1
|
Woźniak A, Satała J, Gorzelak‐Pabiś P, Pawlos A, Broncel M, Kaźmierski P, Woźniak E. OxLDL as a prognostic biomarker of plaque instability in patients qualified for carotid endarterectomy. J Cell Mol Med 2024; 28:e18459. [PMID: 39039803 PMCID: PMC11263466 DOI: 10.1111/jcmm.18459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/24/2024] Open
Abstract
Atherosclerotic plaque instability increases the risk of stroke. As such, determining the nature of an instability atherosclerotic plaque may speed up qualification for carotid endarterectomy (CEA), thus reducing the risk of acute vascular events. The aim of the study was to determine the diagnostic value of oxidized LDL cholesterol (ox-LDL), matrix metalloproteinase 9 (MMP-9) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in serum as a prognostic markers of instability atherosclerotic plaques. Serum was collected from 67 patients who underwent CEA in accordance with the qualification criteria. The levels of ox-LDL, MMP-9 and 8-OHdG were assessed by ELISA. The predictive value of the markers was determined based on an ROC curve, and the cut-off points with the highest sensitivity and specificity were determined. Patients with unstable atherosclerotic plaque had significantly higher serum ox-LDL, MMP-9 and 8-OHdG values. It was found that in patients before CEA, ox-LDL >31.4 ng/mL was associated with an 82.5% probability of unstable atherosclerotic plaque, MMP-9 >113.1 ng/mL with 78.6%, and 8-OHdG >2.15 ng/mL with 64.7%. Multivariate regression analysis found ox-LDL to be an independent factor associated with plaque instability. Patients with unstable plaques tend to have higher serum levels of ox-LDL, MMP-9 and 8-OHdG compared to those with stable plaques. The optimal cut-off point for ox-LDL (AUC 0.86, p <0.0001) was 31.14 ng/mL, with 91.18% sensitivity and 78.79% specificity. The high sensitivity and specificity of ox-LDL suggests that it can be used as an independent marker of plaque instability.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Joanna Satała
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Paulina Gorzelak‐Pabiś
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Agnieszka Pawlos
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Piotr Kaźmierski
- Department of Vascular, General, and Oncologic SurgeryMedical University of LodzLodzPoland
| | - Ewelina Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| |
Collapse
|
2
|
Li Y, Wang X. The role of DNA and RNA guanosine oxidation in cardiovascular diseases. Pharmacol Res 2024; 204:107187. [PMID: 38657843 DOI: 10.1016/j.phrs.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Cardiovascular diseases (CVD) persist as a prominent cause of mortality worldwide, with oxidative stress constituting a pivotal contributory element. The oxidative modification of guanosine, specifically 8-oxoguanine, has emerged as a crucial biomarker for oxidative stress, providing novel insights into the molecular underpinnings of CVD. 8-Oxoguanine can be directly generated at the DNA (8-oxo-dG) and RNA (8-oxo-G) levels, as well as at the free nucleotide level (8-oxo-dGTP or 8-oxo-GTP), which are produced and can be integrated through DNA replication or RNA transcription. When exposed to oxidative stress, guanine is more readily produced in RNA than in DNA. A burgeoning body of research surrounds 8-oxoguanine, exhibits its accumulation playing a pivotal role in the development of CVD. Therapeutic approaches targeting oxidative 8-Oxoguanine damage to DNA and RNA, encompassing the modulation of repair enzymes and the development of small molecule inhibitors, are anticipated to enhance CVD management. In conclusion, we explore the noteworthy elevation of 8-oxoguanine levels in patients with various cardiac conditions and deliberate upon the formation and regulation of 8-oxo-dG and 8-oxo-G under oxidative stress, as well as their function in CVD.
Collapse
Affiliation(s)
- Yiping Li
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai 201203, China.
| |
Collapse
|
3
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Liu W, Ma XL, Gu HQ, Li H, Li ZX, Wang YJ. Elevated levels of total homocysteine after ischemic stroke: a potential marker for in-hospital outcomes. Neurol Res 2023; 45:497-504. [PMID: 36893016 DOI: 10.1080/01616412.2022.2159137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
OBJECTIVES Our goal was to determine the risk conferred by elevated total homocysteine (tHcy) levels on recurrent stroke and cardiovascular disease (CVD) events after an ischemic stroke (IS), using data from the Chinese Stroke Center Alliance (CSCA). METHODS The study consisted of 746,854 total participants with IS. Subjects were split into groups as well as quartiles according to tHcy level. Groups included a hyperhomocysteinemia (HHcy) group with tHcy ≥15 μmol/l and a normohomocysteinemia group (nHcy) with tHcy <15 μmol/l. The determined groups and quartiles underwent multiple logistic regression models with nHcy or quartile 1 as reference groups, respectively. The information from these analyses was adjusted for potential covariates and used to investigate the association between blood tHcy and in-hospital outcomes. Information collected at discharge included in-hospital stroke recurrence and CVD events. RESULTS The mean [SD] age of participants was 66.2 [12.0] and 37.4% (n = 279,571) were female. The median hospital duration was 11.0 days (interquartile range, 8.0-14.0 days) and 343,346 (46.0%) patients were identified as HHcy cases (tHcy ≥15 μmol/). According to the tHcy quartile, the cumulative rates of stroke recurrence (from lowest quartile to highest) were 5.2%, 5.6%, 6.1%, and 6.6% (P < 0.0001). Similarly, those of CVD events were 5.8%, 6.1%, 6.7%, and 7.2% (P < 0.0001). Compared with the nHcy group, the HHcy group was associated with increased risks of in-hospital stroke recurrence (21912 [6.4%] vs. 22048 [5.5%], with the adjusted odds ratio (OR) 1.08, 95% CI: 1.05 to 1.10) as well as CVD events (24001 [7.0%] vs. 24236 [6.0%], with the adjusted OR: 1.08, 95% CI: 1.06 to 1.10) among patients with IS in the fully adjusted model. CONCLUSION HHcy was associated with increased in-hospital stroke recurrence and CVD events among patients with IS. In low-folate regions, tHcy levels may potentially predict in-hospital outcomes after IS.
Collapse
Affiliation(s)
- Wei Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue-Lian Ma
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zi-Xiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| | - Yong-Jun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
5
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
6
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
8
|
Positive Effect of Air Purifier Intervention on Baroreflex Sensitivity and Biomarkers of Oxidative Stress in Patients with Coronary Artery Disease: A Randomized Crossover Intervention Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127078. [PMID: 35742327 PMCID: PMC9223013 DOI: 10.3390/ijerph19127078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Exposure to fine particulate matter increases the risk of cardiovascular morbidity and mortality. Few studies have tested the beneficial effect of indoor air filtration intervention in patients with cardiovascular disease. The aim of this study is to investigate the effect of air filtration on mitigating cardiovascular health in patients with coronary artery disease. This randomized, double-blind, crossover study is conducted with 38 coronary artery disease patients. The intervention consists of the following three periods: two-week active and sham air filtration interventions, with a two-week washout period. The indoor PM2.5 concentration is continuously monitored during the entire study period. We measure the blood pressure, heart rate variability, baroreflex sensitivity, autonomic function test results, and endothelial function. The two-week active air filtration intervention for two weeks reduces the average indoor concentration of PM2.5 by 33.9%. The indoor PM2.5 concentration is significantly correlated to cross-correlation baroreflex sensitivity. Active air filtration is significantly associated with a decrease in the indicator of oxidative stress represented as 8-hydroxy-2′-deoxyguanosine. This study shows that a short-term air filtration intervention improved baroreflex sensitivity and might reduce oxidative stress in coronary artery disease patients. These findings suggest that the use of an air purifier could mitigate the recurrence of cardiovascular disease events in patients with coronary artery disease.
Collapse
|
9
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
10
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
11
|
Mello LD. Potential contribution of ELISA and LFI assays to assessment of the oxidative stress condition based on 8-oxodG biomarker. Anal Biochem 2021; 628:114215. [PMID: 33957135 DOI: 10.1016/j.ab.2021.114215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023]
Abstract
Immunoassays have been extensively applied in the medical diagnostic field. Enzyme-Linked Immunosorbent Assay (ELISA) and Lateral Flow Immunochemical Assay (LFIA) are methods that have been well established to analysis of clinical substances such as protein, hormones, drugs, identification of antibodies and in the quantification of antigen. Over the past years, the application of these methods has been extended to assess the clinical oxidative stress condition based on monitoring of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) biomarker levels. The present manuscript provides an overview of the current immunoassays based on ELISA and LFIA technologies applied for a quantitative analysis of the 8-oxodG. The discussion focuses on the principles of development, improvement and analytical performance of these assays. The relationship of the molecule 8-oxodG as a clinical biomarker of the assessment of the oxidative stress condition is also discussed. Commercially available products to 8-oxodG analysis are also presented.
Collapse
|
12
|
Prospects of Therapeutic Target and Directions for Ischemic Stroke. Pharmaceuticals (Basel) 2021; 14:ph14040321. [PMID: 33916253 PMCID: PMC8065883 DOI: 10.3390/ph14040321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a serious, adverse neurological event and the third leading cause of death and disability worldwide. Most strokes are caused by a block in cerebral blood flow, resulting in neurological deficits through the death of brain tissue. Recombinant tissue plasminogen activator (rt-PA) is currently the only immediate treatment medication for stroke. The goal of rt-PA administration is to reduce the thrombus and/or embolism via thrombolysis; however, the administration of rt-PA must occur within a very short therapeutic timeframe (3 h to 6 h) after symptom onset. Components of the pathological mechanisms involved in ischemic stroke can be used as potential biomarkers in current treatment. However, none are currently under investigation in clinical trials; thus, further studies investigating biomarkers are needed. After ischemic stroke, microglial cells can be activated and release inflammatory cytokines. These cytokines lead to severe neurotoxicity via the overactivation of microglia in prolonged and lasting insults such as stroke. Thus, the balanced regulation of microglial activation may be necessary for therapy. Stem cell therapy is a promising clinical treatment strategy for ischemic stroke. Stem cells can increase the functional recovery of damaged tissue after post-ischemic stroke through various mechanisms including the secretion of neurotrophic factors, immunomodulation, the stimulation of endogenous neurogenesis, and neovascularization. To investigate the use of stem cell therapy for neurological diseases in preclinical studies, however, it is important to develop imaging technologies that are able to evaluate disease progression and to “chase” (i.e., track or monitor) transplanted stem cells in recipients. Imaging technology development is rapidly advancing, and more sensitive techniques, such as the invasive and non-invasive multimodal techniques, are under development. Here, we summarize the potential risk factors and biomarker treatment strategies, stem cell-based therapy and emerging multimodal imaging techniques in the context of stroke. This current review provides a conceptual framework for considering the therapeutic targets and directions for the treatment of brain dysfunctions, with a particular focus on ischemic stroke.
Collapse
|
13
|
Liu Z, Cai Y, He J. High serum levels of 8-OHdG are an independent predictor of post-stroke depression in Chinese stroke survivors. Neuropsychiatr Dis Treat 2018; 14:587-596. [PMID: 29497302 PMCID: PMC5822852 DOI: 10.2147/ndt.s155144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Although previous studies have investigated oxidative stress biomarkers in association with depression in non-stroke subjects, the association between oxidative deoxyribonucleic acid damage and post-stroke depression (PSD) remains unelucidated. PATIENTS AND METHODS Two hundred forty-one first-ever ischemic stroke patients were consecutively recruited within the first 24 h of stroke onset and were followed up at 1 month. Serum 8-hydroxy-2'-deoxyguanosine (8-OHdG) and catalase (CAT) levels were measured within 24 h of admission using a commercially available enzyme-linked immunosorbent assay. The 17-item Hamilton Depression Scale was used to evaluate depressive symptoms. Diagnosis of PSD was made in line with the Diagnostic and Statistical Manual of Mental Disorders, 4th edition criteria for depression. RESULTS Serum levels of 8-OHdG (P<0.001) and CAT (P=0.025) increased in depressed patients at admission. A positive correlation was found between the 8-OHdG and CAT levels in both the total stroke patients (r=0.320, P<0.001) and the depressed patients (r=0.300, P=0.012). The 8-OHdG levels were positively correlated with the 17-item Hamilton Depression Scale scores (r=0.129, P=0.046) in depressed patients. Multivariate analyses found that 8-OHdG levels ≥200.0 ng/L were independently associated with PSD (odds ratio, 7.477; 95% CI, 3.342-16.289, P<0.001) after adjusting for possible relevant confounders. CONCLUSION Higher serum 8-OHdG levels at admission were found to be correlated with PSD 1 month after stroke.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
High Serum Levels of Malondialdehyde and 8-OHdG are both Associated with Early Cognitive Impairment in Patients with Acute Ischaemic Stroke. Sci Rep 2017; 7:9493. [PMID: 28842715 PMCID: PMC5573400 DOI: 10.1038/s41598-017-09988-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is an increasingly prevalent sequel after stroke that may associate with poor functional outcome and increased risk of recurrent stroke. We aimed to explore the relationship between oxidative stress biomarkers and the presence of PSCI. 193 first-ever acute ischaemic stroke patients were consecutively enrolled in the current study. The oxidative stress biomarkers malondialdehyde (MDA) and 8-hydroxydeoxyquanosine (8-OHdG) were measured within 24 h after admission. Cognition function was evaluated by the Mini-Mental State Examination (MMSE) at 1 month after stroke. Serum levels of 8-OHdG and MDA were both significantly higher in the PSCI (p < 0.001) compared with the non-PSCI group. Both the serum levels of both 8-OHdG and MDA were negatively correlated with the MMSE score. Receiver operating characteristic curve analysis was used to evaluate 8-OHdG and MDA as markers of a high risk of PSCI and produced area under curve values of 0.700 and 0.793. Adjusted logistic regression showed that serum 8-OHdG and MDA levels remained as independent markers of PSCI. High serum levels of malondialdehyde and 8-OHdG are associated with the presence of PSCI at 1 month after stroke.
Collapse
|
15
|
Carvalho-Silva M, Gomes LM, Scaini G, Rebelo J, Damiani AP, Pereira M, Andrade VM, Gava FF, Valvassori SS, Schuck PF, Ferreira GC, Streck EL. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metab Brain Dis 2017; 32:1043-1050. [PMID: 28315992 DOI: 10.1007/s11011-017-9994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.
Collapse
Affiliation(s)
- Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maiara Pereira
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Di Minno A, Turnu L, Porro B, Squellerio I, Cavalca V, Tremoli E, Di Minno MND. 8-Hydroxy-2-Deoxyguanosine Levels and Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Literature. Antioxid Redox Signal 2016; 24:548-55. [PMID: 26650622 PMCID: PMC4827317 DOI: 10.1089/ars.2015.6508] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE 8-Hydroxy-2-deoxyguanosine (8-OHdG) is generated after the repair of ROS-mediated DNA damages and, thus, is one of the most widely recognized biomarkers of oxidative damage of DNA because guanosine is the most oxidized among the DNA nucleobases. In several pathological conditions, high urinary levels of oxidized DNA-derived metabolites have been reported (e.g., cancer, atherosclerosis, hypertension, and diabetes). RECENT ADVANCES Even if published studies have shown that DNA damage is significantly associated with the development of atherosclerosis, the exact role of this damage in the onset and progression of this pathology is not fully understood, and the association of oxidative damage to DNA with cardiovascular disease (CVD) still needs to be more extensively investigated. We performed a meta-analysis of the literature to investigate the association among 8-OHdG levels and CVD. CRITICAL ISSUES Fourteen studies (810 CVD patients and 1106 controls) were included in the analysis. We found that CVD patients showed higher 8-OHdG levels than controls (SMD: 1.04, 95%CI: 0.61, 1.47, p < 0.001, I(2) = 94%, p < 0.001). The difference was confirmed both in studies in which 8-OHdG levels were assessed in urine (MD: 4.43, 95%CI: 1.71, 7.15, p = 0.001) and in blood samples (MD: 1.42, 95%CI: 0.64, 2.21, p = 0.0004). Meta-regression models showed that age, hypertension, and male gender significantly impacted on the difference in 8-OHdG levels among CVD patients and controls. FUTURE DIRECTIONS 8-OHdG levels are higher in patients with CVD than in controls. However, larger prospective studies are needed to test 8-OHdG as a predictor of CVD.
Collapse
Affiliation(s)
| | - Linda Turnu
- 1 Centro Cardiologico Monzino , IRCCS, Milan, Italy
| | | | | | - Viviana Cavalca
- 1 Centro Cardiologico Monzino , IRCCS, Milan, Italy .,2 Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano , Milan, Italy
| | - Elena Tremoli
- 1 Centro Cardiologico Monzino , IRCCS, Milan, Italy .,2 Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano , Milan, Italy
| | - Matteo Nicola Dario Di Minno
- 1 Centro Cardiologico Monzino , IRCCS, Milan, Italy .,3 Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University , Naples, Italy
| |
Collapse
|
17
|
de la Sierra A, Pintó X, Guijarro C, Miranda JL, Callejo D, Cuervo J, Subirà R, Rubio M. Prevalence, Treatment, and Control of Hypercholesterolemia in High Cardiovascular Risk Patients: Evidences from a Systematic Literature Review in Spain. Adv Ther 2015; 32:944-61. [PMID: 26499178 PMCID: PMC4635180 DOI: 10.1007/s12325-015-0252-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) represent a major Public Health burden. High serum cholesterol levels have been linked to major CV risk. The objectives of this study were to review the epidemiology of hypercholesterolemia in high risk CV patients from Spain, by assessing its prevalence, the proportion of diagnosed patients undergoing pharmacological treatment and the degree of attained lipid control. METHODS A systematic literature review was carried out using Medline and two Spanish databases. Manuscripts containing information on hypercholesterolemia in several high CV risk groups [diabetes mellitus (DM), Systematic COronary Risk Evaluation (SCORE) risk >5, or documented CVD], published between January 2010 and October 2014, were included. RESULTS Of the 1947 published references initially retrieved, a full-text review was done on 264 manuscripts and 120 were finally included. Prevalence of hypercholesterolemia ranged from 50 to 84% in diabetics, 30-60% in patients with DM or elevated SCORE risk, 64-74% with coronary heart disease, 40-70% in stroke patients, and 60-80% in those with peripheral artery disease. Despite the finding that most of them were on pharmacological treatment, acceptable control of serum lipids was very variable, ranging from 15% to 65%. Among those with heterozygous familial hypercholesterolemia, 95-100% received treatment but less than 50% achieved their therapeutic goals. CONCLUSIONS An elevated prevalence of hypercholesterolemia can be found in targeted groups at high CV risk. Although most patients are receiving pharmacological treatment, rates of lipid control continue to be low, both in primary and secondary prevention.
Collapse
Affiliation(s)
- Alex de la Sierra
- Department of Internal Medicine, University Hospital Mutua Terrassa, Barcelona, Spain.
| | - Xavier Pintó
- Lipid Unit, Internal Medicine Service, University Hospital of Bellvitge, Barcelona, Spain
| | - Carlos Guijarro
- Internal Medicine Service, University Hospital Alcorcón Foundation, Madrid, Spain
| | - José López Miranda
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofıa University Hospital, University of Cordoba and CIBER Fisiopatologia Obesidad y Nutricion, Instituto de Salud Carlos III, Cordoba, Spain
- Reina Sofia University Hospital, IMIBIC/Fundacion para la Investigacion Biomedica de Cordoba, Cordoba, Spain
| | | | | | - Rudi Subirà
- Health Economics and Outcomes Research, Sanofi Iberia, Barcelona, Spain
| | - Marta Rubio
- Health Economics and Outcomes Research, Sanofi Iberia, Barcelona, Spain
| |
Collapse
|
18
|
|
19
|
Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 2013; 10:142. [PMID: 24289502 PMCID: PMC4220803 DOI: 10.1186/1742-2094-10-142] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/15/2013] [Indexed: 12/27/2022] Open
Abstract
About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, Neuroinflammation Research Group, Epilepsy Center Division, NYU School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|