1
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024:10.1038/s41587-023-02106-x. [PMID: 38321114 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Crow KD, Sadakian A, Kaslly NA. The role of the 5' HoxA genes in the development of the hindgut, vent, and a novel sphincter in a derived teleost (bluebanded goby, Lythrypnus dalli). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:518-530. [PMID: 32779333 DOI: 10.1002/jez.b.22982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Unique expression patterns of the 5' HoxA genes are associated with the evolution and development of novel features including claspers in cartilaginous fishes, modified pectoral fins in batoids, and the yolk sac extension in Cypriniformes. Here, we demonstrate a role for HoxA11a and HoxA13a in demarcating the hindgut in fishes of the family Gobiidae, including a novel sphincter called the intestinal rectal sphincter (IRS). Disruption of 5' HoxA expression, via manipulation of retinoic acid signaling, results in failure of the IRS and/or vent to develop. Furthermore, exposure to HoxA disruptors alters 5' HoxA expression, in association with developmental phenotypes, demonstrating a functional link between 5' HoxA expression and development of a novel feature in the bluebanded goby, Lythrypnus dalli.
Collapse
Affiliation(s)
- Karen D Crow
- Department of Biology, San Francisco State University, San Francisco, California
| | - Ara Sadakian
- Department of Biology, San Francisco State University, San Francisco, California
| | - Noelle A Kaslly
- Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|
3
|
Zhang L, Fang Z, Cheng G, He M, Lin Y. A novel Hoxd13 mutation causes synpolydactyly and promotes osteoclast differentiation by regulating pSmad5/p65/c-Fos/Rank axis. Cell Death Dis 2023; 14:145. [PMID: 36804539 PMCID: PMC9941469 DOI: 10.1038/s41419-023-05681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
The mutations of HOXD13 gene have been involved in synpolydactyly (SPD), and the polyalanine extension mutation of Hoxd13 gene could lead to SPD in mice. In this study, a novel missense mutation of Hoxd13 (NM_000523: exon2: c.G917T: p.R306L) was identified in a Chinese family with SPD. The mice carrying the corresponding Hoxd13mutation were generated. The results showed that the homozygous mutation of Hoxd13 also caused SPD, but heterozygous mutation did not affect limbs development, which was different from that of SPD patients. With the increasing generation, the mice with homozygous Hoxd13 mutation presented more severe syndactyly. Western blotting showed that this mutation did not affect the protein expression of Hoxd13, suggesting that this mutation did not result in haploinsufficiency. Further analysis demonstrated that this homozygous Hoxd13mutation promoted osteoclast differentiation and bone loss, and enhanced the mRNA and protein expression of osteoclast-related genes Rank, c-Fos, and p65. Meanwhile, this homozygous Hoxd13 mutation elevated the level of phosphorylated Smad5 (pSmad5). Co-immunoprecipitation verified that this mutation attenuated the interaction between pSmad5 and HOXD13, suggesting that this mutation released more pSmad5. Inhibition of pSmad5 reduced the expression of Rank, c-Fos, and p65 despite in the mutation group. In addition, inhibition of pSmad5 repressed the osteoclast differentiation. ChIP assay confirmed that p65 and c-Fos could bind to the promoter of Rank. These results suggested that this novel Hoxd13 mutation promoted osteoclast differentiation by regulating Smad5/p65/c-Fos/Rank axis, which might provide a new insight into SPD development.
Collapse
Affiliation(s)
- Lishan Zhang
- grid.410638.80000 0000 8910 6733Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - Ziqi Fang
- grid.460018.b0000 0004 1769 9639Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 China
| | - Guangdong Cheng
- grid.410638.80000 0000 8910 6733Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - Mengting He
- grid.464402.00000 0000 9459 9325Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000 China
| | - Yanliang Lin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
4
|
Melas M, Kautto EA, Franklin SJ, Mori M, McBride KL, Mosher TM, Pfau RB, Hernandez-Gonzalez ME, McGrath SD, Magrini VJ, White P, Samora JB, Koboldt DC, Wilson RK. Long-read whole genome sequencing reveals HOXD13 alterations in synpolydactyly. Hum Mutat 2021; 43:189-199. [PMID: 34859533 DOI: 10.1002/humu.24304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Esko A Kautto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mari Mori
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Ruthann B Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent J Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Julie Balch Samora
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Zhang M, Lu L, Wei B, Zhang Y, Li X, Shi Y, Ge W, Sun M. Brachydactyly type A3 is caused by a novel 13 bp HOXD13 frameshift deletion in a Chinese family. Am J Med Genet A 2020; 182:2432-2436. [PMID: 32789964 DOI: 10.1002/ajmg.a.61788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Brachydactyly type A (BDA) is defined as short middle phalanges of the affected digits and is subdivided into four types (BDA1-4). To date, the molecular cause is unknown. However, there is some evidence that pathogenic variants of HOXD13 could be associated with BDA3 and BDA4. Here, we report a Chinese autosomal dominant BDA3 pedigree with a novel HOXD13 mutation. The affected individuals presented with an obviously shorter fifth middle phalanx. The radial side of the middle phalanx was shorter than the ulnar side, and the terminal phalanx of the fifth finger inclined radially and formed classical clinodactyly. Interestingly, the index finger was normal. The initial diagnosis was BDA3. However, the distal third and fourth middle phalanges were also slightly affected, resulting in mild radial clinodactyly. Both feet showed shortening of the middle phalanges, which were fused to the distal phalanges of the second to the fifth toes, as reported in BDA4. Therefore, this pedigree had combined BDA3 and atypical BDA4. By direct sequencing, a 13 bp deletion within exon 1 of HOXD13 (NM_000523.4: c.708_720del13; NP_000514.2: p.Gly237fs) was identified. The 13 bp deletion resulted in a frameshift and premature termination of HOXD13. This study provides further evidences that variants in HOXD13 cause BDA3-BDA4 phenotypes.
Collapse
Affiliation(s)
- Mengshu Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yingying Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Nowosad K, Hordyjewska-Kowalczyk E, Tylzanowski P. Mutations in gene regulatory elements linked to human limb malformations. J Med Genet 2019; 57:361-370. [PMID: 31857429 DOI: 10.1136/jmedgenet-2019-106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/09/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Abstract
Most of the human genome has a regulatory function in gene expression. The technological progress made in recent years permitted the revision of old and discovery of new mutations outside of the protein-coding regions that do affect human limb morphology. Steadily increasing discovery rate of such mutations suggests that until now the largely neglected part of the genome rises to its well-deserved prominence. In this review, we describe the recent technological advances permitting this unprecedented advance in identifying non-coding mutations. We especially focus on the mutations in cis-regulatory elements such as enhancers, and trans-regulatory elements such as miRNA and long non-coding RNA, linked to hereditary or inborn limb defects. We also discuss the role of chromatin organisation and enhancer-promoter interactions in the aetiology of limb malformations.
Collapse
Affiliation(s)
- Karol Nowosad
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Hordyjewska-Kowalczyk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemko Tylzanowski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
A 3.06-Mb interstitial deletion on 12p11.22-12.1 caused brachydactyly type E combined with pectus carinatum. Chin Med J (Engl) 2019; 132:1681-1688. [PMID: 31283647 PMCID: PMC6759105 DOI: 10.1097/cm9.0000000000000327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Brachydactyly, a developmental disorder, refers to shortening of hands/feet due to small or missing metacarpals/metatarsals and/or phalanges. Isolated brachydactyly type E (BDE), characterized by shortened metacarpals and/or metatarsals, consists in a small proportion of patients with Homeobox D13 (HOXD13) or parathyroid-hormone-like hormone (PTHLH) mutations. BDE is often accompanied by other anomalies that are parts of many congenital syndromes. In this study, we investigated a Chinese family presented with BDE combined with pectus carinatum and short stature. METHODS A four-generation Chinese family was recruited in June 2016. After informed consent was obtained, venous blood was collected, and genomic DNA was extracted by standard procedures. Whole-exome sequencing was performed to screen pathogenic mutation, array comparative genomic hybridization (Array-CGH) analysis was used to analyze copy number variations, and quantitative real-time polymerase chain reaction (PCR), stride over breakpoint PCR (gap-PCR), and Sanger sequencing were performed to confirm the candidate variation. RESULTS A 3.06-Mb deletion (chr12:25473650-28536747) was identified and segregated with the phenotype in this family. The deletion region encompasses 23 annotated genes, one of which is PTHLH which has been reported to be causative to the BDE. PTHLH is an important regulator of endochondral bone development. The affected individuals showed bilateral, severe, and generalized brachydactyly with short stature, pectus carinatum, and prematurely fusion of epiphyses. The feature of pectus carinatum has not been described in the PTHLH-related BDE patients previously. CONCLUSIONS The haploinsufficiency of PTHLH might be responsible for the disease in this family. This study has expanded the knowledge on the phenotypic presentation of PTHLH variation.
Collapse
|
8
|
Pereda A, Garin I, Perez de Nanclares G. What to consider when pseudohypoparathyroidism is ruled out: iPPSD and differential diagnosis. BMC MEDICAL GENETICS 2018; 19:32. [PMID: 29499646 PMCID: PMC5834905 DOI: 10.1186/s12881-018-0530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is a rare disease whose phenotypic features are rather difficult to identify in some cases. Thus, although these patients may present with the Albright's hereditary osteodystrophy (AHO) phenotype, which is characterized by small stature, obesity with a rounded face, subcutaneous ossifications, mental retardation and brachydactyly, its manifestations are somewhat variable. Indeed, some of them present with a complete phenotype, whereas others show only subtle manifestations. In addition, the features of the AHO phenotype are not specific to it and a similar phenotype is also commonly observed in other syndromes. Brachydactyly type E (BDE) is the most specific and objective feature of the AHO phenotype, and several genes have been associated with syndromic BDE in the past few years. Moreover, these syndromes have a skeletal and endocrinological phenotype that overlaps with AHO/PHP. In light of the above, we have developed an algorithm to aid in genetic testing of patients with clinical features of AHO but with no causative molecular defect at the GNAS locus. Starting with the feature of brachydactyly, this algorithm allows the differential diagnosis to be broadened and, with the addition of other clinical features, can guide genetic testing. METHODS We reviewed our series of patients (n = 23) with a clinical diagnosis of AHO and with brachydactyly type E or similar pattern, who were negative for GNAS anomalies, and classify them according to the diagnosis algorithm to finally propose and analyse the most probable gene(s) in each case. RESULTS A review of the clinical data for our series of patients, and subsequent analysis of the candidate gene(s), allowed detection of the underlying molecular defect in 12 out of 23 patients: five patients harboured a mutation in PRKAR1A, one in PDE4D, four in TRPS1 and two in PTHLH. CONCLUSIONS This study confirmed that the screening of other genes implicated in syndromes with BDE and AHO or a similar phenotype is very helpful for establishing a correct genetic diagnosis for those patients who have been misdiagnosed with "AHO-like phenotype" with an unknown genetic cause, and also for better describing the characteristic and differential features of these less common syndromes.
Collapse
Affiliation(s)
- Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Intza Garin
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Deng H, Tan T, He Q, Lin Q, Yang Z, Zhu A, Guan L, Xiao J, Song Z, Guo Y. Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing. Mol Med Rep 2017; 16:473-477. [PMID: 28498426 DOI: 10.3892/mmr.2017.6576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/02/2017] [Indexed: 11/05/2022] Open
Abstract
Syndactyly is one of the most common hereditary limb malformations, and is characterized by the fusion of specific fingers and/or toes. Syndactyly type I‑c is associated with bilateral cutaneous or bony webbing of the third and fourth fingers and occasionally of the third to fifth fingers, with normal feet. The aim of the present study was to identify the genetic basis of syndactyly type I‑c in four generations of a Chinese Han family by exome sequencing. Exome sequencing was conducted in the proband of the family, followed by direct sequencing of other family members of the same ancestry, as well as 100 ethnically‑matched, unrelated normal controls. A missense mutation, c.917G>A (p.R306Q), was identified in the homeobox D13 gene (HOXD13). Sanger sequencing verified the presence of this mutation in all of the affected family members. By contrast, this mutation was absent in the unaffected family members and the 100 ethnically‑matched normal controls. The results suggest that the c.917G>A (p.R306Q) mutation in the HOXD13 gene, may be responsible for syndactyly type I‑c in this family. Exome sequencing may therefore be a powerful tool for identifying mutations associated with syndactyly, which is a disorder with high genetic and clinical heterogeneity. The results provide novel insights into the etiology and diagnosis of syndactyly, and may influence genetic counseling and the clinical management of the disease.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Tan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Quanyong He
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiongfen Lin
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Anding Zhu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liping Guan
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jingjing Xiao
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
10
|
Fontana P, Tortora C, Petillo R, Malacarne M, Cavani S, Miniero M, D'Ambrosio P, De Brasi D, Pisanti MA. Brachydactyly type E in an Italian family with 6p25 trisomy. Eur J Med Genet 2017; 60:195-199. [PMID: 28111183 DOI: 10.1016/j.ejmg.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 11/19/2022]
Abstract
Brachydactyly type E is a congenital limb malformation characterized by small hands and feet as a result of shortened metacarpals and metatarsals. Genetic causes of this anomaly are heterogeneous and only partially characterized. In this report we describe an Italian family in which four subjects share brachydactyly type E and a 3 Mb microduplication in region 6p25. The duplication involves the gene FOXC1, expressed during the osteoblast differentiation, which appears a potential candidate gene for brachydactyly.
Collapse
Affiliation(s)
- Paolo Fontana
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy.
| | - Cristina Tortora
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | | - Simona Cavani
- Division of Medical Genetics, Galliera Hospital, Genoa, Italy
| | - Martina Miniero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Paola D'Ambrosio
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Davide De Brasi
- Service of Medical Genetics, Cardarelli Hospital, Naples, Italy
| | | |
Collapse
|
11
|
Variable expressivity of the phenotype in two families with brachydactyly type E, craniofacial dysmorphism, short stature and delayed bone age caused by novel heterozygous mutations in the PTHLH gene. J Hum Genet 2016; 61:457-61. [PMID: 26763883 DOI: 10.1038/jhg.2015.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/09/2015] [Accepted: 12/20/2015] [Indexed: 01/05/2023]
Abstract
Brachydactyly refers to shortening of digits due to hypoplasia or aplasia of bones forming the hands and/or feet. Isolated brachydactyly type E (BDE), which is characterized by shortened metacarpals and/or metatarsals, results in a small proportion of patients from HOXD13 or PTHLH mutations, although in the majority of cases molecular lesion remains unknown. BDE, like other brachydactylies, shows clinical heterogeneity with highly variable intrafamilial and interindividual expressivity. In this study, we investigated two Polish cases (one familial and one sporadic) presenting with BDE and additional symptoms due to novel PTHLH mutations. Apart from BDE, the affected family showed short stature, mild craniofacial dysmorphism and delayed bone age. Sanger sequencing of PTHLH revealed a novel heterozygous frameshift mutation c.258delC(p.N87Tfs*18) in two affected individuals and one relative manifesting mild brachydactyly. The sporadic patient, in addition to BDE, presented with craniofacial dysmorphism, normal stature and bone age, and was demonstrated to carry a de novo heterozygous c.166C>T(p.R56*) mutation. Our paper reports on the two novel truncating PTHLH variants, resulting in variable combination of BDE and other symptoms. Data shown here expand the knowledge on the phenotypic presentation of PTHLH mutations, highlighting significant clinical variability and incomplete penetrance of the PTHLH-related symptoms.
Collapse
|
12
|
Individualized iterative phenotyping for genome-wide analysis of loss-of-function mutations. Am J Hum Genet 2015; 96:913-25. [PMID: 26046366 DOI: 10.1016/j.ajhg.2015.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/21/2015] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing provides the opportunity to practice predictive medicine based on identified variants. Putative loss-of-function (pLOF) variants are common in genomes and understanding their contribution to disease is critical for predictive medicine. To this end, we characterized the consequences of pLOF variants in an exome cohort by iterative phenotyping. Exome data were generated on 951 participants from the ClinSeq cohort and filtered for pLOF variants in genes likely to cause a phenotype in heterozygotes. 103 of 951 exomes had such a pLOF variant and 79 participants were evaluated. Of those 79, 34 had findings or family histories that could be attributed to the variant (28 variants in 18 genes), 2 had indeterminate findings (2 variants in 2 genes), and 43 had no findings or a negative family history for the trait (34 variants in 28 genes). The presence of a phenotype was correlated with two mutation attributes: prior report of pathogenicity for the variant (p = 0.0001) and prior report of other mutations in the same exon (p = 0.0001). We conclude that 1/30 unselected individuals harbor a pLOF mutation associated with a phenotype either in themselves or their family. This is more common than has been assumed and has implications for the setting of prior probabilities of affection status for predictive medicine.
Collapse
|
13
|
Dai L, Liu D, Song M, Xu X, Xiong G, Yang K, Zhang K, Meng H, Guo H, Bai Y. Mutations in the homeodomain of HOXD13 cause syndactyly type 1-c in two Chinese families. PLoS One 2014; 9:e96192. [PMID: 24789103 PMCID: PMC4006867 DOI: 10.1371/journal.pone.0096192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Background Syndactyly type 1 (SD1) is an autosomal dominant limb malformation characterized in its classical form by complete or partial webbing between the third and fourth fingers and/or the second and third toes. Its four subtypes (a, b, c, and d) are defined based on variable phenotypes, but the responsible gene is yet to be identified. SD1-a has been mapped to chromosome 3p21.31 and SD1-b to 2q34–q36. SD1-c and SD1-d are very rare and, to our knowledge, no gene loci have been identified. Methods and Results In two Chinese families with SD1-c, linkage and haplotype analyses mapped the disease locus to 2q31-2q32. Copy number variation (CNV) analysis, using array-based comparative genomic hybridization (array CGH), excluded the possibility of microdeletion or microduplication. Sequence analyses of related syndactyly genes in this region identified c.917G>A (p.R306Q) in the homeodomain of HOXD13 in family A. Analysis on family B identified the mutation c.916C>G (p.R306G) and therefore confirmed the genetic homogeneity. Luciferase assays indicated that these two mutations affected the transcriptional activation ability of HOXD13. The spectrum of HOXD13 mutations suggested a close genotype-phenotype correlation between the different types of HOXD13-Syndactyly. Overlaps of the various phenotypes were found both among and within families carrying the HOXD13 mutation. Conclusions Mutations (p.R306Q and p.R306G) in the homeodomain of HOXD13 cause SD1-c. There are affinities between SD1-c and synpolydactyly. Different limb malformations due to distinct classes of HOXD13 mutations should be considered as a continuum of phenotypes and further classification of syndactyly should be done based on phenotype and genotype.
Collapse
Affiliation(s)
- Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Dan Liu
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Min Song
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kang Yang
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kun Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YB); (HG)
| | - Yun Bai
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (YB); (HG)
| |
Collapse
|
14
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
15
|
Brison N, Debeer P, Tylzanowski P. Joining the fingers: AHOXD13story. Dev Dyn 2013; 243:37-48. [DOI: 10.1002/dvdy.24037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nathalie Brison
- Center for Human Genetics; University Hospitals Leuven, University of Leuven; Belgium
| | - Philippe Debeer
- Department of Development and Regeneration; University of Leuven; Belgium
| | | |
Collapse
|
16
|
Williams KD, Blangero J, Subedi J, Jha B, Dyer T, VandeBerg JL, Towne B, Williams-Blangero S. Nonsyndromic brachydactyly type D and type E mapped to 7p15 in healthy children and adults from the Jirel ethnic group in eastern Nepal. Am J Hum Biol 2013; 25:743-50. [PMID: 24022874 PMCID: PMC3968259 DOI: 10.1002/ajhb.22441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES There is phenotypic overlap between Brachydactyly Type D (BDD) and Brachydactyly Type E (BDE) that suggests a possible common underlying etiology. We seek to understand the genetic underpinnings of, and relationship between, these skeletal anomalies. METHODS The Jirel ethnic group of eastern Nepal participates in various genetic epidemiologic studies, including those in which hand-wrist radiographs have been taken to examine skeletal development. Nearly 2,130 individuals (969 males; 1,161 females) were phenotyped for BDD/BDE. Of these, 1,722 individuals (773 males; 949 females) were genotyped for 371 STR markers spanning the autosomal genome. Variance components-based linkage analysis was used to conduct a genome-wide linkage scan for QTL influencing the BDD/BDE phenotype. RESULTS BDD was present in 3.55%, and BDE was present in 0.39%, of the study sample. Because of the phenotypic overlap between two traits, affecteds of either type were considered as affected by a single combined phenotype (BDD/BDE) having a prevalence of 3.94%. The additive genetic heritability of BDD/BDE was highly significant (h(2) ± SE = 0.89 ± 0.13; P = 1.7 × 10(-11) ). Significant linkage of BDD/BDE was found to markers on chromosome 7p21-7p14 (peak LOD score = 3.74 at 7p15 between markers D7S493 and D7S516). CONCLUSIONS Possible positional candidate genes in the one-lod support interval of this QTL include TWIST and the HOXA1-A13 cluster. This is the first study to report significant linkage results for BDD/BDE using a large extended pedigree, and the first to suggest that mutations in TWIST and/or the HOXA1-A13 cluster may contribute to these specific skeletal anomalies.
Collapse
Affiliation(s)
- Kimberly D. Williams
- Department of Anthropology, Temple University, Philadelphia, PA
- Department of Pediatrics, Temple University School of Medicine, Philadelphia, PA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Janardan Subedi
- Department of Sociology and Gerontology, Miami University, Oxford, OH
| | - Bharat Jha
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Thomas Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - John L. VandeBerg
- Office of the Chief Scientific Officer, Texas Biomedical Research Institute, San Antonio, TX
- Southwest National Primate Research Center, San Antonio, TX 78227
| | - Bradford Towne
- Department of Community Health, Wright State University Boonshoft School of Medicine, Dayton, OH
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, OH
| | - Sarah Williams-Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
- Southwest National Primate Research Center, San Antonio, TX 78227
| |
Collapse
|
17
|
Pereda A, Garin I, Garcia-Barcina M, Gener B, Beristain E, Ibañez AM, Perez de Nanclares G. Brachydactyly E: isolated or as a feature of a syndrome. Orphanet J Rare Dis 2013; 8:141. [PMID: 24028571 PMCID: PMC3848564 DOI: 10.1186/1750-1172-8-141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/03/2013] [Indexed: 12/16/2022] Open
Abstract
Brachydactyly (BD) refers to the shortening of the hands, feet or both. There are different types of BD; among them, type E (BDE) is a rare type that can present as an isolated feature or as part of more complex syndromes, such as: pseudohypopthyroidism (PHP), hypertension with BD or Bilginturan BD (HTNB), BD with mental retardation (BDMR) or BDE with short stature, PTHLH type. Each syndrome has characteristic patterns of skeletal involvement. However, brachydactyly is not a constant feature and shows a high degree of phenotypic variability. In addition, there are other syndromes that can be misdiagnosed as brachydactyly type E, some of which will also be discussed. The objective of this review is to describe some of the syndromes in which BDE is present, focusing on clinical, biochemical and genetic characteristics as features of differential diagnoses, with the aim of establishing an algorithm for their differential diagnosis. As in our experience many of these patients are recruited at Endocrinology and/or Pediatric Endocrinology Services due to their short stature, we have focused the algorithm in those steps that could mainly help these professionals.
Collapse
Affiliation(s)
- Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Hospital Universitario Araba-Txagorritxu, BioAraba, Vitoria-Gasteiz 01009, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Brachydactyly (BD) is a general term that refers to shortening of the hands/feet due to small or missing metacarpals/metatarsalsand/or phalanges, and forms part of the group of limb malformations characterized by bone dysostosis. It may occur either as an isolated trait or as part of a syndrome. BD may also be accompanied by other hand mal-formations, such as syndactyly, polydactyly, reduction defects, and symphalangism. In isolated brachydactyly, the inheritance is mostly autosomal dominant with variable expressivity and penetrtance. For the majority of isolated BD and some syndromic forms of BD, the causative gene defect has been identified. These studies have shown that the bone morphogenetic protein (BMP) pathway plays a pivotal role in the normal development of digits and joints and that the majority of brachydactyly disease genes are directly or indirectly linked to this pathway. This review summarizes the progress in the molecular genetics of BD, which will contribute to the BD pathogenic mechanism and implementation of genetic clinic.
Collapse
|