NKB signaling system in the hypothalamus has been shown to play a crucial role in the regulation of gonadotropin hormone secretion and the onset of puberty, and molecular biological studies have elucidated novel prophylaxic activities of TKs against neurogenic movement disorders based on their molecular structure. This review provides an overview of the novel aspects of TKs reported around the world in the last 5 years, with particular focus on nociception, inflammation, hemopoiesis, gonadotropin secretion, and CNS diseases.
Collapse
|
16
|
Yeo EKS, Hashim H, Abrams P. New therapies in the treatment of overactive bladder. Expert Opin Emerg Drugs 2013; 18:319-37. [PMID: 23885696 DOI: 10.1517/14728214.2013.823156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Overactive bladder (OAB) is a common condition which affects both men and women across many age groups with significant impact on quality of life. There is currently an armamentarium of treatment options available ranging from conservative, medical therapy to radical surgeries. Increasing understanding of OAB is resulting in the rapid development of new therapies today. AREAS COVERED The purpose of this article was to summarise the latest developments in non-neurogenic OAB treatment, discuss the evidence and results of current and new treatment modalities available through review of published data and results presented at recent international meetings. EXPERT OPINION The ultimate goal in OAB therapy is to provide good clinical efficacy, safe, non-invasive and easy to administer. There is definitely room for development of new therapies in OAB and current progress is encouraging.
Collapse
|
17
|
Taziaux M, Swaab DF, Bakker J. Sex differences in the neurokinin B system in the human infundibular nucleus. J Clin Endocrinol Metab 2012; 97:E2210-20. [PMID: 23019350 DOI: 10.1210/jc.2012-1554] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The recent report that loss-of-function mutations in either the gene encoding neurokinin B (NKB) or its receptor (NK3R) produce gonadotropin deficiencies in humans strongly points to NKB as a key regulator of GnRH release. OBJECTIVES We used NKB immunohistochemistry on postmortem human brain tissue to determine: 1) whether the human NKB system in the infundibular nucleus (INF) is sexually dimorphic; 2) at what stage in development the infundibular NKB system would diverge between men and women; 3) whether this putative structural difference is reversed in male-to-female (MtF) transsexual people; and 4) whether menopause is accompanied by changes in infundibular NKB immunoreactivity. METHODS NKB immunohistochemical staining was performed on postmortem hypothalamus material of both sexes from the infant/pubertal period into the elderly period and from MtF transsexuals. RESULTS Quantitative analysis demonstrated that the human NKB system exhibits a robust female-dominant sexual dimorphism in the INF. During the first years after birth, both sexes displayed a moderate and equivalent level of NKB immunoreactivity in the INF. The adult features emerged progressively around puberty until adulthood, where the female-dominant sex difference appeared and continued into old age. In MtF transsexuals, a female-typical NKB immunoreactivity was observed. Finally, in postmenopausal women, there was a significant increase in NKB immunoreactivity compared to premenopausal women. CONCLUSION Our results indicate that certain sex differences do not emerge until adulthood when activated by sex steroid hormones and the likely involvement of the human infundibular NKB system in the negative and positive feedback of estrogen on GnRH secretion.
Collapse
Affiliation(s)
- Melanie Taziaux
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Neuroendocrinology Laboratory, 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Duque E, Mangas A, Salinas P, Díaz-Cabiale Z, Narváez JA, Coveñas R. Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem. Brain Struct Funct 2012; 218:131-49. [PMID: 22318412 DOI: 10.1007/s00429-012-0388-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
We have studied the distribution of alpha-neo-endorphin- or neurokinin B-immunoreactive fibres and cell bodies in the adult human brainstem with no prior history of neurological or psychiatric disease. A low density of alpha-neo-endorphin-immunoreactive cell bodies was only observed in the medullary central gray matter and in the spinal trigeminal nucleus (gelatinosa part). Alpha-neo-endorphin-immunoreactive fibres were moderately distributed throughout the human brainstem. A high density of alpha-neo-endorphin-immunoreactive fibres was found only in the solitary nucleus (caudal part), in the spinal trigeminal nucleus (caudal part), and in the gelatinosa part of the latter nucleus. Neurokinin B-immunoreactive cell bodies (low density) were found in the periventricular central gray matter, the reticular formation of the pons and in the superior colliculus. The distribution of the neurokinin-immunoreactive fibres was restricted. In general, for both neuropeptides the density of the immunoreactive fibres was low. In the human brainstem, the proenkephalin system was more widely distributed than the prodynorphin system, and the preprotachykinin A system (neurokinin A) was more widely distributed than the preprotachykinin B system (neurokinin B).
Collapse
Affiliation(s)
- Ewing Duque
- Laboratory of Neuroscience (Lab. 143), Pontificia Bolivariana-Montería University, Montería, Colombia
| | | | | | | | | | | |
Collapse
|
19
|
Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius. Exp Neurol 2010; 223:634-44. [PMID: 20206166 DOI: 10.1016/j.expneurol.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/18/2010] [Accepted: 02/21/2010] [Indexed: 12/16/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients.
Collapse
|
20
|
Vision and the hypothalamus. ACTA ACUST UNITED AC 2010; 81:100-15. [DOI: 10.1016/j.optm.2009.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 06/04/2009] [Accepted: 07/13/2009] [Indexed: 01/01/2023]
|
21
|
Darmani NA, Ray AP. Evidence for a re-evaluation of the neurochemical and anatomical bases of chemotherapy-induced vomiting. Chem Rev 2009; 109:3158-99. [PMID: 19522506 DOI: 10.1021/cr900117p] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766-1854, USA.
| | | |
Collapse
|
22
|
Pharmacological treatment of overactive bladder: report from the International Consultation on Incontinence. Curr Opin Urol 2009; 19:380-94. [DOI: 10.1097/mou.0b013e32832ce8a4] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Abstract
Lower urinary tract symptoms (LUTS), overactive bladder syndrome (OAB) and detrusor overactivity (DO) are all conditions that can have major effects on quality of life and social functioning. Antimuscarinic drugs are first-line treatment-they often have good initial response rates, but adverse effects and decreasing efficacy cause long-term compliance problems, and alternatives are needed. The recognition of the functional contribution of the urothelium, the spontaneous myocyte activity during bladder filling, and the diversity of nerve transmitters has sparked interest in both peripheral and central modulation of LUTS/OAB/DO pathophysiology. There may be several new possibilities to treat LUTS/OAB/DO. β(3)-AR agonists (YM178), PDE 5 inhibitors (sildenafil, tadalafil, vardenafil), vitamin D analogs (elocalcitol), combinations (α(1)-AR antagonist + antimuscarinic), and drugs with a central mode of action (tramadol, aprepitant) all have Randomized controlled trial (RCT) documented efficacy. Which of these therapeutic principles will be developed to clinically useful treatments remains to be established.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| |
Collapse
|
24
|
de Souza E, Coveñas R, Yi P, Aguilar LA, Lerma L, Andrade R, Mangas A, Díaz-Cabiale Z, Narváez JA. Mapping of CGRP in the alpaca (Lama pacos) brainstem. J Chem Neuroanat 2008; 35:346-55. [PMID: 18420379 DOI: 10.1016/j.jchemneu.2008.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 02/04/2008] [Accepted: 02/28/2008] [Indexed: 11/16/2022]
Abstract
In this study, we demonstrate the presence of immunoreactive structures containing calcitonin gene-related peptide in the alpaca brainstem. This is the first time that a detailed mapping of the cell bodies and fibers containing this neuropeptide in the alpaca brainstem has been carried out using an immunocytochemical technique. Immunoreactive cell bodies and fibers were widely distributed throughout the alpaca brainstem. A high density of calcitonin gene-related peptide-immunoreactive perikarya was found in the superior colliculus, the dorsal nucleus of the raphe, the trochlear nucleus, the lateral division of the marginal nucleus of the brachium conjunctivum, the motor trigeminal nucleus, the facial nucleus, the pons reticular formation, the retrofacial nucleus, the rostral hypoglossal nucleus, and in the motor dorsal nucleus of the vagus, whereas a high density of fibers containing calcitonin gene-related peptide was observed in the lateral division of the marginal nucleus of the brachium conjunctivum, the parvocellular division of the alaminar spinal trigeminal nucleus, the external cuneate nucleus, the nucleus of the solitary tract, the laminar spinal trigeminal nucleus, and in the area postrema. This widespread distribution indicates that the neuropeptide studied might be involved in multiple functions in the alpaca brainstem.
Collapse
Affiliation(s)
- Eliana de Souza
- Universidad de Salamanca, Institute of Neurosciences of Castilla and León, Laboratory of Neuroanatomy of the Peptidergic Systems (INCYL), Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Andersson KE, Gratzke C. Bladder Pharmacology and Treatment of Lower Urinary Tract Symptoms: Recent Advances. ACTA ACUST UNITED AC 2008. [DOI: 10.3834/uij.1939-4810.2008.07.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Losco PE, Leach MW, Sinha D, Davis P, Schmahai TJ, Nomier A, Kakkar T, Reyderman L, Lynch ME. Administration of an antagonist of neurokinin receptors 1, 2, and 3 results in reproductive tract changes in beagle dogs, but not rats. Toxicol Pathol 2007; 35:310-22. [PMID: 17366326 DOI: 10.1080/01926230701198766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
SCH 206272, an antagonist of neurokinin receptors 1, 2, and 3, was administered orally by gavage for 1 month to 8- to 10-month-old dogs at doses of 0, 15, 30, or 60 mg/kg, and to 6-week-old rats at doses of 0, 30, 100, or 300 mg/kg. The most important changes occurred in the reproductive tract of the dogs at all doses. Absolute and relative group mean organ weights for the testes, prostate gland, epididymides, ovaries, and uterus were 33-86% lower than concurrent controls in groups receiving SCH 206272. Organ weight changes were not dose-related. Microscopic changes that correlated with the organ weight changes occurred in all groups receiving SCH 206272. For males, they included minimal to severe atrophy of the testes, epididymides, and prostate gland. In addition, the epididymides exhibited severe oligospermia or aspermia, minimal epithelial apoptosis and mild epithelial vacuolation. In female dogs, the ovaries and uteri appeared immature. Microscopic changes were similar in incidence and severity in dogs receiving 30 or 60 mg/kg, but were slightly less in dogs receiving 15 mg/kg. In contrast, similar findings were not observed in the reproductive tract of male or female rats, despite overlapping systemic, hypothalamic, and pituitary gland concentrations of SCH 206272.
Collapse
|
27
|
Cuadrado I, Coveñas R, Aguilar LA, Aguirre JA, Rioja J, Narvaez JA. Mapping of neurokinin b in the cat brainstem. ACTA ACUST UNITED AC 2005; 210:133-43. [PMID: 16133591 DOI: 10.1007/s00429-005-0017-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
We studied the distribution of neurokinin B-immunoreactive cell bodies and fibers in the cat brainstem using an indirect immunoperoxidase technique. The highest density of immunoreactive fibers was found in the motor trigeminal nucleus, the laminar and alaminar spinal trigeminal nuclei, the facial nucleus, the marginal nucleus of the brachium conjunctivum, the locus coeruleus, the cuneiform nucleus, the dorsal motor nucleus of the vagus, the postpyramidal nucleus of the raphe, the lateral tegmental field, the Kölliker-Fuse nucleus, the inferior central nucleus, the periaqueductal gray, the nucleus of the solitary tract, and in the inferior vestibular nucleus. Immunoreactive cell bodies containing neurokinin B were observed, for example, in the locus coeruleus, the dorsal motor nucleus of the vagus, the median division of the dorsal nucleus of the raphe, the lateral tegmental field, the pericentral nucleus of the inferior colliculus, the internal division of the lateral reticular nucleus, the inferior central nucleus, the periaqueductal gray, the postpyramidal nucleus of the raphe, and in the medial nucleus of the solitary tract. This widespread distribution of neurokinin B in the cat brainstem suggests that the neuropeptide could be involved in many different physiological functions. In comparison with previous studies carried out in the rat brainstem on the distribution of neurokinin B, our results point to a more widespread distribution of this neuropeptide in the cat brainstem.
Collapse
Affiliation(s)
- I Cuadrado
- Laboratory of Neuroanatomy of the Peptidergic Systems Facultad de Medicina, Instituto de Neurociencias de Castilla y León, 37007, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2004; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|