1
|
Calame DJ, Xiao J, Khan MM, Hollingsworth TJ, Xue Y, Person AL, LeDoux MS. Presynaptic PRRT2 Deficiency Causes Cerebellar Dysfunction and Paroxysmal Kinesigenic Dyskinesia. Neuroscience 2020; 448:272-286. [PMID: 32891704 DOI: 10.1016/j.neuroscience.2020.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
PRRT2 loss-of-function mutations have been associated with familial paroxysmal kinesigenic dyskinesia (PKD), infantile convulsions and choreoathetosis, and benign familial infantile seizures. Dystonia is the foremost involuntary movement disorder manifest by patients with PKD. Using a lacZ reporter and quantitative reverse-transcriptase PCR, we mapped the temporal and spatial distribution of Prrt2 in mouse brain and showed the highest levels of expression in cerebellar cortex. Further investigation into PRRT2 localization within the cerebellar cortex revealed that Prrt2 transcripts reside in granule cells but not Purkinje cells or interneurons within cerebellar cortex, and PRRT2 is presynaptically localized in the molecular layer. Analysis of synapses in the cerebellar molecular layer via electron microscopy showed that Prrt2-/- mice have increased numbers of docked vesicles but decreased vesicle numbers overall. In addition to impaired performance on several motor tasks, approximately 5% of Prrt2-/- mice exhibited overt PKD with clear face validity manifest as dystonia. In Prrt2 mutants, we found reduced parallel fiber facilitation at parallel fiber-Purkinje cell synapses, reduced Purkinje cell excitability, and normal cerebellar nuclear excitability, establishing a potential mechanism by which altered cerebellar activity promotes disinhibition of the cerebellar nuclei, driving motor abnormalities in PKD. Overall, our findings replicate, refine, and expand upon previous work with PRRT2 mouse models, contribute to understanding of paroxysmal disorders of the nervous system, and provide mechanistic insight into the role of cerebellar cortical dysfunction in dystonia.
Collapse
Affiliation(s)
- Dylan J Calame
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Jianfeng Xiao
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Division of Rehabilitation Sciences, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - T J Hollingsworth
- Department of Ophthalmology and Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Department of Neurology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Mark S LeDoux
- Department of Psychology and School of Health Studies, University of Memphis, Memphis, TN 38152, USA; Veracity Neuroscience LLC, Memphis, TN 38157, USA.
| |
Collapse
|
2
|
A Novel PRRT2 Variant in Chinese Patients Suffering from Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsion. Behav Neurol 2020; 2020:2097059. [PMID: 32509037 PMCID: PMC7251426 DOI: 10.1155/2020/2097059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PRRT2 mutations are the major causative agent of paroxysmal kinesigenic dyskinesia with infantile convulsion (PKD/IC). The study is aimed at screening PRRT2 gene mutations in patients who suffered from PKD/IC in Chinese population. Thirteen Chinese patients with PKD/IC were screened randomly for coding exons of the PRRT2 gene mutation along with 50 ethnically coordinated control people. Nine (2 unaffected) and 4 of the patients showed familial PKD/IC and apparently sporadic cases, respectively. We identified 5 different PRRT2 mutations in 10 individuals, including 8 familial and 2 apparently sporadic cases. However, no mutations were found in the 50 ethnically matched controls. Unknown (novel) NM_145239.2:c.686G>A and previously reported NM_145239.2:c.743G>C variants were identified in two familial and sporadic patients. All affected members of family A showed mutation NM_145239.2:c.650_670delinsCAATGGTGCCACCACTGGGTTA. The previously identified NM_145239.2:c.412 C>G and NM_145239.2:c.709G>A variants are seen in two individuals assessed in family B. Other than the previously identified variants, some of the patients with PRRT2-PKD/IC showed a new PRRT2 substitution variant. Thus, the spectrum of PRRT2 variants is expanded. The possible role and probability of PRRT2 variants involved in PKD/IC are highlighted.
Collapse
|
3
|
Fang J, Wang S, Zhao G, Cao L. Novel mutation of the PRRT2 gene in two cases of paroxysmal kinesigenic dyskinesia: Two case reports. Biomed Rep 2020; 12:309-312. [PMID: 32346475 PMCID: PMC7184952 DOI: 10.3892/br.2020.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a rare condition characterized by recurrent brief episodes of dystonia, chorea, athetosis or any combination of these, without alterations of consciousness. The proline-rich transmembrane protein 2 (PRRT2) gene has been widely investigated as a causative gene of PKD. To date, a cluster of pathogenic variants associated with PKD have been identified in the PRRT2 gene. In the present case report, two Chinese patients with sporadic PKD are discussed. Genetic analysis revealed a de novo heterozygous missense mutation, c.955G>T (p.Val319Leu) in exon 3 of the PRRT2 gene. Compared with the commonly reported clinical manifestation of PRRT2-associated PKD, the patients in this report showed several primary distinctive features. The mutations identified in the present analysis expand upon the mutation spectrum of the PRRT2 gene, and this newly found variant further reinforces the importance of the PRR2 gene in PKD.
Collapse
Affiliation(s)
- Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Shige Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Cao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
4
|
Dekker MCJ, Chengo R, Kumburu HH, Kamsteeg EJ, Hamel BC. Paroxysmal Kinesigenic Dyskinesia: First Molecularly Confirmed Case from Africa. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2020; 10:tre-10-742. [PMID: 32002278 PMCID: PMC6982423 DOI: 10.7916/tohm.v0.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Background Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder, with an excellent response to carbamazepine treatment. It has been described in various populations, but not yet in an African population. Case report In a patient who reported to clinic with side effects of carbamazepine, PRRT2 gene screening was performed based on a clinical history compatible with PKD. A common PRRT2 mutation was identified in this patient, hereby the first genetically confirmed PRRT2-associated PKD in Africa. Discussion Reporting genetic confirmation of an unusual movement disorder from an equally unusual location shows the wide geographical distribution of PRRT2-associated disease. It also illustrates recognizability of this treatable disorder where the easiest accessible diagnostic tool is neurological history and examination.
Collapse
Affiliation(s)
- Marieke C J Dekker
- Department of Paediatrics and Child Health, Kilimanjaro Christian Medical Centre, Moshi, TZ
| | - Rose Chengo
- Department of Paediatrics and Child Health, Kilimanjaro Christian Medical Centre, Moshi, TZ
| | - Happiness H Kumburu
- Genomics and Bioinformatics Unit, Kilimanjaro Clinical Research Institute Biotechnology Laboratory, Kilimanjaro Christian Medical Centre, Moshi, TZ
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, GA Nijmegen, NL
| | - Ben C Hamel
- Department of Human Genetics, Radboud University Medical Center, GA Nijmegen, NL
| |
Collapse
|
5
|
Li C, Ma Y, Zhang K, Gu J, Tang F, Chen S, Cao L, Li S, Jin Y. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget 2018; 7:53611-53627. [PMID: 27449084 PMCID: PMC5288209 DOI: 10.18632/oncotarget.10680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.
Collapse
Affiliation(s)
- Chun Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Ma
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Cao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Zhao G, Liu X, Zhang Q, Wang K. PRRT2 mutations in a cohort of Chinese families with paroxysmal kinesigenic dyskinesia and genotype-phenotype correlation reanalysis in literatures. Int J Neurosci 2018; 128:751-760. [PMID: 29285950 DOI: 10.1080/00207454.2017.1418345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE STUDY Though rare, children are susceptible to paroxysmal dyskinesias such as paroxysmal kinesigenic dyskinesia, and infantile convulsions and choreoathetosis. Recent studies showed that the cause of paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis could be proline-rich transmembrane protein 2 (PRRT2) gene mutations. MATERIAL AND METHODS This study analysed PRRT2 gene mutations in 51 families with paroxysmal kinesigenic dyskinesia or infantile convulsions and choreoathetosis by direct sequencing. In particular, we characterize the genotype-phenotype correlation between age at onset and the types of PRRT2 mutations in all published cases. RESULTS Direct sequencing showed that 12 out of the 51 families had three different pathogenic mutations (c.649dupC, c.776dupG, c.649C>T) in the PRRT2 gene. No significant difference of age at onset between the patients with and without PRRT2 mutations was found in this cohort of patients. A total of 97 different PRRT2 mutations have been reported in 87 studies till now. The PRRT2 mutation classes are wide, and most mutations are frameshift mutations but the most common mutation remains c.649dupC. Comparisons of the age at onset in paroxysmal kinesigenic dyskinesia or infantile convulsions patients with different types of mutations showed no significant difference. CONCLUSIONS This study expands the clinical and genetic spectrums of Chinese patients with paroxysmal kinesigenic dyskinesia and infantile convulsions and choreoathetosis. No clear genotype-phenotype correlation between the age at onset and the types of mutations has been determined.
Collapse
Affiliation(s)
- Guohua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| | - Xiaomin Liu
- b Department of Neurology, Qianfoshan Hospital , Shandong University, Jinan, China
| | - Qiong Zhang
- c Department of Psychology and Behavioral Sciences , Zhejiang University, Hangzhou, China
| | - Kang Wang
- d Department of Neurology, First Affiliated Hospital, College of Medicine , Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Chen T, Giri M, Xia Z, Subedi YN, Li Y. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat 2017; 13:1841-1859. [PMID: 28761347 PMCID: PMC5516882 DOI: 10.2147/ndt.s142032] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a summary of recent linkage and association findings, indicating the existence of novel genes on several chromosomes for further understanding of the biology of epilepsy.
Collapse
Affiliation(s)
- Tian Chen
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Zhenyi Xia
- Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| | - Yadu Nanda Subedi
- National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal
| | - Yan Li
- Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, Xiromerisiou G, Stamelou M, Walker M, Kullmann D, Warner T, Jarman P, Hanna M, Kurian MA, Bhatia KP, Houlden H. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015; 138:3567-80. [PMID: 26598494 PMCID: PMC4655345 DOI: 10.1093/brain/awv310] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms. Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis, paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the pathogenic mechanisms. We analysed all three genes (the whole coding regions of SLC2A1 and PRRT2 and exons one and two of PNKD) in a series of 145 families with paroxysmal dyskinesias as well as in a series of 53 patients with familial episodic ataxia and hemiplegic migraine to investigate the mutation frequency and type and the genetic and phenotypic spectrum. We examined the mRNA expression in brain regions to investigate how selective vulnerability could help explain the phenotypes and analysed the effect of mutations on patient-derived mRNA. Mutations in the PRRT2, SLC2A1 and PNKD genes were identified in 72 families in the entire study. In patients with paroxysmal movement disorders 68 families had mutations (47%) out of 145 patients. PRRT2 mutations were identified in 35% of patients, SLC2A1 mutations in 10%, PNKD in 2%. Two PRRT2 mutations were in familial hemiplegic migraine or episodic ataxia, one SLC2A1 family had episodic ataxia and one PNKD family had familial hemiplegic migraine alone. Several previously unreported mutations were identified. The phenotypes associated with PRRT2 mutations included a high frequency of migraine and hemiplegic migraine. SLC2A1 mutations were associated with variable phenotypes including paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, episodic ataxia and myotonia and we identified a novel PNKD gene deletion in familial hemiplegic migraine. We found that some PRRT2 loss-of-function mutations cause nonsense mediated decay, except when in the last exon, whereas missense mutations do not affect mRNA. In the PNKD family with a novel deletion, mRNA was truncated losing the C-terminus of PNKD-L and still likely loss-of-function, leading to a reduction of the inhibition of exocytosis, and similar to PRRT2, an increase in vesicle release. This study highlights the frequency, novel mutations and clinical and molecular spectrum of PRRT2, SLC2A1 and PNKD mutations as well as the phenotype–genotype overlap among these paroxysmal movement disorders. The investigation of paroxysmal movement disorders should always include the analysis of all three genes, but around half of our paroxysmal series remain genetically undefined implying that additional genes are yet to be identified. The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms.
Collapse
Affiliation(s)
- Alice R Gardiner
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Russell C Dale
- 3 Paediatrics and Child Health, Children's Hospital, Westmead, University of Sydney, Australia
| | - Robyn Labrum
- 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Roberto Erro
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Esther Meyer
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK
| | - Georgia Xiromerisiou
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 7 Department of Neurology, Papageorgiou Hospital, Thessaloniki University of Athens, Greece
| | - Maria Stamelou
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 8 Department of Neurology University of Athens, Greece 9 Department of Neurology, Philipps University, Marburg, Germany
| | - Matthew Walker
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dimitri Kullmann
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tom Warner
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paul Jarman
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Hanna
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Manju A Kurian
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK 11 Department of Neurology, Great Ormond Street Hospital, London WC1N, UK
| | - Kailash P Bhatia
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
9
|
Zhang LM, An Y, Pan G, Ding YF, Zhou YF, Yao YH, Wu BL, Zhou SZ. Reduced Penetrance of PRRT2 Mutation in a Chinese Family With Infantile Convulsion and Choreoathetosis Syndrome. J Child Neurol 2015; 30:1263-9. [PMID: 25403460 DOI: 10.1177/0883073814556887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
Paroxysmal kinesigenic dyskinesia is a rare episodic movement disorder that can be isolated or associated with benign infantile seizures as part of choreoathetosis syndrome. Mutations in the PRRT2 gene have been recently identified as a cause of paroxysmal kinesigenic dyskinesia and infantile convulsion and choreoathetosis (ICCA). We reported a PRRT2 heterozygous mutation (c.604-607delTCAC, p.S202Hfs*25) in a 3-generation Chinese family with infantile convulsion and choreoathetosis and paroxysmal kinesigenic dyskinesia. The mutation was present in 5 family members, of which 4 were clinically affected and 1 was an obligate carrier with reduced penetrance of PRRT2. The affected carriers of this mutation presented with a similar type of infantile convulsion during early childhood and developed additional paroxysmal kinesigenic dyskinesia symptoms later in life. In addition, they all had a dramatic clinical response to oxcarbazepine/phenytoin therapy. Reduced penetrance of the PRRT2 mutation in this family could warrant genetic counseling.
Collapse
Affiliation(s)
- L M Zhang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y An
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - G Pan
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y F Ding
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y F Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Y H Yao
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - B L Wu
- Institute of Biomedical Sciences and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - S Z Zhou
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Abstract
Paroxysmal dyskinesias represent a group of episodic abnormal involuntary movements manifested by recurrent attacks of dystonia, chorea, athetosis, or a combination of these disorders. Paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, paroxysmal exertion-induced dyskinesia, and paroxysmal hypnogenic dyskinesia are distinguished clinically by precipitating factors, duration and frequency of attacks, and response to medication. Primary paroxysmal dyskinesias are usually autosomal dominant genetic conditions. Secondary paroxysmal dyskinesias can be the symptoms of different neurologic and medical disorders. This review summarizes the updates on etiology, pathophysiology, genetics, clinical presentation, differential diagnosis, and treatment of paroxysmal dyskinesias and other episodic movement disorders.
Collapse
Affiliation(s)
- Olga Waln
- Department of Neurology, Houston Methodist Neurological Institute, 6560 Fannin, Suite 802, Houston, TX 77030, USA
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, 6550 Fannin, Suite 1801, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Abstract
Dystonia, a common and genetically heterogeneous neurological disorder, was recently defined as "a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both." Via the application of whole-exome sequencing, the genetic landscape of dystonia and closely related movement disorders is becoming exposed. In particular, several "novel" genetic causes have been causally associated with dystonia or dystonia-related disorders over the past 2 years. These genes include PRRT2 (DYT10), CIZ1 (DYT23), ANO3 (DYT24), GNAL (DYT25), and TUBB4A (DYT4). Despite these advances, major gaps remain in identifying the genetic origins for most cases of adult-onset isolated dystonia. Furthermore, model systems are needed to study the biology of PRRT2, CIZ1, ANO3, Gαolf, and TUBB4A in the context of dystonia. This review focuses on these recent additions to the family of dystonia genes, genotype-phenotype correlations, and possible cellular contributions of the encoded proteins to the development of dystonia.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, 855 Monroe Avenue, Link Building Suite 415, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
12
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
|
14
|
Prabhakara S, Anbazhagan K. Molecular analysis of PRRT2 gene in a case of paroxysmal kinesigenic dyskinesia patient. Ann Indian Acad Neurol 2014; 17:459-62. [PMID: 25506174 PMCID: PMC4251026 DOI: 10.4103/0972-2327.144039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 12/03/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an abnormal involuntary movement that is episodic or intermittent, with sudden onset, and the attacks are induced by sudden movement. Mutations in proline-rich transmembrane protein 2 (PRRT2) gene have been implicated in the cause of this disorder. This study presents a case of PKD on the basis of clinical findings supported and evidences obtained through a mutational analysis. Sequencing of all the exons of PRRT2 gene revealed a frameshift mutation (p.R217Pfs*8) in exon 2 and a novel transition mutation (c.244C > T) in 5′-untranslated region (UTR). Though mutations in PRRT2 gene are well-established in PKD, this study for the first time presents a novel transition mutation in the exon 2 region.
Collapse
Affiliation(s)
- S Prabhakara
- Department of Research and Development, Genomics and Central Research Laboratory, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, India ; Central Research Lab, Raja Rajeswari Medical College and Hospital, Bangalore, Karnataka, India
| | - Kolandaswamy Anbazhagan
- INSERM U844, Institute for Neurosciences of Montpellier, Hospital St. Eloi, 34295 Montpellier, France
| |
Collapse
|
15
|
PRRT2 truncated mutations lead to nonsense-mediated mRNA decay in Paroxysmal Kinesigenic Dyskinesia. Parkinsonism Relat Disord 2014; 20:1399-404. [DOI: 10.1016/j.parkreldis.2014.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 11/19/2022]
|
16
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
17
|
Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord 2014; 29:1108-16. [PMID: 24963779 DOI: 10.1002/mds.25933] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal movement disorders are a heterogeneous group of conditions manifesting as episodic dyskinesia with sudden onset and lasting a variable duration. Based on the difference of precipitating factors, three forms are clearly recognized, namely, paroxysmal kinesigenic (PKD), non-kinesigenic (PNKD), and exercise induced (PED). The elucidation of the genetic cause of various forms of paroxysmal dyskinesia has led to better clinical definitions based on genotype-phenotype correlations in the familial forms. However, it has been increasingly recognized that (1) there is a marked pleiotropy of mutations in such genes with still expanding clinical spectra; and (2) not all patients clinically presenting with either PKD, PNKD, or PED have mutations in these genes. We aimed to review the clinical features of 500 genetically proven cases published to date. Based on our results, it is clear that there is not a complete phenotypic-genotypic correlation, and therefore we suggest an algorithm to lead the genetic analyses. Given the fact that the reliability of current clinical categorization is not entirely valid, we further propose a novel classification for paroxysmal dyskinesias, which takes into account the recent genetic discoveries in this field.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, United Kingdom
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The dystonias are a common but complex group of disorders that show considerable variation in cause and clinical presentation. The purpose of this review is to highlight the most important discoveries and insights from across the field over the period of the past 18 months. RECENT FINDINGS Five new genes for primary dystonia (PRRT2, CIZ1, ANO3, TUBB4A and GNAL) have made their appearance in the literature. New subtypes of neuronal brain iron accumulation have been delineated and linked to mutations in C19orf12 and WDR45, while a new treatable form of dystonia with brain manganese deposition related to mutations in SLC30A10 has been described. At the same time, the phenotypes of other forms of dystonic syndromes have been expanded or linked together. Finally, there has been increasing recognition of both the extramotor phenotype in dystonia and the part played by the cerebellum in its pathophysiology. SUMMARY Recently, there has been unprecedented change in the scientific landscape with respect to the cause of various dystonic syndromes that is likely to make a direct impact on clinical practice in the near future. Understanding the genetic cause of these syndromes and the often wide phenotypic variation in their presentations will improve diagnosis and treatment. With time, these discoveries may also lead to much-needed progress in elucidating the underlying pathophysiology of dystonia.
Collapse
|
19
|
IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol 2013; 425:4937-55. [PMID: 24076421 PMCID: PMC4121887 DOI: 10.1016/j.jmb.2013.09.024] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
The interferon-inducible transmembrane protein (IFITM) family inhibits a growing number of pathogenic viruses, among them influenza A virus, dengue virus, hepatitis C virus, and Ebola virus. This review covers recent developments in our understanding of the IFITM's molecular determinants, potential mechanisms of action, and impact on pathogenesis.
Collapse
|
20
|
Wang JL, Mao X, Hu ZM, Li JD, Li N, Guo JF, Jiang H, Shen L, Li J, Shi YT, Xia K, Liu JY, Liao WP, Tang BS. Mutation analysis of PRRT2 in two Chinese BFIS families and nomenclature of PRRT2 related paroxysmal diseases. Neurosci Lett 2013; 552:40-5. [PMID: 23896529 DOI: 10.1016/j.neulet.2013.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 11/26/2022]
Abstract
Benign familial infantile seizure (BFIS) and paroxysmal kinesigenic dyskinesia (PKD) are autosomal-dominant inherited self-limited neurological disorders. BFIS is characterized by clusters of epileptic seizures in infancy while, in some cases, infantile seizures and adolescent-onset paroxysmal kinesigenic choreoathetosis co-occurred, which is called infantile convulsions and choreoathetosis (ICCA) syndrome. We and other researchers have reported the proline-rich transmembrane protein 2 (PRRT2) as the causative gene of PKD. We and our collaborators also identified PRRT2 mutations in ICCA and other phenotypes. Here we collected two BFIS families of Chinese Han origin. The linkage analysis has mapped the BFIS-causing locus to 16p12.1-q12.2, where PRRT2 is located. We then performed mutation analysis of PRRT2 by direct sequencing and identified c.649-650insC mutation in all BFIS patients. We also noticed that paroxysmal diseases (such as BFIS, PKD and ICCA) with PRRT2 mutations, instead of other forms, share some characteristics like being responded well to anti-epiletic treatment, we thus suggest to name them as PRRT2-related paroxysmal diseases (PRPDs) in order to assist clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Dystonia is a common movement disorder seen by neurologists in clinic. Genetic forms of the disease are important to recognize clinically and also provide valuable information about possible pathogenic mechanisms within the wider disorder. In the past few years, with the advent of new sequencing technologies, there has been a step change in the pace of discovery in the field of dystonia genetics. In just over a year, four new genes have been shown to cause primary dystonia (CIZ1, ANO3, TUBB4A and GNAL), PRRT2 has been identified as the cause of paroxysmal kinesigenic dystonia and other genes, such as SLC30A10 and ATP1A3, have been linked to more complicated forms of dystonia or new phenotypes. In this review, we provide an overview of the current state of knowledge regarding genetic forms of dystonia—related to both new and well-known genes alike—and incorporating genetic, clinical and molecular information. We discuss the mechanistic insights provided by the study of the genetic causes of dystonia and provide a helpful clinical algorithm to aid clinicians in correctly predicting the genetic basis of various forms of dystonia.
Collapse
Affiliation(s)
- Gavin Charlesworth
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | |
Collapse
|
22
|
Clinical analysis of nine cases of paroxysmal exercise-induced dystonia. ACTA ACUST UNITED AC 2012; 32:937-940. [PMID: 23271301 DOI: 10.1007/s11596-012-1062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Indexed: 10/27/2022]
Abstract
This study was aimed to analyze the clinical features of paroxysmal kinesigenic dyskinesia (PKD) and extend the understanding of this disease. From August, 2008 to October, 2010, 9 patients were diagnosed with PKD in the Department of Neurology of the First Affiliated Hospital of Zhejiang University, China. The data involving clinical demographic characteristics, somatosensory evoked potentials, results of electromyography, video electroencephalography (EEG), brain magnetic resonance imaging (MRI) and computerized tomography (CT) were collected. All PKD patients exhibited unilateral or bilateral recurrent episodic dyskinetic attacks triggered by sudden voluntary movements. The duration of the attacks ranged from several seconds to one minute. The attack frequency ranged from approximately once in several months to more than 10 times in a day. Patients suffered from no conscious disorders during the attack, and no neurological signs were found during the period between attacks. No abnormal somatosensory evoked potentials were found. Routine EEG, video EEG monitoring or brain imaging showed normal findings. Classical treatment for anti-epilepsy, including carbamazepine and topiramate, was administered to the patients and proved to be effective. It was concluded that PKD is characteristically triggered by sudden voluntary movement; no abnormal electroneurophysiological findings are observed in PKD, and antiepileptic drugs are effective in treating the disorder.
Collapse
|