1
|
Systematic Evaluation of Line Probe Assays for the diagnosis of Tuberculosis and Drug-resistant Tuberculosis. Clin Chim Acta 2022; 533:183-218. [DOI: 10.1016/j.cca.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
|
2
|
The Structural Basis of Mycobacterium tuberculosis RpoB Drug-Resistant Clinical Mutations on Rifampicin Drug Binding. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030885. [PMID: 35164151 PMCID: PMC8839920 DOI: 10.3390/molecules27030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB), caused by the Mycobacterium tuberculosis infection, continues to be a leading cause of morbidity and mortality in developing countries. Resistance to the first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), is a major drawback to effective TB treatment. Genetic mutations in the β-subunit of the DNA-directed RNA polymerase (rpoB) are reported to be a major reason of RIF resistance. However, the structural basis and mechanisms of these resistant mutations are insufficiently understood. In the present study, thirty drug-resistant mutants of rpoB were initially modeled and screened against RIF via a comparative molecular docking analysis with the wild-type (WT) model. These analyses prioritized six mutants (Asp441Val, Ser456Trp, Ser456Gln, Arg454Gln, His451Gly, and His451Pro) that showed adverse binding affinities, molecular interactions, and RIF binding hinderance properties, with respect to the WT. These mutant models were subsequently analyzed by molecular dynamics (MD) simulations. One-hundred nanosecond all-atom MD simulations, binding free energy calculations, and a dynamic residue network analysis (DRN) were employed to exhaustively assess the impact of mutations on RIF binding dynamics. Considering the global structural motions and protein-ligand binding affinities, the Asp441Val, Ser456Gln, and His454Pro mutations generally yielded detrimental effects on RIF binding. Locally, we found that the electrostatic contributions to binding, particularly by Arg454 and Glu487, might be adjusted to counteract resistance. The DRN analysis revealed that all mutations mostly distorted the communication values of the critical hubs and may, therefore, confer conformational changes in rpoB to perturb RIF binding. In principle, the approach combined fundamental molecular modeling tools for robust "global" and "local" level analyses of structural dynamics, making it well suited for investigating other similar drug resistance cases.
Collapse
|
3
|
Cunnama L, Gomez GB, Siapka M, Herzel B, Hill J, Kairu A, Levin C, Okello D, DeCormier Plosky W, Garcia Baena I, Sweeney S, Vassall A, Sinanovic E. A Systematic Review of Methodological Variation in Healthcare Provider Perspective Tuberculosis Costing Papers Conducted in Low- and Middle-Income Settings, Using An Intervention-Standardised Unit Cost Typology. PHARMACOECONOMICS 2020; 38:819-837. [PMID: 32363543 PMCID: PMC7437656 DOI: 10.1007/s40273-020-00910-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND There is a need for easily accessible tuberculosis unit cost data, as well as an understanding of the variability of methods used and reporting standards of that data. OBJECTIVE The aim of this systematic review was to descriptively review papers reporting tuberculosis unit costs from a healthcare provider perspective looking at methodological variation; to assess quality using a study quality rating system and machine learning to investigate the indicators of reporting quality; and to identify the data gaps to inform standardised tuberculosis unit cost collection and consistent principles for reporting going forward. METHODS We searched grey and published literature in five sources and eight databases, respectively, using search terms linked to cost, tuberculosis and tuberculosis health services including tuberculosis treatment and prevention. For inclusion, the papers needed to contain empirical unit cost estimates for tuberculosis interventions from low- and middle-income countries, with reference years between 1990 and 2018. A total of 21,691 papers were found and screened in a phased manner. Data were extracted from the eligible papers into a detailed Microsoft Excel tool, extensively cleaned and analysed with R software (R Project, Vienna, Austria) using the user interface of RStudio. A study quality rating was applied to the reviewed papers based on the inclusion or omission of a selection of variables and their relative importance. Following this, machine learning using a recursive partitioning method was utilised to construct a classification tree to assess the reporting quality. RESULTS This systematic review included 103 provider perspective papers with 627 unit costs (costs not presented here) for tuberculosis interventions among a total of 140 variables. The interventions covered were active, passive and intensified case finding; tuberculosis treatment; above-service costs; and tuberculosis prevention. Passive case finding is the detection of tuberculosis cases where individuals self-identify at health facilities; active case finding is detection of cases of those not in health facilities, such as through outreach; and intensified case finding is detection of cases in high-risk populations. There was heterogeneity in some of the reported methods used such cost allocation, amortisation and the use of top-down, bottom-up or mixed approaches to the costing. Uncertainty checking through sensitivity analysis was only reported on by half of the papers (54%), while purposive and convenience sampling was reported by 72% of papers. Machine learning indicated that reporting on 'Intervention' (in particular), 'Urbanicity' and 'Site Sampling', were the most likely indicators of quality of reporting. The largest data gap identified was for tuberculosis vaccination cost data, the Bacillus Calmette-Guérin (BCG) vaccine in particular. There is a gap in available unit costs for 12 of 30 high tuberculosis burden countries, as well as for the interventions of above-service costs, tuberculosis prevention, and active and intensified case finding. CONCLUSION Variability in the methods and reporting used makes comparison difficult and makes it hard for decision makers to know which unit costs they can trust. The study quality rating system used in this review as well as the classification tree enable focus on specific reporting aspects that should improve variability and increase confidence in unit costs. Researchers should endeavour to be explicit and transparent in how they cost interventions following the principles as laid out in the Global Health Cost Consortium's Reference Case for Estimating the Costs of Global Health Services and Interventions, which in turn will lead to repeatability, comparability and enhanced learning from others.
Collapse
Affiliation(s)
- Lucy Cunnama
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Cape Town, South Africa.
| | - Gabriela B Gomez
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Mariana Siapka
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Ben Herzel
- Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Jeremy Hill
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Angela Kairu
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Cape Town, South Africa
| | - Carol Levin
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Dickson Okello
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Cape Town, South Africa
| | | | - Inés Garcia Baena
- TB Monitoring and Evaluation (TME), Global TB Programme, The World Health Organization, Geneva, Switzerland
| | - Sedona Sweeney
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Anna Vassall
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Edina Sinanovic
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Cape Town, South Africa
| |
Collapse
|
4
|
Groessl EJ, Ganiats TG, Hillery N, Trollip A, Jackson RL, Catanzaro DG, Rodwell TC, Garfein RS, Rodrigues C, Crudu V, Victor TC, Catanzaro A. Cost analysis of rapid diagnostics for drug-resistant tuberculosis. BMC Infect Dis 2018; 18:102. [PMID: 29499645 PMCID: PMC5833048 DOI: 10.1186/s12879-018-3013-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 01/30/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Growth-based drug susceptibility testing (DST) is the reference standard for diagnosing drug-resistant tuberculosis (TB), but standard time to result (TTR) is typically ≥ 3 weeks. Rapid tests can reduce that TTR to days or hours, but accuracy may be lowered. In addition to the TTR and test accuracy, the cost of a diagnostic test may affect whether it is adopted in clinical settings. We examine the cost-effectiveness of rapid diagnostics for extremely drug-resistant TB (XDR-TB) in three different high-prevalence settings. METHODS 1128 patients with confirmed TB were enrolled at clinics in Mumbai, India; Chisinau, Moldova; and Port Elizabeth, South Africa. Patient sputum samples underwent DST for first and second line TB drugs using 2 growth-based (MGIT, MODS) and 2 molecular (Pyrosequencing [PSQ], line-probe assays [LPA]) assays. TTR was the primary measure of effectiveness. Sensitivity and specificity were also evaluated. The cost to perform each test at each site was recorded and included test-specific materials, personnel, and equipment costs. Incremental cost-effectiveness ratios were calculated in terms of $/day saved. Sensitivity analyses examine the impact of batch size, equipment, and personnel costs. RESULTS Our prior results indicated that the LPA and PSQ returned results in a little over 1 day. Mean cost per sample without equipment or overhead was $23, $28, $33, and $41 for the MODS, MGIT, PSQ, and LPA, respectively. For diagnosing XDR-TB, MODS was the most accurate, followed by PSQ, and LPA. MODS was quicker and less costly than MGIT. PSQ and LPA were considerably faster but cost more than MODS. Batch size and personnel costs were the main drivers of cost variation. CONCLUSIONS Multiple factors must be weighed when selecting a test for diagnosis of XDR-TB. Rapid tests can greatly improve the time required to diagnose drug-resistant TB, potentially improving treatment success, and preventing the spread of XDR-TB. Faster time to result must be weighed against the potential for reduced accuracy, and increased costs. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02170441 .
Collapse
Affiliation(s)
- Erik J. Groessl
- Department of Family Medicine and Public Health, University of California San Diego, 9500 Gilman Dr, #0994, San Diego, CA USA
- VA San Diego Healthcare System, San Diego, CA USA
| | - Theodore G. Ganiats
- Department of Family Medicine and Public Health, University of California San Diego, 9500 Gilman Dr, #0994, San Diego, CA USA
| | - Naomi Hillery
- Department of Family Medicine and Public Health, University of California San Diego, 9500 Gilman Dr, #0994, San Diego, CA USA
| | - Andre Trollip
- Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | | - Valeriu Crudu
- Microbiology and Morphology Laboratory, Institute of Phthisiopneumology, Chisinau, Moldova
| | - Thomas C. Victor
- Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
5
|
Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G, van Helden P, Niemann S, Merker M, Dowdy D, Van Rie A, Siu GKH, Pasipanodya JG, Rodrigues C, Clark TG, Sirgel FA, Esmail A, Lin HH, Atre SR, Schaaf HS, Chang KC, Lange C, Nahid P, Udwadia ZF, Horsburgh CR, Churchyard GJ, Menzies D, Hesseling AC, Nuermberger E, McIlleron H, Fennelly KP, Goemaere E, Jaramillo E, Low M, Jara CM, Padayatchi N, Warren RM. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. THE LANCET. RESPIRATORY MEDICINE 2017; 5:S2213-2600(17)30079-6. [PMID: 28344011 DOI: 10.1016/s2213-2600(17)30079-6] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Global tuberculosis incidence has declined marginally over the past decade, and tuberculosis remains out of control in several parts of the world including Africa and Asia. Although tuberculosis control has been effective in some regions of the world, these gains are threatened by the increasing burden of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. XDR tuberculosis has evolved in several tuberculosis-endemic countries to drug-incurable or programmatically incurable tuberculosis (totally drug-resistant tuberculosis). This poses several challenges similar to those encountered in the pre-chemotherapy era, including the inability to cure tuberculosis, high mortality, and the need for alternative methods to prevent disease transmission. This phenomenon mirrors the worldwide increase in antimicrobial resistance and the emergence of other MDR pathogens, such as malaria, HIV, and Gram-negative bacteria. MDR and XDR tuberculosis are associated with high morbidity and substantial mortality, are a threat to health-care workers, prohibitively expensive to treat, and are therefore a serious public health problem. In this Commission, we examine several aspects of drug-resistant tuberculosis. The traditional view that acquired resistance to antituberculous drugs is driven by poor compliance and programmatic failure is now being questioned, and several lines of evidence suggest that alternative mechanisms-including pharmacokinetic variability, induction of efflux pumps that transport the drug out of cells, and suboptimal drug penetration into tuberculosis lesions-are likely crucial to the pathogenesis of drug-resistant tuberculosis. These factors have implications for the design of new interventions, drug delivery and dosing mechanisms, and public health policy. We discuss epidemiology and transmission dynamics, including new insights into the fundamental biology of transmission, and we review the utility of newer diagnostic tools, including molecular tests and next-generation whole-genome sequencing, and their potential for clinical effectiveness. Relevant research priorities are highlighted, including optimal medical and surgical management, the role of newer and repurposed drugs (including bedaquiline, delamanid, and linezolid), pharmacokinetic and pharmacodynamic considerations, preventive strategies (such as prophylaxis in MDR and XDR contacts), palliative and patient-orientated care aspects, and medicolegal and ethical issues.
Collapse
Affiliation(s)
- Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa.
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruth McNerney
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Megan Murray
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward A Nardell
- TH Chan School of Public Health, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie London
- School of Public Health and Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Grant Theron
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Paul van Helden
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; German Centre for Infection Research (DZIF), Partner Site Borstel, Borstel, Schleswig-Holstein, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Schleswig-Holstein, Germany
| | - David Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Annelies Van Rie
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Gilman K H Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Camilla Rodrigues
- Department of Microbiology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases and Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Frik A Sirgel
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Aliasgar Esmail
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Hsien-Ho Lin
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Sachin R Atre
- Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA; Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Christoph Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel, Borstel, Schleswig-Holstein, Germany; International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany; Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Payam Nahid
- Division of Pulmonary and Critical Care, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Zarir F Udwadia
- Pulmonary Department, Hinduja Hospital & Research Center, Mumbai, India
| | | | - Gavin J Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa; Advancing Treatment and Care for TB/HIV, South African Medical Research Council, Johannesburg, South Africa
| | - Dick Menzies
- Montreal Chest Institute, McGill University, Montreal, QC, Canada
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kevin P Fennelly
- Pulmonary Clinical Medicine Section, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eric Goemaere
- MSF South Africa, Cape Town, South Africa; School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marcus Low
- Treatment Action Campaign, Johannesburg, South Africa
| | | | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), MRC HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Robin M Warren
- SA MRC Centre for Tuberculosis Research/DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
6
|
Abstract
BACKGROUND Tuberculosis (TB) remains a major contributor to morbidity and mortality in HIV-positive individuals, causing 1.1 million incident cases and 0.32 million deaths in 2012. Diagnosis of TB is particularly challenging in HIV-coinfected individuals, due to a high frequency of smear-negative disease, atypical presentations, and extrapulmonary TB. OBJECTIVE The aim of this article was to review the current literature on molecular diagnostics for TB with an emphasis on the performance of these diagnostic tests in the HIV-positive population. METHODS We searched the PubMed database using at least one of the terms TB, HIV, diagnostics, Xpert MTB/RIF, nucleic acid amplification tests, drug susceptibility testing, RNA transcription, and drew on World Health Organization publications. FINDINGS With increased focus on reducing TB prevalence worldwide, a new set of tools for diagnosing the disease have emerged. Molecular tools such as Xpert MTB/RIF and line-probe assays are now in use or are being rolled out in many regions. The diagnostic performance of these and other molecular assays are discussed here as they pertain to the HIV-positive population. CONCLUSIONS Molecular diagnostics offer a useful addition and at times, alternative, to traditional culture methods for the diagnosis of TB. However, most of these tests suffer from decreased accuracy in the HIV-positive population.
Collapse
|
7
|
Drobniewski F, Cooke M, Jordan J, Casali N, Mugwagwa T, Broda A, Townsend C, Sivaramakrishnan A, Green N, Jit M, Lipman M, Lord J, White PJ, Abubakar I. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol Assess 2016; 19:1-188, vii-viii. [PMID: 25952553 DOI: 10.3310/hta19340] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB), especially multidrug-resistant (MDR, resistance to rifampicin and isoniazid) disease, is associated with a worse patient outcome. Drug resistance diagnosed using microbiological culture takes days to weeks, as TB bacteria grow slowly. Rapid molecular tests for drug resistance detection (1 day) are commercially available and may promote faster initiation of appropriate treatment. OBJECTIVES To (1) conduct a systematic review of evidence regarding diagnostic accuracy of molecular genetic tests for drug resistance, (2) conduct a health-economic evaluation of screening and diagnostic strategies, including comparison of alternative models of service provision and assessment of the value of targeting rapid testing at high-risk subgroups, and (3) construct a transmission-dynamic mathematical model that translates the estimates of diagnostic accuracy into estimates of clinical impact. REVIEW METHODS AND DATA SOURCES A standardised search strategy identified relevant studies from EMBASE, PubMed, MEDLINE, Bioscience Information Service (BIOSIS), System for Information on Grey Literature in Europe Social Policy & Practice (SIGLE) and Web of Science, published between 1 January 2000 and 15 August 2013. Additional 'grey' sources were included. Quality was assessed using quality assessment of diagnostic accuracy studies version 2 (QUADAS-2). For each diagnostic strategy and population subgroup, a care pathway was constructed to specify which medical treatments and health services that individuals would receive from presentation to the point where they either did or did not complete TB treatment successfully. A total cost was estimated from a health service perspective for each care pathway, and the health impact was estimated in terms of the mean discounted quality-adjusted life-years (QALYs) lost as a result of disease and treatment. Costs and QALYs were both discounted at 3.5% per year. An integrated transmission-dynamic and economic model was used to evaluate the cost-effectiveness of introducing rapid molecular testing (in addition to culture and drug sensitivity testing). Probabilistic sensitivity analysis was performed to evaluate the impact on cost-effectiveness of diagnostic and treatment time delays, diagnosis and treatment costs, and associated QALYs. RESULTS A total of 8922 titles and abstracts were identified, with 557 papers being potentially eligible. Of these, 56 studies contained sufficient test information for analysis. All three commercial tests performed well when detecting drug resistance in clinical samples, although with evidence of heterogeneity between studies. Pooled sensitivity for GenoType® MTBDRplus (Hain Lifescience, Nehren, Germany) (isoniazid and rifampicin resistance), INNO-LiPA Rif.TB® (Fujirebio Europe, Ghent, Belgium) (rifampicin resistance) and Xpert® MTB/RIF (Cepheid Inc., Sunnyvale, CA, USA) (rifampicin resistance) was 83.4%, 94.6%, 95.4% and 96.8%, respectively; equivalent pooled specificity was 99.6%, 98.2%, 99.7% and 98.4%, respectively. Results of the transmission model suggest that all of the rapid assays considered here, if added to the current diagnostic pathway, would be cost-saving and achieve a reduction in expected QALY loss compared with current practice. GenoType MTBDRplus appeared to be the most cost-effective of the rapid tests in the South Asian population, although results were similar for GeneXpert. In all other scenarios GeneXpert appeared to be the most cost-effective strategy. CONCLUSIONS Rapid molecular tests for rifampicin and isoniazid resistance were sensitive and specific. They may also be cost-effective when added to culture drug susceptibility testing in the UK. There is global interest in point-of-care testing and further work is needed to review the performance of emerging tests and the wider health-economic impact of decentralised testing in clinics and primary care, as well as non-health-care settings, such as shelters and prisons. STUDY REGISTRATION This study is registered as PROSPERO CRD42011001537. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Francis Drobniewski
- Public Health England National Mycobacterium Reference Laboratory, London, UK
| | - Mary Cooke
- Centre for Infectious Disease Epidemiology, Research Department of Infection and Population Health, University College London, London, UK
| | - Jake Jordan
- Health Economics Research Group, Brunel University, Uxbridge, UK
| | - Nicola Casali
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Tendai Mugwagwa
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Agnieszka Broda
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | | | | | - Nathan Green
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Mark Jit
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Marc Lipman
- Division of Medicine, University College London, London, UK
| | - Joanne Lord
- Health Economics Research Group, Brunel University, Uxbridge, UK
| | - Peter J White
- Modelling and Economics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Ibrahim Abubakar
- Centre for Infectious Disease Epidemiology, Research Department of Infection and Population Health, University College London, London, UK
| |
Collapse
|
8
|
Qazi O, Rahman H, Tahir Z, Qasim M, Khan S, Ahmad Anjum A, Yaqub T, Tayyab M, Ali N, Firyal S. Mutation pattern in rifampicin resistance determining region of rpoB gene in multidrug-resistant Mycobacterium tuberculosis isolates from Pakistan. Int J Mycobacteriol 2014; 3:173-7. [DOI: 10.1016/j.ijmyco.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
|
9
|
Drobniewski F, Nikolayevskyy V, Maxeiner H, Balabanova Y, Casali N, Kontsevaya I, Ignatyeva O. Rapid diagnostics of tuberculosis and drug resistance in the industrialized world: clinical and public health benefits and barriers to implementation. BMC Med 2013; 11:190. [PMID: 23987891 PMCID: PMC3765611 DOI: 10.1186/1741-7015-11-190] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023] Open
Abstract
In this article, we give an overview of new technologies for the diagnosis of tuberculosis (TB) and drug resistance, consider their advantages over existing methodologies, broad issues of cost, cost-effectiveness and programmatic implementation, and their clinical as well as public health impact, focusing on the industrialized world. Molecular nucleic-acid amplification diagnostic systems have high specificity for TB diagnosis (and rifampicin resistance) but sensitivity for TB detection is more variable. Nevertheless, it is possible to diagnose TB and rifampicin resistance within a day and commercial automated systems make this possible with minimal training. Although studies are limited, these systems appear to be cost-effective. Most of these tools are of value clinically and for public health use. For example, whole genome sequencing of Mycobacterium tuberculosis offers a powerful new approach to the identification of drug resistance and to map transmission at a community and population level.
Collapse
Affiliation(s)
- Francis Drobniewski
- Public Health England National Mycobacterium Reference Laboratory, 2 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Despite the efforts made worldwide to reduce the number of cases of drug-susceptible tuberculosis, multidrug-resistant tuberculosis (MDR-TB) constitutes an important public health issue. Around 440,000 new cases of MDR-TB are estimated annually, although in 2008 only 7% of these (29,423 cases) were notified. The laboratory tests for diagnosing resistance may be phenotypic (based on culture growth in the presence of drugs) or genotypic (i.e. identification of the presence of mutations that confer resistance). The urgent need for a rapid means of detecting resistance to anti-TB drugs has resulted in the development of many genotypic methods over recent years. The treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse reactions. Some basic principles must be observed when prescribing an adequate treatment regimen for MDR-TB: (a) the association of at least four drugs (three of which should not have been used previously); (b) use of a fluoroquinolone; and (c) use of an injectable anti-TB drug. In Brazil, the therapeutic regimen for MDR-TB has been standardized and consists of five drugs: terizidone, levofloxacin, pyrazinamide, ethambutol and an aminoglycoside (streptomycin or amikacin). Pulmonary resection is an important tool in the coadjuvant treatment of MDR-TB. While a recent meta-analysis revealed an average cure rate of MDR-TB of 69%, clinical studies are currently being conducted with new drugs and with drugs already available on the market but with a new indication for TB, with encouraging results that will enable more effective treatment regimens to be planned in the future.
Collapse
|
11
|
Kim CJ, Kim NH, Song KH, Choe PG, Kim ES, Park SW, Kim HB, Kim NJ, Kim EC, Park WB, Oh MD. Differentiating rapid- and slow-growing mycobacteria by difference in time to growth detection in liquid media. Diagn Microbiol Infect Dis 2012; 75:73-6. [PMID: 23114094 DOI: 10.1016/j.diagmicrobio.2012.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Nontuberculous mycobacteria (NTM) are classified into 2 categories: slow-growing mycobacteria (SGM) and rapid-growing mycobacteria (RGM), based on interval to colony formation by subculture on solid media. However, little is known about the growth rate of NTM in liquid broth media. We evaluated the differences in time to growth detection (TGD) of RGM and SGM in liquid broth media according to acid-fast stain. Among the 696 NTM isolates, 201 were RGM and 495 were SGM. In acid-fast bacilli (AFB)-negative specimens, the mean TGD was 133 h for RGM and 269 h for SGM (P < 0.001). In AFB-positive specimens, the mean TGD was 112 ± 37 h for RGM and 155 ± 125 h for SGM (P = 0.063). In the AFB-negative group, a cut-off value of 6 days was most effective for distinguishing SGM from RGM; however, in the AFB-positive group, an appropriate cut-off value was hard to define with TGD only.
Collapse
Affiliation(s)
- Chung-Jong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|