1
|
Hongjin W, Han C, Baoxiang J, Shiqi Y, Xiaoyu X. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Rev Neurosci 2021; 31:143-159. [PMID: 31539363 DOI: 10.1515/revneuro-2019-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer's disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.
Collapse
Affiliation(s)
- Wang Hongjin
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Chen Han
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Jiang Baoxiang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Yu Shiqi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| | - Xu Xiaoyu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of New Drug Screening From Traditional Chinese Medicine, Chongqing 400715, China.,Pharmacology of Chinese Materia Medica-Key Discipline Constructed by the State Administration of Traditional Chinese Medicine, Chongqing 400715, China
| |
Collapse
|
2
|
Shah Mohammadi M, Buchen JT, Pasquina PF, Niklason LE, Alvarez LM, Jariwala SH. Critical Considerations for Regeneration of Vascularized Composite Tissues. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:366-381. [PMID: 33115331 DOI: 10.1089/ten.teb.2020.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective vascularization is vital for survival and functionality of complex tissue-engineered organs. The formation of the microvasculature, composed of endothelial cells (ECs) alone, has been mostly used to restore the vascular networks in organs. However, recent heterocellular studies demonstrate that co-culturing is a more effective approach in revascularization of engineered organs. This review presents key considerations for manufacturing of artificial vascularized composite tissues. We summarize the importance of co-cultures and the multicellular interactions with ECs, as well as design and use of bioreactors, as critical considerations for tissue vascularization. In addition, as an emerging scaffolding technique, this review also highlights the current caveats and hurdles associated with three-dimensional bioprinting and discusses recent developments in bioprinting strategies such as four-dimensional bioprinting and its future outlook for manufacturing of vascularized tissue constructs. Finally, the review concludes with addressing the critical challenges in the regulatory pathway and clinical translation of artificial composite tissue grafts. Impact statement Regeneration of composite tissues is critical as biophysical and biochemical characteristics differ between various types of tissues. Engineering a vascularized composite tissue has remained unresolved and requires additional evaluations along with optimization of methodologies and standard operating procedures. To this end, the main hurdle is creating a viable vascular endothelium that remains functional for a longer duration postimplantation, and can be manufactured using clinically appropriate source of cell lines that are scalable in vitro for the fabrication of human-scale organs. This review presents key considerations for regeneration and manufacturing of vascularized composite tissues as the field advances.
Collapse
Affiliation(s)
- Maziar Shah Mohammadi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Paul F Pasquina
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Laura E Niklason
- Department of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Luis M Alvarez
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Lung Biotechnology PBC, Silver Spring, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
4
|
Angiogenic potential of co-spheroids of neural stem cells and endothelial cells in injectable gelatin-based hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:140-149. [DOI: 10.1016/j.msec.2019.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
|
5
|
Sato Y, Kiyozumi D, Futaki S, Nakano I, Shimono C, Kaneko N, Ikawa M, Okabe M, Sawamoto K, Sekiguchi K. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell 2018; 30:56-68. [PMID: 30379609 PMCID: PMC6337917 DOI: 10.1091/mbc.e18-05-0286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs) are retained in the adult ventricular–subventricular zone (V-SVZ), a specialized neurogenic niche with a unique cellular architecture. It currently remains unclear whether or how NSCs utilize basement membranes (BMs) in this niche. Here, we examine the molecular compositions and functions of BMs in the adult mouse V-SVZ. Whole-mount V-SVZ immunostaining revealed that fractones, which are fingerlike processes of extravascular BMs, are speckled BMs unconnected to the vasculature, and differ in their molecular composition from vascular BMs. Glial fibrillary acidic protein (GFAP)-positive astrocytes and NSCs produce and adhere to speckled BMs. Furthermore, Gfap-Cre-mediated Lamc1flox(E1605Q) knockin mice, in which integrin-binding activities of laminins are specifically nullified in GFAP-positive cells, exhibit a decreased number and size of speckled BMs and reduced in vitro neurosphere-forming activity. Our results reveal niche activities of fractones/speckled BMs for NSCs and provide molecular insights into how laminin–integrin interactions regulate NSCs in vivo.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sugiko Futaki
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Itsuko Nakano
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Okabe
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
7
|
Welser-Alves JV, Milner R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 2013; 63:47-53. [PMID: 23619393 DOI: 10.1016/j.neuint.2013.04.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/22/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
Damage to the central nervous system (CNS) leads to increased production of TNF-α and TGF-β1 cytokines that have pro- or anti-inflammatory actions, respectively. To define whether astrocytes or microglia express these cytokines, prior studies have used mixed glial cultures (MGC) to represent astrocytes, thought these results are inevitably complicated by the presence of contaminating microglia within MGC. To clarify the cellular source of these cytokines, here we employed a recently described method of preparing microglia-free astrocyte cultures, in which neural stem cells (NSC) are differentiated into astrocytes. Using ELISA to quantify cytokine production in three types of glial culture: MGC, pure microglia or pure astrocytes, this showed that microglia but not astrocytes, produce TNF-α, and that this expression is increased by LPS, IFN-γ, and to a lesser extent by vitronectin, but decreased by TGF-β1. In contrast, TGF-β1 was produced by microglia and astrocytes, though at 10-fold higher levels by microglia. TGF-β1 expression in microglia was increased by vitronectin and to a lesser extent by TNF-α and LPS, but astrocyte TGF-β1 expression was not regulated by any factor tested. In summary, our data reveal that microglia, not astrocytes are the major source of TNF-α and TGF-β1 in postnatal glial cultures, and that microglial production of these antagonistic cytokines is tightly regulated by cytokines, LPS, and vitronectin.
Collapse
Affiliation(s)
- Jennifer V Welser-Alves
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
8
|
Veiga DD, Antunes JC, Gómez RG, Mano JF, Ribelles JLG, Soria JM. Three-Dimensional Scaffolds as a Model System for Neural and Endothelial ‘In Vitro’ Culture. J Biomater Appl 2010; 26:293-310. [DOI: 10.1177/0885328210365005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells.
Collapse
Affiliation(s)
- D. Dias Veiga
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Joana Costa Antunes
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Roberto García Gómez
- Centro de Investigación Príncipe Felipe, Regenerative Medicine Unit Autopista del Saler 16, E -46013 Valencia, Spain
| | - João F. Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Jose Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Regenerative Medicine Unit Autopista del Saler 16, E -46013 Valencia, Spain, CIBER en Bioingeniería, Biomateriales y Nanomedicina, Valencia, Spain
| | - Jose Miguel Soria
- Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera Avda Seminario s/n, 46113 Moncada, Valencia, Spain, CIBER en enfermedades Neurodegenerativas, Valencia, Spain,
| |
Collapse
|
9
|
Guo Y, Shi D, Li W, Liang C, Wang H, Ye Z, Hu L, Li Y. Effects of cerebral microvascular endothelial cells and vascular endothelial growth factor on the proliferation and differentiation of NSCs: A comparative study. Br J Neurosurg 2010; 24:62-8. [DOI: 10.3109/02688690903506077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Pierret C, Morrison JA, Rath P, Zigler RE, Engel LA, Fairchild CL, Shi H, Maruniak JA, Kirk MD. Developmental cues and persistent neurogenic potential within an in vitro neural niche. BMC DEVELOPMENTAL BIOLOGY 2010; 10:5. [PMID: 20074373 PMCID: PMC2824744 DOI: 10.1186/1471-213x-10-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 01/14/2010] [Indexed: 12/18/2022]
Abstract
Background Neurogenesis, the production of neural cell-types from neural stem cells (NSCs), occurs during development as well as within select regions of the adult brain. NSCs in the adult subependymal zone (SEZ) exist in a well-categorized niche microenvironment established by surrounding cells and their molecular products. The components of this niche maintain the NSCs and their definitive properties, including the ability to self-renew and multipotency (neuronal and glial differentiation). Results We describe a model in vitro NSC niche, derived from embryonic stem cells, that produces many of the cells and products of the developing subventricular zone (SVZ) and adult SEZ NSC niche. We demonstrate a possible role for apoptosis and for components of the extracellular matrix in the maintenance of the NSC population within our niche cultures. We characterize expression of genes relevant to NSC self-renewal and the process of neurogenesis and compare these findings to gene expression produced by an established neural-induction protocol employing retinoic acid. Conclusions The in vitro NSC niche shows an identity that is distinct from the neurally induced embryonic cells that were used to derive it. Molecular and cellular components found in our in vitro NSC niche include NSCs, neural progeny, and ECM components and their receptors. Establishment of the in vitro NSC niche occurs in conjunction with apoptosis. Applications of this culture system range from studies of signaling events fundamental to niche formation and maintenance as well as development of unique NSC transplant platforms to treat disease or injury.
Collapse
Affiliation(s)
- Chris Pierret
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Plane JM, Andjelkovic AV, Keep RF, Parent JM. Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol Dis 2009; 37:218-27. [PMID: 19837162 DOI: 10.1016/j.nbd.2009.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 09/04/2009] [Accepted: 10/09/2009] [Indexed: 11/20/2022] Open
Abstract
Neural stem cells (NSCs) persist in the forebrain subventricular zone (SVZ) within a niche containing endothelial cells. Evidence suggests that endothelial cells stimulate NSC expansion and neurogenesis. Experimental stroke increases neurogenesis and angiogenesis, but how endothelial cells influence stroke-induced neurogenesis is unknown. We hypothesized intact or oxygen-glucose deprived (OGD) endothelial cells secrete factors that enhance neurogenesis. We co-cultured mouse SVZ neurospheres (NS) with endothelial cells, or differentiated NS in endothelial cell-conditioned medium (ECCM). NS also were expanded in ECCM from OGD-exposed (OGD-ECCM) endothelial cells to assess injury effects. ECCM significantly increased NS production. NS co-cultured with endothelial cells or ECCM generated more immature-appearing neurons and oligodendrocytes, and astrocytes with radial glial-like/reactive morphology than controls. OGD-ECCM stimulated neuroblast migration and yielded neurons with longer processes and more branching. These data indicate that intact and injured endothelial cells exert differing effects on NSCs, and suggest targets for stimulating regeneration after brain insults.
Collapse
Affiliation(s)
- Jennifer M Plane
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
12
|
Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 2009; 30:6867-78. [PMID: 19775749 DOI: 10.1016/j.biomaterials.2009.09.002] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/03/2009] [Indexed: 12/12/2022]
Abstract
Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal and differentiation. In order to better understand the contribution of substrate stiffness to neural stem/progenitor cell (NSPC) differentiation and proliferation, a photopolymerizable methacrylamide chitosan (MAC) biomaterial was developed. Photopolymerizable MAC is particularly compelling for the study of the central nervous system stem cell niche because Young's elastic modulus (E(Y)) can be tuned from less than 1 kPa to greater than 30 kPa. Additionally, the numerous free amine functional groups enable inclusion of biochemical signaling molecules that, together with the mechanical environment, influence cell behavior. Herein, NSPCs proliferated on MAC substrates with Young's elastic moduli below 10 kPa and exhibited maximal proliferation on 3.5 kPa surfaces. Neuronal differentiation was favored on the soft est surfaces with E(Y) < 1 kPa as confirmed by both immunohistochemistry and qRT-PCR. Oligodendrocyte differentiation was favored on stiffer scaffolds (> 7 kPa); however, myelin oligodendrocyte glycoprotein (MOG) gene expression suggested that oligodendrocyte maturation and myelination was best on < 1 kPa scaffolds where more mature neurons were present. Astrocyte differentiation was only observed on < 1 and 3.5 kPa surfaces and represented less than 2% of the total cell population. This work demonstrates the importance of substrate stiffness to the proliferation and differentiation of adult NSPCs and highlights the importance of mechanical properties to the success of scaffolds designed to engineer central nervous system tissue.
Collapse
Affiliation(s)
- Nic D Leipzig
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S3E1, Canada
| | | |
Collapse
|
13
|
Crocker SJ, Frausto RF, Whitton JL, Milner R. A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia 2008; 56:1187-98. [PMID: 18449943 DOI: 10.1002/glia.20689] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased matrix metalloproteinase (MMP) proteolytic activity contributes to the pathogenesis of many neuroinflammatory and neurodegenerative conditions in the CNS. To fully understand this process, it is important to define the MMP expression profile of specific cell types, including the CNS-resident cells astrocytes and microglia. While previous studies have characterized astrocyte MMP expression by using mixed glial cultures, these results are likely complicated by the presence of contaminating microglia within these cultures. In the current study, we sought to clarify this complexity, by taking a novel approach to prepare pure astrocyte cultures entirely devoid of microglia, by promoting neural stem cell (NSC) differentiation into astrocytes. The MMP expression profile of mixed glial cultures, neurosphere-derived astrocytes, and pure microglia was characterized by RNase protection assay. This revealed that MMP gene expression is largely cell-type specific. Astrocytes constitutively expressed MMP-11, MMP-14, and MMP-2 and showed induction of MMP-3 in response to IL-1beta but did not respond to lipopolysaccharide (LPS). In contrast, microglia constitutively expressed high levels of MMP-12 and showed strong induction of MMP-9 and MMP-14 in response to LPS. Gelatin zymography confirmed that LPS and TNF-alpha induced strong expression of MMP-9 in microglia but not astrocytes. In summary, these studies demonstrate that neurosphere-derived astrocytes represent an attractive alternative system in which to study astrocyte behavior in vitro. Using this system, we have shown that astrocytes and microglia express distinct sets of MMP genes and that microglia, not astrocytes, are the major source of MMP-9 in response to LPS or TNF-alpha.
Collapse
Affiliation(s)
- Stephen J Crocker
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
14
|
Robinson RS, Hammond AJ, Mann GE, Hunter MG. A novel physiological culture system that mimics luteal angiogenesis. Reproduction 2008; 135:405-13. [PMID: 18299434 DOI: 10.1530/rep-07-0370] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luteal inadequacy is a major cause of poor embryo development and infertility. Angiogenesis, the formation of new blood vessels, is an essential process underpinning corpus luteum (CL) development and progesterone production. Thus, understanding the factors that regulate angiogenesis during this critical time is essential for the development of novel strategies to alleviate luteal inadequacy and infertility. This study demonstrates the development of a physiologically relevant primary culture system that mimics luteal angiogenesis. This system incorporates all luteal cell types (e.g. endothelial, steroidogenic cells, fibroblasts and pericytes). Using this approach, endothelial cells, identified by the specific marker von Willebrand factor (VWF), start to form clusters on day 2, which then proliferate and develop thread-like structures. After 9 days in culture, these tubule-like structures lengthen, thicken and form highly organized intricate networks resembling a capillary bed. Development of the vasculature was promoted by coating wells with fibronectin, as determined by image analysis (P<0.001). Progesterone production increased with time and was stimulated by LH re-enforcing the physiological relevance of the model in mimicking in vivo luteal function. LH also increased the area stained positively for VWF by twofold (P<0.05). Development of this endothelial cell network was stimulated by fibroblast growth factor 2 and vascular endothelial growth factor A, which increased total area of VWF positive staining on day 9, both independently (three- to fourfold; P<0.01) and in combination (tenfold; P<0.001). In conclusion, the successful development of endothelial cell networks in vitro provides a new opportunity to elucidate the physiological control of the angiogenic process in the developing CL.
Collapse
Affiliation(s)
- R S Robinson
- School of Veterinary Medicine and Science and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK.
| | | | | | | |
Collapse
|