1
|
Yang W, Dai J, Liu J, Guo M, Liu X, Hu S, Gu M, Hu J, Hu Z, Gao R, Liu K, Chen Y, Liu X, Wang X. Intranasal Immunization with a Recombinant Avian Paramyxovirus Serotypes 2 Vector-Based Vaccine Induces Protection against H9N2 Avian Influenza in Chicken. Viruses 2022; 14:v14050918. [PMID: 35632659 PMCID: PMC9144924 DOI: 10.3390/v14050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Commercial inactivated vaccines against H9N2 avian influenza (AI) have been developed in China since 1990s and show excellent immunogenicity with strong HI antibodies. However, currently approved vaccines cannot meet the clinical demand for a live-vectored vaccine. Newcastle disease virus (NDV) vectored vaccines have shown effective protection in chickens against H9N2 virus. However, preexisting NDV antibodies may affect protective efficacy of the vaccine in the field. Here, we explored avian paramyxovirus serotype 2 (APMV-2) as a vector for developing an H9N2 vaccine via intranasal delivery. APMV-2 belongs to the same genus as NDV, distantly related to NDV in the phylogenetic tree, based on the sequences of Fusion (F) and hemagglutinin-neuraminidase (HN) gene, and has low cross-reactivity with anti-NDV antisera. We incorporated hemagglutinin (HA) of H9N2 into the junction of P and M gene in the APMV-2 genome by being flanked with the gene start, gene end, and UTR of each gene of APMV-2-T4 to generate seven recombinant APMV-2 viruses rAPMV-2/HAs, rAPMV-2-NPUTR-HA, rAPMV-2-PUTR-HA, rAPMV-2-FUTR-HA, rAPMV-2-HNUTR-HA, rAPMV-2-LUTR-HA, and rAPMV-2-MUTR-HA, expressing HA. The rAPMV-2/HAs displayed similar pathogenicity compared with the parental APMV-2-T4 virus and expressed HA protein in infected CEF cells. The NP-UTR facilitated the expression and secretion of HA protein in cells infected with rAPMV-2-NPUTR-HA. Animal studies demonstrated that immunization with rAPMV-2-NPUTR-HA elicited effective H9N2-specific antibody (6.14 ± 1.2 log2) responses and conferred complete immune protection to prevent viral shedding in the oropharyngeal and cloacal swabs from chickens challenged with H9N2 virus. This study suggests that our recombinant APMV-2 virus is safe and immunogenic and can be a useful tool in the combat of H9N2 outbreaks in chicken.
Collapse
Affiliation(s)
- Wenhao Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jing Dai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Mengjiao Guo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Zenglei Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
2
|
Immunization with DNA prime-subunit protein boost strategy based on influenza H9N2 virus conserved matrix protein M1 and its epitope screening. Sci Rep 2020; 10:4144. [PMID: 32139720 PMCID: PMC7057951 DOI: 10.1038/s41598-020-60783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
Developing an effective universal influenza vaccine against influenza virus with highly conserved antigenic epitopes could induce a broad-spectrum immune response to prevent infection. The soluble protein M1 that can induce the M1 specific immune response was first confirmed in our previous study. In this study, we characterized the immune response induced by DNA prime-subunit protein boost strategy based on the relatively conserved matrix protein 1 (M1) in the BALB/c mouse model, and evaluated its protection ability against a lethal challenge of homologous H9N2 avian influenza virus (A/Chicken/Jiangsu/11/2002). The results showed that 100 μg DNA prime + 100 μg M1 subunit protein boost-strategy significantly increased antibody levels more than vaccination with M1 DNA or M1 subunit protein alone, and induced a more balanced Th1 / Th2 immune response, which not only can provide protection against the homologous virus but also can provide part of the cross-protection against the heterosubtypic PR8 H1N1 strain. In addition, we used an Elispot assay to preliminary screen the T cell epitope in M1 protein, and identified that p22 (M111-25 VLSIIPSGPLKAEIA) epitope was the only immunodominant M1-specific CD4+ T cell epitopes, which could be helpful in understanding the function of influenza virus T cell epitopes.
Collapse
|
3
|
Cao Y, He X, Xu W, Huang K. A 28-day subchronic feeding study of chicken injected by genetically modified DNA-vaccine of avian influenzas in Sprague-Dawley rats. Regul Toxicol Pharmacol 2018; 98:245-249. [PMID: 30056246 DOI: 10.1016/j.yrtph.2018.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
The safety of Veterinary vaccines based on the meat vaccinated by modified highly pathogenic avian influenza (HPAI) vaccine after oral ingestion was evaluated. The assessment was conducted in Sprague-Dawley rats by a 28-days feeding study. We incorporated meat from vaccinated chicken and non-vaccinated chicken into rodent diets at two concentrations (7.5%, 15%) and administered to Sprague-Dawley rats (n = 10/sex/group) for 28 days. A commercialized rodent diet was fed to an additional group as control group. Body weight, feed consumption and toxicological response variables were measured, and gross as well as microscopic pathology were examined. No death or adverse effects were observed in the current feeding study. The results of most studies indicated that there were no adverse effects between the groups fed with diets containing fractions from meat of vaccinated animals and the groups consumed diets composed of edible fractions from meat of non-vaccination animals.
Collapse
Affiliation(s)
- Yuan Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Science and Technology Information Research Institute, Beijing, 100044, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, 100083, PR China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, 100083, PR China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, 100083, PR China.
| |
Collapse
|
4
|
Chang H, Duan J, Zhou P, Su L, Zheng D, Zhang F, Fang F, Li X, Chen Z. Single immunization with MF59-adjuvanted inactivated whole-virion H7N9 influenza vaccine provides early protection against H7N9 virus challenge in mice. Microbes Infect 2017; 19:616-625. [DOI: 10.1016/j.micinf.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
5
|
Peng B, Peng N, Zhang Y, Zhang F, Li X, Chang H, Fang F, Wang F, Lu F, Chen Z. Comparison of the Protective Efficacy of Neutralizing Epitopes of 2009 Pandemic H1N1 Influenza Hemagglutinin. Front Immunol 2017; 8:1070. [PMID: 28912784 PMCID: PMC5583165 DOI: 10.3389/fimmu.2017.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/16/2017] [Indexed: 12/03/2022] Open
Abstract
The 2009 H1N1 influenza (Pdm09) pandemic has been referred to as the first influenza pandemic of the twenty-first century. There is a marked difference in antigenicity between the pandemic H1N1 virus and past seasonal H1N1 viruses, which allowed the pandemic virus to spread rapidly in humans. Antibodies (Abs) against hemagglutinin (HA), especially neutralizing Abs against epitopes in the head of HA, play critical roles in defending the host against the virus. Some preexisting neutralizing Abs that recognize neutralizing epitopes of Pdm09 HA, thereby affording cross-protection, have been reported. To better understand the protective effects of epitopes in Pdm09 HA, we constructed a series of plasmid DNAs (DNA vaccines) by cloning various combinations of Pdm09 neutralizing epitopes into the HA backbone derived from A/PR/8/1934 (H1N1). We subsequently compared the protective immune responses induced by these various forms of HA in a mouse model. We found that the plasmid DNAs with epitope substitutions provided better protection against lethal virus challenge and induced higher strain-specific antibody titers, with epitope Sa being the most effective. Moreover, the combination of epitopes Sa and Sb provided almost complete protection in mice. These findings provide new insights into the protective efficacy of neutralizing epitopes of influenza HA.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Na Peng
- College of Life Science, Hunan Normal University, Changsha, China
| | - Yanan Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fenghua Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Haiyan Chang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fang Fang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Fuyan Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fangguo Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ze Chen
- College of Life Science, Hunan Normal University, Changsha, China.,Shanghai Institute of Biological Products, Shanghai, China
| |
Collapse
|
6
|
Zheng M, Liu F, Shen Y, Wang S, Xu W, Fang F, Sun B, Xie Z, Chen Z. Cross-protection against influenza virus infection by intranasal administration of nucleoprotein-based vaccine with compound 48/80 adjuvant. Hum Vaccin Immunother 2015; 11:397-406. [PMID: 25607884 DOI: 10.4161/21645515.2014.995056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleoprotein (NP) of influenza viruses is highly conserved and therefore has become one of the major targets of current universal influenza vaccine (UIV) studies. In this study, the recombinant nucleoprotein (NP) of the A/PR/8/34 (H1N1) influenza virus strain was expressed using an Escherichia coli (E. coli) expression system and then purified as a candidate UIV. The NP protein was administered intranasally or intraperitoneally twice at 3-week intervals to female BALB/c mice in combination with C48/80 adjuvant. Then, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose 3 weeks after the last immunization. The results showed that the serum IgG titers of all of the mice immunized with NP reached a higher level and the protection provided by NP vaccine against the homologous virus depended on the administered dosage and adjuvant. In addition, immunization with 100 μg NP in combination with C48/80 adjuvant could provide good cross-protection against heterologous H9N2 avian influenza viruses. This study indicated that NP as a candidate antigen of UIV immunized intranasally could effectively induce mucosal and cell-mediated immunity, with the potential to control epidemics caused by the appearance of new emerging influenza viruses.
Collapse
Affiliation(s)
- Mei Zheng
- a Shanghai Institute of Biological Products ; Shanghai , China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol 2015. [PMID: 26210951 DOI: 10.1016/j.vetmic.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of a universal influenza vaccine that provides broad cross protection against existing and unforeseen influenza viruses is a critical challenge. In this study, we constructed and expressed conserved sM2 and HA2 influenza antigens with cholera toxin subunit A1 (CTA1) on the surface of Lactobacillus casei (pgsA-CTA1sM2HA2/L. casei). Oral and nasal administrations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and their isotypes (IgG1 & IgG2a) as well as mucosal IgA. The mucosal administration of pgsA-CTA1sM2HA2/L. casei may also significantly increase the levels of sM2- or HA2-specific cell-mediated immunity because increased release of both IFN-γ and IL-4 was observed. The recombinant pgsA-CTA1sM2HA2/L. casei provided better protection of BALB/c mice against 10 times the 50% mouse lethal doses (MLD50) of homologous A/EM/Korea/W149/06(H5N1) or A/Aquatic bird/Korea/W81/2005 (H5N2) and heterologous A/Puerto Rico/8/34(H1N1), or A/Chicken/Korea/116/2004(H9N2) or A/Philippines/2/08(H3N2) viruses, compared with L. casei harboring sM2HA2 and also the protection was maintained up to seven months after administration. These results indicate that recombinant L. casei expressing the highly conserved sM2, HA2 of influenza and CTA1 as a mucosal adjuvant could be a potential mucosal vaccine candidate or tool to protect against divergent influenza viruses for human and animal.
Collapse
|
8
|
Shahsavandi S, Ebrahimi MM, Sadeghi K, Mahravani H. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virol Sin 2015; 30:200-7. [PMID: 25894902 DOI: 10.1007/s12250-014-3504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1 (HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte (CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin (HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.
Collapse
|
9
|
He B, Chang H, Liu Z, Huang C, Liu X, Zheng D, Fang F, Sun B, Chen Z. Infection of influenza virus neuraminidase-vaccinated mice with homologous influenza virus leads to strong protection against heterologous influenza viruses. J Gen Virol 2014; 95:2627-2637. [PMID: 25170051 DOI: 10.1099/vir.0.067736-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vaccination is the best measure to prevent influenza pandemics. Here, we studied the protective effect against heterologous influenza viruses, including A/reassortant/NYMC X-179A (pH1N1), A/Chicken/Henan/12/2004 (H5N1), A/Chicken/Jiangsu/7/2002 (H9N2) and A/Guizhou/54/89×A/PR/8/34 (A/Guizhou-X) (H3N2), in mice first vaccinated with a DNA vaccine of haemagglutinin (HA) or neuraminidase (NA) of A/PR/8/34 (PR8) and then infected with the homologous virus. We showed that PR8 HA or NA vaccination both protected mice against a lethal dose of the homologous virus; PR8 HA or NA DNA vaccination and then PR8 infection in mice offered poor or excellent protection, respectively, against a second, heterologous influenza virus challenge. In addition, before the second heterologous influenza infection, the highest antibody level against nucleoprotein (NP) and matrix (M1 and M2) proteins was found in the PR8 NA-vaccinated and PR8-infected group. The level of induced cellular immunity against NP and M1 showed a trend consistent with that seen in antibody levels. However, PR8 HA+NA vaccination and then PR8 infection resulted in limited protection against heterologous influenza virus challenge. Results of the present study demonstrated that infection of the homologous influenza virus in mice already immunized with a NA vaccine could provide excellent protection against subsequent infection of a heterologous influenza virus. These findings suggested that NA, a major antigen of influenza virus, could be an important candidate antigen for universal influenza vaccines.
Collapse
Affiliation(s)
- Biao He
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhihua Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chaoyang Huang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai 200052, PR China
| | - Dan Zheng
- Shanghai Institute of Biological Products, Shanghai 200052, PR China
| | - Fang Fang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Bing Sun
- Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, PR China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200052, PR China.,College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
10
|
Wang S, Yu Y, Geng S, Wang D, Zhang L, Xie X, Wu B, Li C, Xu H, Li X, Hu Y, Zhang L, Kaether C, Wang B. A coimmunization vaccine of Aβ42 ameliorates cognitive deficits without brain inflammation in an Alzheimer's disease model. ALZHEIMERS RESEARCH & THERAPY 2014; 6:26. [PMID: 24987466 PMCID: PMC4075150 DOI: 10.1186/alzrt256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Vaccination against amyloid-β protein (Aβ42) induces high levels of antibody, making it a promising strategy for treating Alzheimer's disease (AD). One drawback in the past was that clinical trial approval was withheld because of speculation that the Aβ42 vaccine induces CD4(+) T cell infiltrations into the central nervous system. To reduce T-cell activation while concomitantly maintaining high anti-Aβ42 titers is a great challenge in immunology. METHODS We aimed to demonstrate that coimmunization with Aβ42 protein and expression plasmid can be beneficial in a mouse AD model and can prevent inflammation. We immunized the AD mice with the coimmunization vaccine and assessed behavior change and Aβ42 deposition. Furthermore, to determine the safety of the coimmunization vaccine, we used an induced Aβ42-EAE model to mimic the meningoencephalitis that happened in the AN-1792 vaccine clinical phase II trial and tested whether the coimmunization vaccine could ameliorate T-cell-mediated brain inflammation. RESULTS The coimmunization vaccination reduced Aβ plaques and significantly ameliorated cognitive deficit while inhibiting T-cell-mediated brain inflammation and infiltration. These studies demonstrate that the coimmunization strategy that we describe in this article can ameliorate AD pathology without notable adverse effects in mice. CONCLUSIONS A coimmunization strategy leading to the development of a safe immunotherapeutic/preventive protocol against AD in humans is warranted.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, 131 Dong An Road, Shanghai 200032, China ; State Key Laboratory for Agro-Biotechnology and College of Biologic Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yang Yu
- State Key Laboratory for Agro-Biotechnology and College of Biologic Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China ; Present address: MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, 131 Dong An Road, Shanghai 200032, China
| | - Dongmei Wang
- Chinese Academy of Medical Sciences & Comparative Medical Center, 5 South Panjiayuan, Beijing 100021, China
| | - Li Zhang
- Chinese Academy of Medical Sciences & Comparative Medical Center, 5 South Panjiayuan, Beijing 100021, China
| | - Xiaoping Xie
- State Key Laboratory for Agro-Biotechnology and College of Biologic Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bing Wu
- State Key Laboratory for Agro-Biotechnology and College of Biologic Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chaofan Li
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, 131 Dong An Road, Shanghai 200032, China
| | - Hanqian Xu
- State Key Laboratory for Agro-Biotechnology and College of Biologic Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaolin Li
- Institute for Age Research, Fritz Lipmann Institute, Beutenbergstraße 11, Jena D-07745, Germany
| | - Yanxin Hu
- Department of Pathology, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lianfeng Zhang
- Chinese Academy of Medical Sciences & Comparative Medical Center, 5 South Panjiayuan, Beijing 100021, China
| | - Christoph Kaether
- Institute for Age Research, Fritz Lipmann Institute, Beutenbergstraße 11, Jena D-07745, Germany
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
11
|
Wu C, Huang R, Chen J, Gu Q, Zhu B, Wang J, Zhang K, Chen Q, Xiong C, Liu Y, Li J, Zhou YH, Ding Y. Avian influenza A(H7N9) virus screening in patients with fever and flu-like symptoms in a tertiary hospital in an area with confirmed cases. PLoS One 2013; 8:e82613. [PMID: 24367529 PMCID: PMC3867373 DOI: 10.1371/journal.pone.0082613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/04/2013] [Indexed: 12/05/2022] Open
Abstract
Novel avian influenza A(H7N9) virus was isolated in fatal patients in Yangtze River Delta of China in March 2013. We aimed to screen the virus in febrile patients in a tertiary hospital in an area with confirmed cases. Throat-swab specimens collected from consecutive patients with fever (≥38°C) and flu-like symptoms from April 15 to April 25, 2013 were subjected to detect novel avian influenza A(H7N9) virus with real-time PCR. The clinical outcomes in the patients and close contacts were followed up. Of total 200 patients screened, one (0.5%) was positive for avian influenza A(H7N9) virus and 199 others were negative. The infected patient experienced respiratory failure and had diffuse infiltrates in the right lower lobe in chest CT images. He received symptomatic and antibacterial treatments as well as oseltamivir. His condition was substantially improved within three days after admission; avian influenza A(H7N9) virus was not detected after 5 days' antiviral therapy. The hemagglutinin inhibition test showed that the serum titers against avian influenza A(H7N9) virus increased from <1∶20 at the early phase to 1∶80 at the convalescent phase. Follow-up of 23 close contacts showed that none of them developed fever and other symptoms within two weeks. Our findings suggest that although the infection rate of avian influenza A(H7N9) virus in patients with fever and flu-like symptoms is rare, the screening is valuable to rapidly define the infection, which will be critical to improve the clinical outcomes.
Collapse
Affiliation(s)
- Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianjun Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qin Gu
- Department of Intensive Care Units, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bin Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kui Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Quanjiao Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chaochao Xiong
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yong Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jiequan Li
- Nanjing Municipal Center for Disease Control, Nanjing, Jiangsu, China
| | - Yi-Hua Zhou
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yitao Ding
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
12
|
Chen J, Liu Q, Chen Q, Xiong C, Yao Y, Wang H, Wang H, Chen Z. Comparative analysis of antibody induction and protection against influenza virus infection by DNA immunization with HA, HAe, and HA1 in mice. Arch Virol 2013; 159:689-700. [PMID: 24132721 DOI: 10.1007/s00705-013-1878-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/30/2013] [Indexed: 11/28/2022]
Abstract
Plasmid DNA vaccines are considered alternatives to inactivated influenza virus vaccines to control influenza. Vaccination with a hemagglutinin (HA)-, HA ectodomain (HAe)-, or HA subunit 1 (HA1)-based vaccine can stimulate protective immunity in animals. The aim of this study was to compare their capacity to induce an antibody response and protection against influenza virus infection in mice after DNA vaccination. We constructed three expression vectors encoding full-length HA, HAe, or HA1 of the A/California/07/2009 influenza A virus and designed three animal experiments: (i) BALB/c mice were immunized twice with 30 μg of the HA, HAe, or HA1 DNA vaccine with high-voltage electroporation (100 V), and 3 weeks after boosting, they were challenged with a lethal dose of virus. (ii) Immunization and challenge were as in experiment i, but with low-voltage electroporation (10 V). (iii) Mice were immunized once with 50 μg of DNA and challenged 1 week later. The immunogenic effects of the three DNA vaccines were evaluated in terms of antibody titer, survival rate, bodyweight change, and lung viral titer. In all three experiments, both HA and HAe induced higher antibody and neutralization titers than HA1. Following challenge with a lethal mouse-adapted homologous virus, both HA and HAe reduced the viral titers in lung washes or offered better protection from weight loss than HA1 in experiments ii and iii. Thus, HA1 induces a lower immune response than HA or HAe when used as a DNA vaccination. Our data should be valuable in choosing the optimal candidate vaccine when faced with the threat of pandemic influenza.
Collapse
Affiliation(s)
- Jianjun Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tao L, Chen J, Meng J, Chen Y, Li H, Liu Y, Zheng Z, Wang H. Enhanced protective efficacy of H5 subtype influenza vaccine with modification of the multibasic cleavage site of hemagglutinin in retroviral pseudotypes. Virol Sin 2013; 28:136-45. [PMID: 23728771 PMCID: PMC7091038 DOI: 10.1007/s12250-013-3326-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/19/2013] [Indexed: 11/02/2022] Open
Abstract
Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.
Collapse
Affiliation(s)
- Ling Tao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Assessment of delivery parameters with the multi-electrode array for development of a DNA vaccine against Bacillus anthracis. Bioelectrochemistry 2013; 94:1-6. [PMID: 23727769 DOI: 10.1016/j.bioelechem.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022]
Abstract
Gene electrotransfer (GET) enhances delivery of DNA vaccines by increasing both gene expression and immune responses. Our lab has developed the multi-electrode array (MEA) for DNA delivery to skin. The MEA was used at constant pulse duration (150 ms) and frequency (6.67 Hz). In this study, delivery parameters including applied voltage (5-45 V), amount of plasmid (100-300 μg), and number of treatments (2-3) were evaluated for delivery of a DNA vaccine. Mice were intradermally injected with plasmid expressing Bacillus anthracis protective antigen with or without GET and αPA serum titers measured. Within this experiment no significant differences were noted in antibody levels from varying dose or treatment number. However, significant differences were measured from applied voltages of 25 and 35 V. These voltages generated antibody levels between 20,000 and 25,000. Serum from animals vaccinated with these conditions also resulted in toxin neutralization in 40-60% of animals. Visual damage was noted at MEA conditions of 40 V. No damage was noted either visually or histologically from conditions of 35 V or below. These results reflect the importance of establishing appropriate electrical parameters and the potential for the MEA in non-invasive DNA vaccination against B. anthracis.
Collapse
|
15
|
Spackman E, Swayne DE. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: current questions and new technology. Virus Res 2013; 178:121-32. [PMID: 23524326 DOI: 10.1016/j.virusres.2013.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022]
Abstract
Vaccination of poultry for avian influenza virus (AIV) is a complex topic as there are numerous technical, logistic and regulatory aspects which must be considered. Historically, control of high pathogenicity (HP) AIV infection in poultry has been accomplished by eradication and stamping out when outbreaks occur locally. Since the H5N1 HPAIV from Asia has spread and become enzootic, vaccination has been used on a long-term basis by some countries to control the virus, other countries have used it temporarily to aid eradication efforts, while others have not used it at all. Currently, H5N1 HPAIV is considered enzootic in China, Egypt, Viet Nam, India, Bangladesh and Indonesia. All but Bangladesh and India have instituted vaccination programs for poultry. Importantly, the specifics of these programs differ to accommodate different situations, resources, and industry structure in each country. The current vaccines most commonly used are inactivated whole virus vaccines, but vectored vaccine use is increasing. Numerous technical improvements to these platforms and novel vaccine platforms for H5N1 vaccines have been reported, but most are not ready to be implemented in the field.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, 934 College Station Rd., Athens, GA 30605, United States.
| | | |
Collapse
|
16
|
Zhang F, Fang F, Chang H, Peng B, Wu J, Chen J, Wang H, Chen Z. Comparison of protection against H5N1 influenza virus in mouse offspring provided by maternal vaccination with HA DNA and inactivated vaccine. Arch Virol 2013; 158:1253-65. [DOI: 10.1007/s00705-013-1621-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/17/2012] [Indexed: 01/04/2023]
|
17
|
A second CRM1-dependent nuclear export signal in the influenza A virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. J Virol 2012; 87:767-78. [PMID: 23115280 DOI: 10.1128/jvi.06519-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus NS2 protein, also called nuclear export protein (NEP), is crucial for the nuclear export of viral ribonucleoproteins. However, the molecular mechanisms of NEP mediation in this process remain incompletely understood. A leucine-rich nuclear export signal (NES2) in NEP, located at the predicted N2 helix of the N-terminal domain, was identified in the present study. NES2 was demonstrated to be a transferable NES, with its nuclear export activity depending on the nuclear export receptor chromosome region maintenance 1 (CRM1)-mediated pathway. The interaction between NEP and CRM1 is coordinately regulated by both the previously reported NES (NES1) and now the new NES2. Deletion of the NES1 enhances the interaction between NEP and CRM1, and deletion of the NES1 and NES2 motifs completely abolishes this interaction. Moreover, NES2 interacts with CRM1 in the mammalian two-hybrid system. Mutant viruses containing NES2 alterations generated by reversed genetics exhibit reduced viral growth and delay in the nuclear export of viral ribonucleoproteins (vRNPs). The NES2 motif is highly conserved in the influenza A and B viruses. The results demonstrate that leucine-rich NES2 is involved in the nuclear export of vRNPs and contributes to the understanding of nucleocytoplasmic transport of influenza virus vRNPs.
Collapse
|
18
|
Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment. PLoS One 2012; 7:e30538. [PMID: 22396728 PMCID: PMC3292545 DOI: 10.1371/journal.pone.0030538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/18/2011] [Indexed: 01/17/2023] Open
Abstract
Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.
Collapse
|
19
|
Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection. Vaccine 2012; 30:626-36. [DOI: 10.1016/j.vaccine.2011.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/19/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022]
|
20
|
Rochard A, Scherman D, Bigey P. Genetic immunization with plasmid DNA mediated by electrotransfer. Hum Gene Ther 2011; 22:789-98. [PMID: 21631165 DOI: 10.1089/hum.2011.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of DNA immunization was first advanced in the early 1990s, but was not developed because of an initial lack of efficiency. Recent technical advances in plasmid design and gene delivery techniques have allowed renewed interest in the idea. Particularly, a better understanding of genetic immunization has led to construction of optimized plasmids and the use of efficient molecular adjuvants. The field also took great advantage of new delivery techniques such as electrotransfer. This is a simple physical technique consisting of injecting plasmid DNA into a target tissue and applying an electric field, allowing up to a thousandfold more expression of the transgene than naked DNA. DNA immunization mediated by electrotransfer is now effective in a variety of preclinical models against infectious or acquired diseases such as cancer or autoimmune diseases, and is making its way through the clinics in several ongoing phase I human clinical trials. This review will briefly describe genetic immunization mediated by electrotransfer and the main fields of application.
Collapse
Affiliation(s)
- Alice Rochard
- Unité de Pharmacologie Chimique et Génétique et d'Imagerie, CNRS, UMR8151, Paris, F-75006 France
| | | | | |
Collapse
|
21
|
Wei J, Yan B, Chen Z, Li T, Deng F, Wang H, Hu Z. Production and characterization of monoclonal antibodies against the hemagglutinin of H5N1 and antigenic investigation of avian influenza H5N1 viruses isolated from China. Can J Microbiol 2011; 57:42-8. [PMID: 21217796 DOI: 10.1139/w10-097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight monoclonal antibodies against hemagglutinin of influenza A virus A/Chicken/Henan/01/2004(H5N1) were produced by a DNA prime and inactivated virions-boost immunization strategy. Among the monoclonal antibodies, 3 (H50, H56, and H57) exhibited hemagglutination inhibition activity. Western blot analyses revealed that all the monoclonal antibodies reacted to the prokaryotically expressed HA1 of A/Chicken/Henan/01/2004(H5N1). The monoclonal antibodies were then used to characterize 10 avian influenza H5N1 viruses isolated from China during 2004 to 2007, by using the hemagglutination inhibition test and the antigen-capture enzyme-linked immunosorbent assay. The isolates could be divided into 4 different antigenic groups according to their responses to the monoclonal antibodies. The antigenic grouping of these 10 H5N1 isolates, using these antibodies, did not completely match their phylogenetic classification based on the hemagglutinin sequences. The results showed there were antigenic variations within the subclade 2.3.4 of H5N1, which is predominant in China.
Collapse
Affiliation(s)
- Jie Wei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuchang District, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1046-51. [PMID: 21632890 DOI: 10.1128/cvi.00050-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of safe and efficient avian influenza vaccines for human and animal uses is essential for preventing virulent outbreaks and pandemics worldwide. In this study, we constructed a recombinant (pgsA-HA1 gene fusion) Lactococcus lactis strain that expresses and displays the avian influenza virus HA1 antigens on its surface. The vectors were administered by oral delivery with or without the addition of cholera toxin subunit B (CTB). The resulting immune responses were analyzed, and the mice were eventually challenged with lethal doses of H5N1 viruses. Significant titers of hemagglutinin (HA)-specific serum IgG and fecal IgA were detected in the group that also received CTB. Cellular immunities were also shown in both cell proliferation and gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays. Most importantly, the mice that received the L. lactis pgsA-HA1 strain combined with CTB were completely protected from lethal challenge of the H5N1 virus. These findings support the further development of L. lactis-based avian influenza virus vaccines for human and animal uses.
Collapse
|
23
|
Xu K, Ling ZY, Sun L, Xu Y, Bian C, He Y, Lu W, Chen Z, Sun B. Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus. Viral Immunol 2011; 24:45-56. [PMID: 21319978 DOI: 10.1089/vim.2010.0056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus is highly variable and a major viral respiratory pathogen that can cause severe illness in humans. Therefore it is important to induce a sufficient immune response specific to current strains and to heterosubtypic viruses with vaccines. In this study, we developed a dual-promoter-based bivalent DNA vaccine that encodes both hemagglutinin (HA) and nucleoprotein (NP) proteins from a highly pathogenic A/Chicken/Henan/12/2004 (H5N1) virus. Our results show that the expression levels of HA and NP genes from the dual-promoter plasmid are similar to those seen when they are expressed individually in independent plasmids. When the bivalent DNA vaccine was inoculated via intramuscular injection and in vivo electroporation, high levels of both humoral and cellular immune responses were elicited against homologous H5N1 virus and heterosubtypic H9N2 virus. Furthermore, no obvious antigenic competition was observed between HA and NP proteins in the dual-promoter-based bivalent vaccine compared to monovalent vaccines. Our data suggest that a combination of influenza surface and internal viral genes in a dual-promoter-expressing plasmid may provide a new approach for developing a DNA vaccine that may protect not only specifically against a currently circulating strain, but also may cross-protect broadly against new heterosubtypic viruses.
Collapse
Affiliation(s)
- Ke Xu
- Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Donate A, Coppola D, Cruz Y, Heller R. Evaluation of a novel non-penetrating electrode for use in DNA vaccination. PLoS One 2011; 6:e19181. [PMID: 21559474 PMCID: PMC3084774 DOI: 10.1371/journal.pone.0019181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/29/2011] [Indexed: 02/07/2023] Open
Abstract
Current progress in the development of vaccines has decreased the incidence of fatal and non-fatal infections and increased longevity. However, new technologies need to be developed to combat an emerging generation of infectious diseases. DNA vaccination has been demonstrated to have great potential for use with a wide variety of diseases. Alone, this technology does not generate a significant immune response for vaccination, but combined with delivery by electroporation (EP), can enhance plasmid expression and immunity. Most EP systems, while effective, can be invasive and painful making them less desirable for use in vaccination. Our lab recently developed a non-invasive electrode known as the multi-electrode array (MEA), which lies flat on the surface of the skin without penetrating the tissue. In this study we evaluated the MEA for its use in DNA vaccination using Hepatitis B virus as the infectious model. We utilized the guinea pig model because their skin is similar in thickness and morphology to humans. The plasmid encoding Hepatitis B surface antigen (HBsAg) was delivered intradermally with the MEA to guinea pig skin. The results show increased protein expression resulting from plasmid delivery using the MEA as compared to injection alone. Within 48 hours of treatment, there was an influx of cellular infiltrate in experimental groups. Humoral responses were also increased significantly in both duration and intensity as compared to injection only groups. While this electrode requires further study, our results suggest that the MEA has potential for use in electrically mediated intradermal DNA vaccination.
Collapse
Affiliation(s)
- Amy Donate
- College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Domenico Coppola
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yolmari Cruz
- College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Richard Heller
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- College of Health Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
25
|
Efficacy of seasonal pandemic influenza hemagglutinin DNA vaccines delivered by electroporation against aseasonal H1N1 virus challenge in mice. SCIENCE CHINA-LIFE SCIENCES 2011; 54:293-9. [DOI: 10.1007/s11427-011-4150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
26
|
Fang J, Chen Z, Liu X, Li H, Wang J, Shen X, Chen W, Liu Y, Wang Y, Zhao P, Qi Z. Immunization with a low dose of hemagglutinin-encoding plasmid protects against 2009 H1N1 pandemic influenza virus in mice. J Virol Methods 2011; 173:314-9. [PMID: 21392537 DOI: 10.1016/j.jviromet.2011.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/24/2011] [Accepted: 03/01/2011] [Indexed: 11/16/2022]
Abstract
A vaccine against the novel pandemic influenza virus (2009 H1N1) is available, but several problems in preparation of vaccines against the new emerging influenza viruses need to be overcome. DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. To evaluate the ability of a DNA vaccine encoding the hemagglutinin (HA) of 2009 H1N1 to generate humoral responses and protective immunity, BALB/c mice were immunized with various doses of 2009 H1N1 HA-encoding plasmid and anti-HA total IgG, hemagglutination inhibition antibodies and neutralizing antibodies were assayed. The total IgG titers against HA correlated positively with the doses of DNA vaccine, but immunization with either a low dose (10 μg) or a higher dose (25-200 μg) of HA plasmid resulted in similar titers of hemagglutination inhibition and neutralizing antibodies, following a single booster. Further, 10 μg plasmid conferred effective protection against lethal virus challenge. These results suggested that the DNA vaccine encoding the HA of 2009 H1N1 virus is highly effective for inducing neutralizing antibodies and protective immunity. DNA vaccines are a promising new strategy for the rapid development of efficient vaccines to control new emerging pandemic influenza viruses.
Collapse
Affiliation(s)
- Jing Fang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Superior protection provided by a single dose of MF59-adjuvanted whole inactivated H5N1 influenza vaccine in type 1 diabetic mice. Arch Virol 2010; 156:387-95. [DOI: 10.1007/s00705-010-0860-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/03/2010] [Indexed: 01/30/2023]
|
28
|
Torrieri-Dramard L, Lambrecht B, Ferreira HL, Van den Berg T, Klatzmann D, Bellier B. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol Ther 2010; 19:602-11. [PMID: 20959813 DOI: 10.1038/mt.2010.222] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route.
Collapse
|
29
|
Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R. Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 2010; 45:226-34. [PMID: 20300881 DOI: 10.1007/s12033-010-9268-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virus-like particles (VLPs) consisting of the influenza A virus proteins haemagglutinin (HA) and matrix protein (M1) represent a new alternative approach for vaccine design against influenza virus. Influenza VLPs can be fast and easily produced in sufficient amounts in insect cells using the baculovirus expression system. Up to now, influenza VLPs have been produced in the Spodoptera frugiperda cell line Sf9. We compared VLP production in terms of yield and quality in two insect cell lines, namely Sf9 and the Trichoplusia ni cell line BTI-TN5B1-4 (High Five). Additionally we compared VLP production with three different HAs and two different M1s from influenza H1 and H3 strains including one swine-origin pandemic H1N1 strain. Comparison of the two cell lines showed dramatic differences in baculovirus background as well as in yield and particle density. Taken together, we consider the establishment of the BTI-TN5B1-4 cell line advantageous as production cell line for influenza VLPs.
Collapse
Affiliation(s)
- Florian Krammer
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, Chen Q, Sui Z, Fang F, Chen Z. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch Virol 2010; 155:1765-75. [PMID: 20652335 DOI: 10.1007/s00705-010-0756-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.
Collapse
Affiliation(s)
- Lina Guo
- Shanghai Institute of Biological Products, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen J, Huang S, Chen Z. Human cellular protein nucleoporin hNup98 interacts with influenza A virus NS2/nuclear export protein and overexpression of its GLFG repeat domain can inhibit virus propagation. J Gen Virol 2010; 91:2474-84. [PMID: 20554795 DOI: 10.1099/vir.0.022681-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The non-structural protein NS2, also called nuclear export protein, of influenza A virus contains a leucine-rich nuclear-export signal that could guide viral ribonucleoproteins to cross the nuclear pore complex (NPC) and complete directional nucleocytoplasmic trafficking. In this study, human nucleoporin 98 (hNup98), an NPC protein, was identified as an NS2-binding protein by using yeast two-hybrid screening of a human cDNA library. Interaction between NS2 and hNup98 was confirmed in yeast and mammalian cells. Mapping tests further demonstrated that aa 22-53 in the N-terminal region of NS2 and the glycine-leucine-phenylalanine-glycine (GLFG) repeat domain (aa 1-511) of hNup98 are crucial for the interaction of these two proteins. Confocal microscopy showed that hNup98 could specifically recruit NS2 to the nucleoli and that this process was inhibited by leptomycin B, a specific inhibitor of human chromosomal region maintenance 1 protein. NS2 recruitment to the nucleoli was through the N-terminal GLFG repeat domain of hNup98, but not through the C-terminal domain. Moreover, influenza virus infection downregulated Nup98 levels significantly in 293T and Madin-Darby canine kidney cells. Overexpression of the GLFG repeat domain of hNup98 apparently inhibited virus propagation. Together, these findings reveal the interaction between hNup98 and NS2. The GLFG repeat domain of hNup98 might competitively inhibit the interaction between NS2 and endogenous hNup98, consequently inhibiting virus propagation.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | |
Collapse
|
32
|
Tenbusch M, Grunwald T, Niezold T, Storcksdieck Genannt Bonsmann M, Hannaman D, Norley S, Uberla K. Codon-optimization of the hemagglutinin gene from the novel swine origin H1N1 influenza virus has differential effects on CD4(+) T-cell responses and immune effector mechanisms following DNA electroporation in mice. Vaccine 2010; 28:3273-7. [PMID: 20206668 DOI: 10.1016/j.vaccine.2010.02.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/18/2022]
Abstract
DNA electroporation is a powerful vaccine strategy that could be rapidly adapted to address emerging viruses. We therefore compared cellular and humoral immune responses in mice vaccinated with DNA expression plasmids encoding either the wildtype or a codon-optimized sequence of hemagglutinin from the novel swine origin H1N1 influenza virus. While expression of HA from the wildtype sequence was hardly detectable, the H1N1 hemagglutinin was well expressed from the codon-optimized sequence. Despite poor expression of the wildtype sequence, both plasmids induced similar levels of CD4(+) T-cell responses. However, CD8(+) T-cell and antibody responses were substantially higher after immunization with the codon-optimized DNA vaccine. Thus, efficient induction of immune effector mechanisms against HA of the novel H1N1 influenza virus requires codon-optimization of the DNA vaccines. Since DNA vaccines and several viral vector vaccines employ the same cellular RNA-Polymerase II dependent expression pathway, the poor expression levels from wildtype HA sequences might also limit the induction of immune effector mechanisms by such viral vector vaccines.
Collapse
Affiliation(s)
- M Tenbusch
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Song H, Luo W, Chen Y, Du H, Tang J, Yin B, Chen Y, Shih JWK, Zhang J. Induction of cross-reactive antibodies against mimotopes of H5N1 hemagglutinin. Vet Microbiol 2010; 145:17-22. [PMID: 20338700 DOI: 10.1016/j.vetmic.2010.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/17/2009] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
A sub-library based on peptide mimic 125 was designed and constructed, and 18 phagotopes specifically binding 8H5mAb were isolated. Antisera against three phagotopes, containing peptide 12MH-1, 12MH-5 and 12MH-8 reacted with 3 different H5N1 virus strains, but not with 2 H1N1 and 2 H3N2 viruses by Dot blots. The affinity of 12MH-8 was approximately eight times more than 12MH-1 or 12MH-5 or parent peptide 125. Furthermore, synthesized 12MH-1 and 12MH-8 could block the 8H5mAb binding with 4 H5N1 virus strains via hemagglutinin inhibition. These results suggest that these 3 mimotopes closely mimics the native 8H5 epitopes.
Collapse
Affiliation(s)
- Huijuan Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu J, Zhang F, Fang F, Chang H, Wang F, Yang Z, Sun B, Chen Z. Efficacy of inactivated vaccine against H5N1 influenza virus infection in mice with type 1 diabetes. Vaccine 2010; 28:2775-81. [PMID: 20117261 DOI: 10.1016/j.vaccine.2010.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/09/2023]
Abstract
We sought to determine susceptibility to highly pathogenic avian influenza (HPAI) H5N1 virus and to explore immune protection of inactivated H5N1 vaccine in streptozotocin-induced type 1 diabetic mice. Susceptibility of diabetic mice to an H5N1 virus was evaluated by comparing the median lethal dose (LD(50)) and the lung virus titers with those of the healthy after the viral infection. To evaluate the influence of diabetes on vaccination, diabetic and healthy mice were immunized once with an inactivated H5N1 vaccine and then challenged with a lethal dose of H5N1 virus. The antibody responses, survival rates, lung virus titers and body weight changes were tested. Mice with type 1 diabetes had higher lung virus titers and lower survival rates than healthy mice after H5N1 virus infection. Inactivated H5N1 vaccine induced protective antibody in diabetic mice, but the antibody responses were postponed and weakened. In spite of this, diabetic mice could be protected against the lethal virus challenge by a single dose of immunization when the amount of the antigen increased. These results indicated that type 1 diabetic mice were more susceptible to H5N1 influenza virus infection than healthy mice, and can be effectively protected by inactivated H5N1 vaccine with increased antigen.
Collapse
Affiliation(s)
- J Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|