1
|
Zhang S, Yan C, Lu T, Fan Y, Ren Y, Zhao J, Shan X, Guan Y, Song P, Li D, Hu H. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene 2023; 888:147756. [PMID: 37659597 DOI: 10.1016/j.gene.2023.147756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Alternative oxidase (AOX) is an important terminal oxidase involved in the alternative oxidation pathway in plants, which is closely related to various biotic and abiotic stress responses. However, a comprehensive research on AOX gene family of wheat is still lacking. In this study, the members of wheat AOX (TaAOX) family were identified, and their molecular characteristics and gene expression patterns were systematically investigated. Seventeen TaAOX genes were identified from Chinese Spring (CS) genome, which were mapped on 7 chromosomes and mainly clustered on the long arm's distal end of the second homologous groups. Phylogenetic analysis showed that TaAOX genes were classified into four subgroups (Ia, Ib, Ic, and Id), and the Ia subgroup possessed the most members. Tandem duplication and segmental duplication events were found during the evolution of TaAOX genes and they were affected by purifying selection demonstrated by Ka/Ks analysis. The exon numbers of this family gene varied greatly from 1 to 9. Except for Ta3BSAOX14, all the proteins encoded by the other 16 TaAOX genes contained the amino acid residues of the key active sites in the AOX domain (cd01053). The expression patterns of TaAOX genes in various tissues and under abiotic and biotic stresses were analyzed using public transcriptome data, furthermore, qRT-PCR analysis was performed for some selected TaAOX genes, and the results suggested that most members of this gene family play an important role in response to different stresses in common wheat. Our results provide basic information and valuable reference for further exploring the gene function of TaAOX family by using gene editing, RNAi, VIGS, and other technologies.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China.
| | - Cuiping Yan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yueming Ren
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Jishun Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Puwen Song
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| |
Collapse
|
2
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
3
|
Genome-wide identification, characterization and relative expression analysis of putative iron homeostasis genes: NAS, NAAT, and DMAS in hexaploid wheat and its progenitors. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Beasley JT, Bonneau JP, Johnson AAT. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.). PLoS One 2017; 12:e0177061. [PMID: 28475636 PMCID: PMC5419654 DOI: 10.1371/journal.pone.0177061] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/23/2017] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) uptake in graminaceous plant species occurs via the release and uptake of Fe-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the MAs biosynthetic pathway, nicotianamine aminotransferase (NAAT) and deoxymugineic acid synthase (DMAS) enzymes catalyse the formation of 2'-deoxymugineic acid (DMA) from nicotianamine (NA). Here we describe the identification and characterisation of six TaNAAT and three TaDMAS1 genes in bread wheat (Triticum aestivum L.). The coding sequences of all six TaNAAT homeologs consist of seven exons with ≥88.0% nucleotide sequence identity and most sequence variation present in the first exon. The coding sequences of the three TaDMAS1 homeologs consist of three exons with ≥97.8% nucleotide sequence identity. Phylogenetic analysis revealed that the TaNAAT and TaDMAS1 proteins are most closely related to the HvNAAT and HvDMAS1 proteins of barley and that there are two distinct groups of TaNAAT proteins-TaNAAT1 and TaNAAT2 -that correspond to the HvNAATA and HvNAATB proteins, respectively. Quantitative reverse transcription-PCR analysis revealed that the TaNAAT2 genes are expressed at highest levels in anther tissues whilst the TaNAAT1 and TaDMAS1 genes are expressed at highest levels in root tissues of bread wheat. Furthermore, the TaNAAT1, TaNAAT2 and TaDMAS1 genes were differentially regulated by plant Fe status and their expression was significantly upregulated in root tissues from day five onwards during a seven-day Fe deficiency treatment. The identification and characterization of the TaNAAT1, TaNAAT2 and TaDMAS1 genes provides a valuable genetic resource for improving bread wheat growth on Fe deficient soils and enhancing grain Fe nutrition.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
6
|
Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 2016; 48:1576-1580. [DOI: 10.1038/ng.3706] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/29/2016] [Indexed: 11/09/2022]
|
7
|
Fitzgerald TL, Powell JJ, Stiller J, Weese TL, Abe T, Zhao G, Jia J, McIntyre CL, Li Z, Manners JM, Kazan K. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.). PLoS One 2015; 10:e0117369. [PMID: 25719507 PMCID: PMC4342231 DOI: 10.1371/journal.pone.0117369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.
Collapse
Affiliation(s)
- Timothy L. Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- * E-mail: (TLF); (KK)
| | - Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Terri L. Weese
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama, 351–0198, Japan
| | - Guangyao Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - C. Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Black Mountain Laboratories, Clunies Ross St, Acton, ACT, 2601, Australia
| | - John M. Manners
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Black Mountain Laboratories, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, 4072, Australia
- * E-mail: (TLF); (KK)
| |
Collapse
|
8
|
Shpylchyn VV, Antonyuk MZ, Ternovska TK. Genetic analysis of artificial Triticinae amphidiploid Aurotica based on the glaucousness trait. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 2014; 10:e1004094. [PMID: 24415958 PMCID: PMC3886936 DOI: 10.1371/journal.pgen.1004094] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/20/2013] [Indexed: 01/28/2023] Open
Abstract
Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.
Collapse
|
10
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
11
|
Wu J, Kong X, Shi C, Gu Y, Jin C, Gao L, Jia J. Dynamic evolution of rht-1 homologous regions in grass genomes. PLoS One 2013; 8:e75544. [PMID: 24086561 PMCID: PMC3782514 DOI: 10.1371/journal.pone.0075544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/18/2013] [Indexed: 11/18/2022] Open
Abstract
Hexaploid bread wheat contains A, B, and D three subgenomes with its well-characterized ancestral genomes existed at diploid and tetraploid levels, making the wheat act as a good model species for studying evolutionary genomic dynamics. Here, we performed intra- and inter-species comparative analyses of wheat and related grass genomes to examine the dynamics of homologous regions surrounding Rht-1, a well-known "green revolution" gene. Our results showed that the divergence of the two A genomes in the Rht-1 region from the diploid and tetraploid species is greater than that from the tetraploid and hexaploid wheat. The divergence of D genome between diploid and hexaploid is lower than those of A genome, suggesting that D genome diverged latter than others. The divergence among the A, B and D subgenomes was larger than that among different ploidy levels for each subgenome which mainly resulted from genomic structural variation of insertions and, perhaps deletions, of the repetitive sequences. Meanwhile, the repetitive sequences caused genome expansion further after the divergence of the three subgenomes. However, several conserved non-coding sequences were identified to be shared among the three subgenomes of wheat, suggesting that they may have played an important role to maintain the homolog of three subgenomes. This is a pilot study on evolutionary dynamics across the wheat ploids, subgenomes and differently related grasses. Our results gained new insights into evolutionary dynamics of Rht-1 region at sequence level as well as the evolution of wheat during the plolyploidization process.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Shi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, China
| | - Yongqiang Gu
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Cuiyun Jin
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, China
- * E-mail: (JJ); (LG)
| | - Jizeng Jia
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JJ); (LG)
| |
Collapse
|
12
|
Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 2013; 8:e70844. [PMID: 23940651 PMCID: PMC3733919 DOI: 10.1371/journal.pone.0070844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/23/2013] [Indexed: 11/19/2022] Open
Abstract
Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat-Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | - Richard Goram
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Jan Vrána
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Simon Griffiths
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Akhunov ED, Sehgal S, Liang H, Wang S, Akhunova AR, Kaur G, Li W, Forrest KL, See D, Simková H, Ma Y, Hayden MJ, Luo M, Faris JD, Dolezel J, Gill BS. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. PLANT PHYSIOLOGY 2013; 161:252-65. [PMID: 23124323 PMCID: PMC3532256 DOI: 10.1104/pp.112.205161] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%-25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.
Collapse
Affiliation(s)
- Eduard D Akhunov
- Department of Plant Pathology , Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Roozgard A, Barzigar N, Wang S, Jiang X, Ohno-Machado L, Cheng S. Nucleotide sequence alignment using sparse coding and belief propagation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:588-91. [PMID: 24109755 PMCID: PMC3909563 DOI: 10.1109/embc.2013.6609568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].
Collapse
|