1
|
Lam SY, Mommersteeg MC, Yu B, Broer L, Spaander MCW, Frost F, Weiss S, Völzke H, Lerch MM, Schöttker B, Zhang Y, Stocker H, Brenner H, Levy D, Hwang SJ, Wood AC, Rich SS, Rotter JI, Taylor KD, Tracy RP, Kabagambe EK, Leja M, Klovins J, Peculis R, Rudzite D, Nikitina-Zake L, Skenders G, Rovite V, Uitterlinden A, Kuipers EJ, Fuhler GM, Homuth G, Peppelenbosch MP. Toll-Like Receptor 1 Locus Re-examined in a Genome-Wide Association Study Update on Anti-Helicobacter pylori IgG Titers. Gastroenterology 2022; 162:1705-1715. [PMID: 35031300 DOI: 10.1053/j.gastro.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. METHODS The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori-eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. RESULTS The association of the TLR1/6/10 locus with anti-H pylori IgG titers (rs12233670; β = -0.267 ± SE 0.034; P = 4.42 × 10-15) presented with high heterogeneity and failed replication. Anti-H pylori IgG titers declined within 2-4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. CONCLUSIONS The association between anti-H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti-H pylori IgG titers on therapy, clearance, and antibody decay. H pylori-mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.
Collapse
Affiliation(s)
- Suk Yee Lam
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont College of Medicine, Colchester, Vermont, USA
| | | | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Dace Rudzite
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Girts Skenders
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Xue Z, You Y, He L, Gong Y, Sun L, Han X, Fan R, Zhai K, Yang Y, Zhang M, Yan X, Zhang J. Diversity of 3' variable region of cagA gene in Helicobacter pylori strains isolated from Chinese population. Gut Pathog 2021; 13:23. [PMID: 33849660 PMCID: PMC8042891 DOI: 10.1186/s13099-021-00419-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background The cytotoxin-associated gene A (cagA) is one of the most important virulence factors of Helicobacter pylori (H. pylori). There is a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal of CagA protein. This repeat region is thought to play an important role in the pathogenesis of gastrointestinal diseases. The aim of this study was to investigate the diversity of cagA 3′ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region of H. pylori, and their association with gastroduodenal diseases. Methods A total of 515 H. pylori strains from patients in 14 different geographical regions of China were collected. The genomic DNA from each strain was extracted and the cagA 3′ variable region was amplified by polymerase chain reaction (PCR). The PCR products were sequenced and analyzed using MEGA 7.0 software. Results A total of 503 (97.7%) H. pylori strains were cagA-positive and 1,587 EPIYA motifs were identified, including 12 types of EPIYA or EPIYA-like sequences. In addition to the four reported major segments, several rare segments (e.g., B′, B″ and D′) were defined and 20 different sequence types (e.g., ABD, ABC) were found in our study. A total of 481 (95.6%) strains carried the East Asian type CagA, and the ABD subtypes were most prevalent (82.1%). Only 22 strains carried the Western type CagA, which included AC, ABC, ABCC and ABCCCC subtypes. The CagA-ABD subtype had statistical difference in different geographical regions (P = 0.006). There were seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs, among which amino acids 893 and 894 had a statistical difference with gastric cancer (P = 0.004). Conclusions In this study, 503 CagA sequences were studied and analyzed in depth. In Chinese population, most H. pylori strains were of the CagA-ABD subtype and its presence was associated with gastroduodenal diseases. Amino acid polymorphisms at residues 893 and 894 flanking the EPIYA motifs had a statistically significant association with gastric cancer.
Collapse
Affiliation(s)
- Zhijing Xue
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yanan Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lu Sun
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiurui Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Kangle Zhai
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yaming Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaomei Yan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| |
Collapse
|
3
|
Yan LR, Lv Z, Jing JJ, Yuan Y, Xu Q. Single nucleotide polymorphisms of whole genes and atrophic gastritis susceptibility:a systematic review and meta-analysis. Gene 2021; 782:145543. [PMID: 33667608 DOI: 10.1016/j.gene.2021.145543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atrophic gastritis (AG) is one of the important precancerous lesions of gastric cancer. Single nucleotide polymorphisms (SNPs) are closely related to AG susceptibility. However, the research conclusions on the predictive potential of SNPs are inconsistent. The study aims to retrospect the association between SNPs of whole genes and AG risk by meta-analysis. MATERIALS AND METHODS Up to April 29, 2020, a systematic literature search for the relationship of SNPs with AG susceptibility was performed utilizing PubMed, Web of Science and Chinese National Knowledge Infrastructure. The overall and stratified meta-analyses on extracted data were conducted by Stata11.2. RESULTS 33 case-control studies were enrolled containing 9951 AG patients and 17,252 healthy controls, and 17 SNPs in 12 different genes were systematically reviewed. The results indicated that 12 genes could be categorized based on their functions, including immune response, cell proliferation and apoptosis, and DNA damage repair. For the SNPs in immune response-related genes, the C allele of TLR1 rs4833095 T/C increased AG risk to 1.21-fold and the recessive model of TLR4 rs11536878 in the TLR gene family decreased AG susceptibility to 0.48-fold. The variant alleles of IL-10 rs1800871 (OR = 1.21) and IL-8 rs4073 (OR = 1.22) in the IL gene family were positively associated with AG risk. PSCA rs2294008 enhanced AG risk in all genetic models. SNPs associated with AG susceptibility were mainly focused on immune response-related genes. CONCLUSION These SNPs related to immune response could influence on AG risk and have potential to be AG predictive biomarkers. It is worth noting that the number of studies for each SNPs were insufficient due to the limited published researches and updated meta-analysis needs to be performed based on extensive relevant studies for more reliable results.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China.
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
4
|
Xu L, Zhou C, Pan R, Tang J, Wang J, Li B, Huang T, Duan S, Xu C. PTPN11 hypomethylation is associated with gastric cancer progression. Oncol Lett 2020; 19:1693-1700. [PMID: 32194661 PMCID: PMC7039138 DOI: 10.3892/ol.2020.11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/14/2019] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 11 (PTPN11) encodes the tyrosine phosphatase SHP-2 that is overexpressed in gastric cancer (GC). In the present study, the association of PTPN11 methylation levels with the incidence of GC and its correlation with SHP-2 overexpression were investigated. The methylation levels of PTPN11 in tumor and adjacent normal tissues of 112 GC patients were assessed by quantitative methylation specific PCR (qMSP). The Cancer Genome Atlas (TCGA) public database was used to analyze the association between PTPN11 methylation and PTPN11 expression. Survival analyses were conducted in order to evaluate the prognostic value of PTPN11 methylation for GC. The results of the qMSP analysis indicated that the methylation levels of PTPN11 in GC tumor tissues were significantly decreased compared with those noted in the normal adjacent tissues (mean with standard deviation: 40.91±26.33 vs. 51.99±37.37, P=0.007). An inverse correlation between PTPN11 methylation levels and PTPN11 mRNA expression levels (P=4×10-6, r=-0.237) was noted. Subgroup analyses indicated that the association of PTPN11 hypomethylation with the incidence of GC was specific to male subjects (P=0.015), heavy drinking patients (P=0.019), patients with poor tumor differentiation (P=0.010) and patients with tumor node and metastasis (TNM) stage III+IV (P=0.008). Kaplan-Meier analyses and log-rank test suggested that PTPN11 hypomethylation was not associated with GC patient overall survival (P=0.605) and recurrence (P=0.485), although it could predict the recurrence of GC patients up to and including 60 years (≤60, P=0.049). The results indicated that PTPN11 levels were hypomethylated in GC patients. TCGA data analysis suggested that PTPN11 hypomethylation could cause an upregulation in the transcription levels of PTPN11. Although, this may explain the pattern of SHP-2 overexpression in GC, additional studies are required to verify this hypothesis. The association of PTPN11 hypomethylation with GC incidence may be specific to male patients, heavy drinking patients, patients with poor tumor differentiation and patients with TNM stage of III+IV. PTPN11 hypomethylation can be considered a biomarker for the recurrence of GC patients with an age of 60 years or lower.
Collapse
Affiliation(s)
- Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Junjian Tang
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| |
Collapse
|
5
|
Nagy P, Johansson S, Molloy-Bland M. Systematic review of time trends in the prevalence of Helicobacter pylori infection in China and the USA. Gut Pathog 2016; 8:8. [PMID: 26981156 PMCID: PMC4791971 DOI: 10.1186/s13099-016-0091-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the prevalence of Helicobacter pylori infection has stabilized in the USA and is decreasing in China. We conducted a systematic literature analysis to test this hypothesis. PubMed and Embase searches were conducted up to 19 January 2015. Trends in the prevalence of H. pylori infection over time were assessed by regression analysis using Microsoft Excel. Overall, 25 Chinese studies (contributing 28 datasets) and 11 US studies (contributing 11 datasets) were included. There was a significant decrease over time in the H. pylori infection prevalence for the Chinese studies overall (p = 0.00018) and when studies were limited to those that used serum immunoglobulin G (IgG) assays to detect H. pylori infection (p = 0.014; 20 datasets). The weighted mean prevalence of H. pylori infection was 66 % for rural Chinese populations and 47 % for urban Chinese populations. There was a significant trend towards a decreasing prevalence of H. pylori infection for studies that included only urban populations (p = 0.04; 9 datasets). This trend was no longer statistically significant when these studies were further restricted to those that used serum IgG assays to detect H. pylori infection, although this may have been because of low statistical power due to the small number of datasets available for this analysis (p = 0.28; 6 datasets). There were no significant trends in terms of changes in the prevalence of H. pylori infection over time for studies conducted in the USA. In conclusion, the prevalence of H. pylori infection is most likely decreasing in China, due to a combination of increasing urbanization, which we found to be associated with lower H. pylori infection rates, and possibly also decreasing rates of H. pylori infection within urban populations. This will probably result in a gradual decrease in peptic ulcer and gastric cancer rates in China over time.
Collapse
Affiliation(s)
- Peter Nagy
- AstraZeneca Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Saga Johansson
- AstraZeneca Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Michael Molloy-Bland
- School of Medicine, Pharmacy and Health, Durham University, Durham, UK ; Research Evaluation Unit, Oxford PharmaGenesis Ltd, Oxford, UK
| |
Collapse
|
6
|
Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol 2015; 2:11-21. [PMID: 28174704 PMCID: PMC4980741 DOI: 10.1016/j.jcmgh.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.
Collapse
Key Words
- CagA, cytotoxin-associated gene A
- ERK, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- GI, gastrointestinal
- HCC, hepatocellular carcinoma
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- JMML, juvenile myelomonocytic leukemia
- KO, knockout
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor-κB
- PI3K, phosphatidyl-inositol 3-kinase
- PTP, protein tyrosine phosphatase
- PTPN11
- RAS, rat sarcoma viral oncogene
- epithelium
- gastrointestinal cancer
- inflammation
Collapse
Affiliation(s)
| | - Nathalie Rivard
- Correspondence Address correspondence to: Nathalie Rivard, PhD, 3201, Jean Mignault, Sherbrooke, Quebec, Canada, J1E4K8.3201Jean Mignault, SherbrookeQuebecCanada, J1E4K8
| |
Collapse
|
7
|
Han X, Zhang L, Zhang Z, Zhang Z, Wang J, Yang J, Niu J. Association between phosphatase related gene variants and coronary artery disease: case-control study and meta-analysis. Int J Mol Sci 2014; 15:14058-76. [PMID: 25123136 PMCID: PMC4159839 DOI: 10.3390/ijms150814058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022] Open
Abstract
Recent studies showed that the serum alkaline phosphatase is an independent predictor of the coronary artery disease (CAD). In this work, we aimed to summarize the association between three phosphatase related single nucleotide polymorphisms (rs12526453, rs11066301 and rs3828329) and the risk of CAD in Han Chinese. Our results showed that the rs3828329 of the ACP1 gene was closely related to the risk of CAD in Han Chinese (OR = 1.45, p = 0.0006). This significant association of rs3828329 with CAD was only found in the females (Additive model: OR = 1.80, p = 0.001; dominant model: OR = 1.69, p = 0.03; recessive model: OR = 1.96, p = 0.0008). Moreover, rs3828329 was likely to exert its effect in females aged 65 years and older (OR = 2.27, p = 0.001). Further meta-analyses showed that the rs12526453 of PHACTR11 gene (OR = 1.14, p < 0.0001, random-effect method) and the rs11066301 of PTPN11 gene (OR = 1.15, p < 0.0001, fixed-effects method) were associated with CAD risk in multiple populations. Our results showed that the polymorphisms rs12526453 and rs11066301 are significantly associated with the CAD risk in multiple populations. The rs3828329 of ACP1 gene is also a risk factor of CAD in Han Chinese females aged 65 years and older.
Collapse
Affiliation(s)
- Xia Han
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Lijun Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zhiqiang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zengtang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Jianchun Wang
- Department of Cardiology, Shandong Provincial Hospital, Jinan 250000, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China.
| | - Jiamin Niu
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| |
Collapse
|
8
|
Pabalan N, Singh N, Pineda MR, Jarjanazi H. Meta-analysis of the Association Between PTPN11 G/A Polymorphism at Intron 3 with Risk of Gastric Atrophy Among East Asians. J Gastrointest Cancer 2014; 45:319-24. [DOI: 10.1007/s12029-014-9608-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Jia ZF, Cao XY, Cao DH, Kong F, Kharbuja P, Jiang J. Polymorphisms of PTPN11 gene could influence serum lipid levels in a sex-specific pattern. Lipids Health Dis 2013; 12:72. [PMID: 23672255 PMCID: PMC3685535 DOI: 10.1186/1476-511x-12-72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background Previous studies have reported that different genotypes of PTPN11 gene (protein tyrosine phosphatase, non-receptor 11) were associated with different levels of serum lipids. The aim of this study was to explore the relationship between single nucleotide polymorphisms (SNPs) of PTPN11 and serum lipids in Northeast Chinese. Methods A total of 1003 subjects, 584 males and 419 females, were included in the study and their serum lipids were determined. Five htSNPs (rs2301756, rs12423190, rs12229892, rs7958372 and rs4767860) of PTPN11 gene were genotyped using TaqMan assay method. Results All of the five SNPs were in Hardy-Weinberg equilibrium. The male subjects had higher triglyceride (TG), higher low-density lipoprotein cholesterol (LDL-C) and lower high-density lipoprotein cholesterol (HDL-C) level than females. In males, rs4767860 was found to be associated with serum TG and total cholesterol (TC) levels and rs12229892 was associated with TC level. However, these significant associations could not be observed in females. In females, rs2301756 was found to be associated with TG and rs7958372 was associated with LDL-C level. Haplotype analysis showed that the GCGTG haplotype was associated with slightly higher TG level and ATGCG with higher TC level. Conclusions SNPs of PTPN11 may play a role in serum lipids in a sex-specific pattern. However, more studies are needed to confirm the conclusion and explore the underlying mechanism.
Collapse
Affiliation(s)
- Zhi-Fang Jia
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Half of the world's population is infected with Helicobacter pylori and approximately 20% of infected individuals develop overt clinical disease such as ulcers and stomach cancer. Paradoxically, despite its classification as a class I carcinogen, H. pylori has been shown to be protective against development of asthma, allergy, and esophageal disease. Given these conflicting roles for H. pylori, researchers are attempting to define the environmental, host, and pathogen interactions that ultimately result in severe disease in some individuals. From the bacterial perspective, the toxins, CagA and VacA, have each been shown to be polymorphic and to contribute to disease in an allele-dependent manner. Based on the notable advances that have recently been made in the CagA field, herein we review recent studies that have begun to shed light on the role of CagA polymorphism in H. pylori disease. Moreover, we discuss the potential interaction of CagA and VacA as a mediator of gastric disease.
Collapse
|
11
|
Jiang J, Jin MS, Kong F, Wang YP, Jia ZF, Cao DH, Ma HX, Suo J, Cao XY. Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer. World J Gastroenterol 2013; 19:575-80. [PMID: 23382639 PMCID: PMC3558584 DOI: 10.3748/wjg.v19.i4.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/17/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the alteration of tyrosine phosphatase SHP-2 protein expression in gastric cancer and to assess its prognostic values. METHODS Three hundred and five consecutive cases of gastric cancer were enrolled into this study. SHP-2 expression was carried out in 305 gastric cancer specimens, of which 83 were paired adjacent normal gastric mucus samples, using a tissue microarray immunohistochemical method. Correlations were analyzed between expression levels of SHP-2 protein and tumor parameters or clinical outcomes. Serum anti-Helicobacter pylori (H. pylori) immunoglobulin G was detected with enzyme-linked immunosorbent assay. Cox proportional hazards model was used to evaluate prognostic values by compassion of the expression levels of SHP-2 and disease-specific survivals in patients. RESULTS SHP-2 staining was found diffuse mainly in the cytoplasm and the weak staining was also observed in the nucleus in gastric mucosa cells. Thirty-two point five percent of normal epithelial specimen and 62.6% of gastric cancer specimen were identified to stain with SHP-2 antibody positively (P < 0.001). Though SHP-2 staining intensities were stronger in the H. pylori (+) group than in the H. pylori (-) group, no statistically significant difference was found in the expression levels of SHP-2 between H. pylori (+) and H. pylori (-) gastric cancer (P = 0.40). The SHP-2 expression in gastric cancer was not significantly associated with cancer stages, lymph node metastases, and distant metastasis of the tumors (P = 0.34, P = 0.17, P = 0.52). Multivariate analysis demonstrated no correlation between SHP-2 expression and disease-free survival (P = 0.86). CONCLUSION Increased expression of SHP-2 protein in gastric cancer specimen suggesting the aberrant up-regulation of SHP-2 protein might play an important role in the gastric carcinogenesis.
Collapse
|