1
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Tilsley P, Moutiez A, Brodovitch A, Mendili MME, Testud B, Zaaraoui W, Verschueren A, Attarian S, Guye M, Boucraut J, Grapperon AM, Stellmann JP. Neurofilament Light Chain Levels Interact with Neurodegenerative Patterns and Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. AJNR Am J Neuroradiol 2024; 45:494-503. [PMID: 38548305 PMCID: PMC11288555 DOI: 10.3174/ajnr.a8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving rapid motor neuron degeneration leading to brain, primarily precentral, atrophy. Neurofilament light chains are a robust prognostic biomarker highly specific to ALS, yet associations between neurofilament light chains and MR imaging outcomes are not well-understood. We investigated the role of neurofilament light chains as mediators among neuroradiologic assessments, precentral neurodegeneration, and disability in ALS. MATERIALS AND METHODS We retrospectively analyzed a prospective cohort of 29 patients with ALS (mean age, 56 [SD, 12] years; 18 men) and 36 controls (mean age, 49 [SD, 11] years; 18 men). Patients underwent 3T (n = 19) or 7T (n = 10) MR imaging, serum (n = 23) and CSF (n = 15) neurofilament light chains, and clinical (n = 29) and electrophysiologic (n = 27) assessments. The control group had equivalent 3T (n = 25) or 7T (n = 11) MR imaging. Two trained neuroradiologists performed blinded qualitative assessments of MR imaging anomalies (n = 29 patients, n = 36 controls). Associations between precentral cortical thickness and neurofilament light chains and clinical and electrophysiologic data were analyzed. RESULTS We observed extensive cortical thinning in patients compared with controls. MR imaging analyses showed significant associations between precentral cortical thickness and bulbar or arm impairment following distributions corresponding to the motor homunculus. Finally, uncorrected results showed positive interactions among precentral cortical thickness, serum neurofilament light chains, and electrophysiologic outcomes. Qualitative MR imaging anomalies including global atrophy (P = .003) and FLAIR corticospinal tract hypersignal anomalies (P = .033), correlated positively with serum neurofilament light chains. CONCLUSIONS Serum neurofilament light chains may be an important mediator between clinical symptoms and neuronal loss according to cortical thickness. Furthermore, MR imaging anomalies might have underestimated prognostic value because they seem to indicate higher serum neurofilament light chain levels.
Collapse
Affiliation(s)
- Penelope Tilsley
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
| | - Antoine Moutiez
- Department of Neuroradiology (A.M., B.T., J.-P.S.), Assistance Publique-Marseille Hospitals, Hôpital de la Timone, Marseille, France
| | - Alexandre Brodovitch
- Immunology Laboratory (A.B., J.B.), Assistance Publique-Marseille Hospitals, Conception Hospital, Marseille, France
| | - Mohamed Mounir El Mendili
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
| | - Benoit Testud
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
- Department of Neuroradiology (A.M., B.T., J.-P.S.), Assistance Publique-Marseille Hospitals, Hôpital de la Timone, Marseille, France
| | - Wafaa Zaaraoui
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
| | - Annie Verschueren
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Referral Centre for Neuromuscular Diseases and ALS (A.V., S.A., A.-M.G.), Assistance Publique-Marseille Hospitals, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Referral Centre for Neuromuscular Diseases and ALS (A.V., S.A., A.-M.G.), Assistance Publique-Marseille Hospitals, Hôpital de la Timone, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (S.A.,), Marseille Medical Genetics Center, Aix-Marseille University, Marseille, France
| | - Maxime Guye
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
| | - José Boucraut
- Immunology Laboratory (A.B., J.B.), Assistance Publique-Marseille Hospitals, Conception Hospital, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (J.B.) Institut de Neurosciences des Systèmes Aix-Marseille University, Marseille, France
| | - Aude-Marie Grapperon
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | - Jan-Patrick Stellmann
- From the Centre de Résonance Magnétique Biologique et Médicale (P.T., M.M.E.M., B.T., W.Z., A.V., M.G., A.-M.G., J.-P.S.), Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
- Assistance Publique-Marseille Hospitals (P.T., M.M.E.M., B.T., W.Z., M.G., J.-P.S.), Hôpital de la Timone, CEMEREM, Marseille, France
- Department of Neuroradiology (A.M., B.T., J.-P.S.), Assistance Publique-Marseille Hospitals, Hôpital de la Timone, Marseille, France
| |
Collapse
|
3
|
Sánchez-Bonaste A, Merchante LFS, Gónzalez-Bravo C, Carnicero A. Systematic measuring cortical thickness in tibiae for bio-mechanical analysis. Comput Biol Med 2023; 163:107123. [PMID: 37343467 DOI: 10.1016/j.compbiomed.2023.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Measuring the thickness of cortical bone tissue helps diagnose bone diseases or monitor the progress of different treatments. This type of measurement can be performed visually from CAT images by a radiologist or by semi-automatic algorithms from Hounsfield values. This article proposes a mechanism capable of measuring thickness over the entire bone surface, aligning and orienting all the images in the same direction to have comparable references and reduce human intervention to a minimum. The objective is to batch process large numbers of patients' CAT images obtaining thicknesses profiles of their cortical tissue to be used in many applications. METHODS Classical morphological and Deep Learning segmentation is used to extract the area of interest, filtering and interpolation to clean the bones and contour detection and Signed Distance Functions to measure the cortical Thickness. The alignment of the set of bones is achieved by detecting their longitudinal direction, and the orientation is performed by computing their principal component of the center of mass slice. RESULTS The method processed in an unattended manner 67% of the patients in the first run and 100% in the second run. The difference in the thickness values between the values provided by the algorithm and the measures done by a radiologist was, on average, 0.25 millimetres with a standard deviation of 0.2. CONCLUSION Measuring the cortical thickness of a bone would allow us to prepare accurate traumatological surgeries or study their structural properties. Obtaining thickness profiles of an extensive set of patients opens the way for numerous studies to be carried out to find patterns between bone thickness and the patients' medical, social or demographic variables.
Collapse
Affiliation(s)
- Alberto Sánchez-Bonaste
- ICAI School of Engineering, Comillas Pontifical University, Alberto Aguilera 25, 28015, Madrid, Spain
| | - Luis F S Merchante
- MOBIOS Lab, Institute for Research in Technology, Comillas Pontifical University, Sta Cruz de Marcenado 26, 28015, Madrid, Spain
| | - Carlos Gónzalez-Bravo
- ICAI School of Engineering, Comillas Pontifical University, Alberto Aguilera 25, 28015, Madrid, Spain
| | - Alberto Carnicero
- MOBIOS Lab, Institute for Research in Technology, Comillas Pontifical University, Sta Cruz de Marcenado 26, 28015, Madrid, Spain.
| |
Collapse
|
4
|
Cannon AE, Zürrer WE, Zejlon C, Kulcsar Z, Lewandowski S, Piehl F, Granberg T, Ineichen BV. Neuroimaging findings in preclinical amyotrophic lateral sclerosis models-How well do they mimic the clinical phenotype? A systematic review. Front Vet Sci 2023; 10:1135282. [PMID: 37205225 PMCID: PMC10185801 DOI: 10.3389/fvets.2023.1135282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Background and objectives Animal models for motor neuron diseases (MND) such as amyotrophic lateral sclerosis (ALS) are commonly used in preclinical research. However, it is insufficiently understood how much findings from these model systems can be translated to humans. Thus, we aimed at systematically assessing the translational value of MND animal models to probe their external validity with regards to magnetic resonance imaging (MRI) features. Methods In a comprehensive literature search in PubMed and Embase, we retrieved 201 unique publications of which 34 were deemed eligible for qualitative synthesis including risk of bias assessment. Results ALS animal models can indeed present with human ALS neuroimaging features: Similar to the human paradigm, (regional) brain and spinal cord atrophy as well as signal changes in motor systems are commonly observed in ALS animal models. Blood-brain barrier breakdown seems to be more specific to ALS models, at least in the imaging domain. It is noteworthy that the G93A-SOD1 model, mimicking a rare clinical genotype, was the most frequently used ALS proxy. Conclusions Our systematic review provides high-grade evidence that preclinical ALS models indeed show imaging features highly reminiscent of human ALS assigning them a high external validity in this domain. This opposes the high attrition of drugs during bench-to-bedside translation and thus raises concerns that phenotypic reproducibility does not necessarily render an animal model appropriate for drug development. These findings emphasize a careful application of these model systems for ALS therapy development thereby benefiting refinement of animal experiments. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022373146.
Collapse
Affiliation(s)
| | | | - Charlotte Zejlon
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Victor Ineichen
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Toh C, Keslake A, Payne T, Onwuegbuzie A, Harding J, Baster K, Hoggard N, Shaw PJ, Wilkinson ID, Jenkins TM. Analysis of brain and spinal MRI measures in a common domain to investigate directional neurodegeneration in motor neuron disease. J Neurol 2023; 270:1682-1690. [PMID: 36509983 PMCID: PMC9971079 DOI: 10.1007/s00415-022-11520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) of the brain and cervical spinal cord is often performed in diagnostic evaluation of suspected motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Analysis of MRI-derived tissue damage metrics in a common domain facilitates group-level inferences on pathophysiology. This approach was applied to address competing hypotheses of directionality of neurodegeneration, whether anterograde, cranio-caudal dying-forward from precentral gyrus or retrograde, dying-back. METHODS In this cross-sectional study, MRI was performed on 75 MND patients and 13 healthy controls. Precentral gyral thickness was estimated from volumetric T1-weighted images using FreeSurfer, corticospinal tract fractional anisotropy (FA) from diffusion tensor imaging using FSL, and cross-sectional cervical cord area between C1-C8 levels using Spinal Cord Toolbox. To analyse these multimodal data within a common domain, individual parameter estimates representing tissue damage at each corticospinal tract level were first converted to z-scores, referenced to healthy control norms. Mixed-effects linear regression models were then fitted to these z-scores, with gradients hypothesised to represent directionality of neurodegeneration. RESULTS At group-level, z-scores did not differ significantly between precentral gyral and intracranial corticospinal tract tissue damage estimates (regression coefficient - 0.24, [95% CI - 0.62, 0.14], p = 0.222), but step-changes were evident between intracranial corticospinal tract and C1 (1.14, [95% CI 0.74, 1.53], p < 0.001), and between C5 and C6 cord levels (0.98, [95% CI 0.58, 1.38], p < 0.001). DISCUSSION Analysis of brain and cervical spinal MRI data in a common domain enabled investigation of pathophysiological hypotheses in vivo. A cranio-caudal step-change in MND patients was observed, and requires further investigation in larger cohorts.
Collapse
Affiliation(s)
- C Toh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Keslake
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - T Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Onwuegbuzie
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Harding
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - K Baster
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - N Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - I D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - T M Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
- Royal Perth Hospital, Victoria Square, Perth, WA, 6000, Australia.
| |
Collapse
|
6
|
Zejlon C, Nakhostin D, Winklhofer S, Pangalu A, Kulcsar Z, Lewandowski S, Finnsson J, Piehl F, Ingre C, Granberg T, Ineichen BV. Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases—A systematic review and meta-analysis. Front Neurol 2022; 13:947347. [PMID: 36110394 PMCID: PMC9468579 DOI: 10.3389/fneur.2022.947347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe lack of systematic evidence on neuroimaging findings in motor neuron diseases (MND) hampers the diagnostic utility of magnetic resonance imaging (MRI). Thus, we aimed at performing a systematic review and meta-analysis of MRI features in MND including their histopathological correlation.MethodsIn a comprehensive literature search, out of 5941 unique publications, 223 records assessing brain and spinal cord MRI findings in MND were eligible for a qualitative synthesis. 21 records were included in a random effect model meta-analysis.ResultsOur meta-analysis shows that both T2-hyperintensities along the corticospinal tracts (CST) and motor cortex T2*-hypointensitites, also called “motor band sign”, are more prevalent in ALS patients compared to controls [OR 2.21 (95%-CI: 1.40–3.49) and 10.85 (95%-CI: 3.74–31.44), respectively]. These two imaging findings correlate to focal axonal degeneration/myelin pallor or glial iron deposition on histopathology, respectively. Additionally, certain clinical MND phenotypes such as amyotrophic lateral sclerosis (ALS) seem to present with distinct CNS atrophy patterns.ConclusionsAlthough CST T2-hyperintensities and the “motor band sign” are non-specific imaging features, they can be leveraged for diagnostic workup of suspected MND cases, together with certain brain atrophy patterns. Collectively, this study provides high-grade evidence for the usefulness of MRI in the diagnostic workup of suspected MND cases.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42020182682.
Collapse
Affiliation(s)
- Charlotte Zejlon
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dominik Nakhostin
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | | | - Johannes Finnsson
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- *Correspondence: Benjamin Victor Ineichen
| |
Collapse
|
7
|
Bhattarai A, Chen Z, Chua P, Talman P, Mathers S, Chapman C, Howe J, Lee CMS, Lie Y, Poudel GR, Egan GF. Network diffusion model predicts neurodegeneration in limb-onset Amyotrophic Lateral Sclerosis. PLoS One 2022; 17:e0272736. [PMID: 35951510 PMCID: PMC9371353 DOI: 10.1371/journal.pone.0272736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Emerging evidences suggest that the trans-neural propagation of phosphorylated 43-kDa transactive response DNA-binding protein (pTDP-43) contributes to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). We investigated whether Network Diffusion Model (NDM), a biophysical model of spread of pathology via the brain connectome, could capture the severity and progression of neurodegeneration (atrophy) in ALS. Methods We measured degeneration in limb-onset ALS patients (n = 14 at baseline, 12 at 6-months, and 9 at 12 months) and controls (n = 12 at baseline) using FreeSurfer analysis on the structural T1-weighted Magnetic Resonance Imaging (MRI) data. The NDM was simulated on the canonical structural connectome from the IIT Human Brain Atlas. To determine whether NDM could predict the atrophy pattern in ALS, the accumulation of pathology modelled by NDM was correlated against atrophy measured using MRI. In order to investigate whether network spread on the brain connectome derived from healthy individuals were significant findings, we compared our findings against network spread simulated on random networks. Results The cross-sectional analyses revealed that the network diffusion seeded from the inferior frontal gyrus (pars triangularis and pars orbitalis) significantly predicts the atrophy pattern in ALS compared to controls. Whereas, atrophy over time with-in the ALS group was best predicted by seeding the network diffusion process from the inferior temporal gyrus at 6-month and caudal middle frontal gyrus at 12-month. Network spread simulated on the random networks showed that the findings using healthy brain connectomes are significantly different from null models. Interpretation Our findings suggest the involvement of extra-motor regions in seeding the spread of pathology in ALS. Importantly, NDM was able to recapitulate the dynamics of pathological progression in ALS. Understanding the spatial shifts in the seeds of degeneration over time can potentially inform further research in the design of disease modifying therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Anjan Bhattarai
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- * E-mail:
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Phyllis Chua
- Department of Psychiatry, Monash University, Clayton, Victoria, Australia
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Paul Talman
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Susan Mathers
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Caron Chapman
- Neurosciences Department, University Hospital, Geelong, Victoria, Australia
| | - James Howe
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - C. M. Sarah Lee
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Yenni Lie
- Statewide Progressive Neurological Disease Service, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Govinda R. Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Gary F. Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Functional alterations in large-scale resting-state networks of amyotrophic lateral sclerosis: A multi-site study across Canada and the United States. PLoS One 2022; 17:e0269154. [PMID: 35709100 PMCID: PMC9202847 DOI: 10.1371/journal.pone.0269154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by progressive degeneration of upper motor neurons and lower motor neurons, and frontotemporal regions resulting in impaired bulbar, limb, and cognitive function. Magnetic resonance imaging studies have reported cortical and subcortical brain involvement in the pathophysiology of ALS. The present study investigates the functional integrity of resting-state networks (RSNs) and their importance in ALS. Intra- and inter-network resting-state functional connectivity (Rs-FC) was examined using an independent component analysis approach in a large multi-center cohort. A total of 235 subjects (120 ALS patients; 115 healthy controls (HC) were recruited across North America through the Canadian ALS Neuroimaging Consortium (CALSNIC). Intra-network and inter-network Rs-FC was evaluated by the FSL-MELODIC and FSLNets software packages. As compared to HC, ALS patients displayed higher intra-network Rs-FC in the sensorimotor, default mode, right and left fronto-parietal, and orbitofrontal RSNs, and in previously undescribed networks including auditory, dorsal attention, basal ganglia, medial temporal, ventral streams, and cerebellum which negatively correlated with disease severity. Furthermore, ALS patients displayed higher inter-network Rs-FC between the orbitofrontal and basal ganglia RSNs which negatively correlated with cognitive impairment. In summary, in ALS there is an increase in intra- and inter-network functional connectivity of RSNs underpinning both motor and cognitive impairment. Moreover, the large multi-center CALSNIC dataset permitted the exploration of RSNs in unprecedented detail, revealing previously undescribed network involvement in ALS.
Collapse
|
9
|
Wu P, Zhang A, Sun N, Lei L, Liu P, Wang Y, Li H, Yang C, Zhang K. Cortical Thickness Predicts Response Following 2 Weeks of SSRI Regimen in First-Episode, Drug-Naive Major Depressive Disorder: An MRI Study. Front Psychiatry 2022; 12:751756. [PMID: 35273524 PMCID: PMC8902047 DOI: 10.3389/fpsyt.2021.751756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Major depression disorder (MDD) is a harmful disorder, and the pathological mechanism remains unclear. The primary pharmacotherapy regimen for MDD is selective serotonin reuptake inhibitors (SSRIs), but fewer than 40% of patients with MDD are in remission following initial treatment. Neuroimaging biomarkers of treatment efficacy can be used to guide personalized treatment in MDD. This study aims to determine if cortical thickness can be used as a predictor for SSRIs. Methods A total of 126 first-episode, drug-naive MDD patients (MDDs) and 71 healthy controls (HCs) were enrolled in our study. Demographic data were collected according to the self-made case report form (CRF) at the baseline of all subjects. Magnetic resonance imaging (MRI) scanning was performed for all the participants at baseline, and all imaging was processed using the DPABISurf software. All MDDs were treated with SSRIs, and symptoms were assessed at both the baseline and 2 weeks using the 17-item Hamilton Rating Scale (HAMD-17). According to HAMD-17 total score improvement from baseline to the end of 2 weeks, the MDDs were divided into the non-responder group (defined as ≤ 20% HAMD-17 reduction) and responder group (defined as ≥50% HAMD-17 reduction). The receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of MDDs' and HCs' cortical thickness for MDD. Correlation analysis was performed for the responder group and the non-responder group separately to identify the relationship between cortical thickness and SSRI treatment efficacy. To analyze whether cortical thickness was sufficient to differentiate responders and non-responders at baseline, we used ROC curve analysis. Results Significant decreases were found in the cortical thickness of the right supplementary motor area (SMA) in MDDs at the baseline (corrected by the Monte Carlo permutation correction, cluster-wise significant threshold at p < 0.025 and vertex-wise threshold at p = 0.001), area under the curve (AUC) = 0.732 [95% confidence interval (CI) = 0.233-0.399]. In the responder group, the cortical thickness of the right SMA was significantly thinner than in the non-responder group at baseline. There was a negative correlation (r = -0.373, p = 0.044) between the cortical thickness of SMA (0 weeks) and HAMD-17 reductive rate (2 weeks) in the responder group. The results of ROC curve analyses of the responder and non-responder groups were AUC = 0.885 (95% CI = 0.803-0.968), sensitivity = 73.5%, and specificity = 96.6%, and the cutoff value was 0.701. Conclusion Lower cortical thickness of the right SMA in MDD patients at the baseline may be a neuroimaging biomarker for MDD diagnosis, and a greater extent of thinner cortical thickness in the right SMA at baseline may predict improved SSRI treatment response. Our study shows the potential of cortical thickness as a possible biomarker that predicts a patient's clinical treatment response to SSRIs in MDD.
Collapse
Affiliation(s)
- Peiyi Wu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Lei Lei
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Psychiatry, Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yikun Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hejun Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Schiel KA. A beneficial role for elevated extracellular glutamate in Amyotrophic Lateral Sclerosis and cerebral ischemia. Bioessays 2021; 43:e2100127. [PMID: 34585427 DOI: 10.1002/bies.202100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022]
Abstract
This hypothesis proposes that increased extracellular glutamate in Amyotrophic Lateral Sclerosis (ALS) and cerebral ischemia, currently viewed as a trigger for excitotoxicity, is actually beneficial as it stimulates the utilization of glutamate as metabolic fuel. Renewed appreciation of glutamate oxidation by ischemic neurons has raised questions regarding the role of extracellular glutamate in ischemia. Is it detrimental, as suggested by excitotoxicity in early in vitro studies, or beneficial, as suggested by its oxidation in later in vivo studies? The answer may depend on the activity of N-methyl-D-aspartate (NMDA) glutamate receptors. Early in vitro procedures co-activated NMDA receptors (NMDARs) containing 2A (GluN2A) and 2B (GluN2B) subunits, an event now believed to trigger excitotoxicity; however, during in vivo ischemia D-serine and zinc molecules are released and these ensure only GluN2B receptors are stimulated. This not only prevents excitotoxicity but also initiates signaling cascades that allow ischemic neurons to import and oxidize glutamate.
Collapse
|
12
|
Rey F, Marcuzzo S, Bonanno S, Bordoni M, Giallongo T, Malacarne C, Cereda C, Zuccotti GV, Carelli S. LncRNAs Associated with Neuronal Development and Oncogenesis Are Deregulated in SOD1-G93A Murine Model of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:biomedicines9070809. [PMID: 34356873 PMCID: PMC8301400 DOI: 10.3390/biomedicines9070809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease caused in 10% of cases by inherited mutations considered “familial”. An ever-increasing amount of evidence is showing a fundamental role for RNA metabolism in ALS pathogenesis, and long non-coding RNAs (lncRNAs) appear to play a role in ALS development. Here, we aim to investigate the expression of a panel of lncRNAs (linc-Enc1, linc–Brn1a, linc–Brn1b, linc-p21, Hottip, Tug1, Eldrr, and Fendrr) which could be implicated in early phases of ALS. Via Real-Time PCR, we assessed their expression in a murine familial model of ALS (SOD1-G93A mouse) in brain and spinal cord areas of SOD1-G93A mice in comparison with that of B6.SJL control mice, in asymptomatic (week 8) and late-stage disease (week 18). We highlighted a specific area and pathogenetic-stage deregulation in each lncRNA, with linc-p21 being deregulated in all analyzed tissues. Moreover, we analyzed the expression of their human homologues in SH-SY5Y-SOD1-WT and SH-SY5Y-SOD1-G93A, observing a profound alteration in their expression. Interestingly, the lncRNAs expression in our ALS models often resulted opposite to that observed for the lncRNAs in cancer. These evidences suggest that lncRNAs could be novel disease-modifying agents, biomarkers, or pathways affected by ALS neurodegeneration.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
| | - Matteo Bordoni
- Centro di Eccellenza Sulle Malattie Neurodegenerative, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Toniella Giallongo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
| | - Claudia Malacarne
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (S.M.); (S.B.); (C.M.)
- PhD Program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Children’s Hospital “V. Buzzi”, Via Lodovico Castelvetro 32, 20154 Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milano, Italy; (F.R.); (T.G.); (G.V.Z.)
- Paediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milano, Italy
- Correspondence: ; Tel.: +39-02-50319825
| |
Collapse
|
13
|
Cengiz B, Fidancı H, Baltacı H, Türksoy E, Kuruoğlu R. Reduced Occipital Cortex Excitability in Amyotrophic Lateral Sclerosis. J Clin Neurophysiol 2021; 39:486-491. [PMID: 33443392 DOI: 10.1097/wnp.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In addition to motor cortex involvement, sensory abnormalities have been demonstrated in amyotrophic lateral sclerosis (ALS), including structural and metabolic alterations in the occipital cortex. The aim of this study was to examine occipital excitability changes in ALS. METHODS Twenty-one patients with ALS and 16 healthy subjects were enrolled into the study. Phosphene experience and phosphene threshold were studied to assess occipital excitability. Cognitive function was evaluated in both groups by means of Montreal Cognitive Assessment and Addenbrooke's Cognitive Examination-Revised visuospatial score tests. RESULTS Phosphene was experienced in 13 (81.3%) healthy subjects and 9 (42.9%) patients with ALS (P = 0.04). The mean phosphene threshold was not significantly different between the two groups. No correlation existed between phosphene threshold and motor cortical excitability parameters, ALS Functional Rating Scale Revised, Montreal Cognitive Assessment, and Addenbrooke's Cognitive Examination-Revised scores. CONCLUSIONS Visual cortex is affected, and the occipital excitability is reduced in ALS, without any relation to motor cortical excitability changes, providing another clue suggestive of sensory involvement in ALS.
Collapse
Affiliation(s)
- Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; and Division of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
14
|
Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study. BIOMED RESEARCH INTERNATIONAL 2021; 2020:1521679. [PMID: 32280675 PMCID: PMC7115147 DOI: 10.1155/2020/1521679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Objective Fractal dimensionality (FD) analysis provides a quantitative description of brain structural complexity. The application of FD analysis has provided evidence of amyotrophic lateral sclerosis- (ALS-) related white matter degeneration. This study is aimed at evaluating, for the first time, FD alterations in a gray matter in ALS and determining its association with clinical parameters. Materials and Methods. This study included 22 patients diagnosed with ALS and 20 healthy subjects who underwent high-resolution T1-weighted imaging scanning. Disease severity was assessed using the revised ALS Functional Rating Scale (ALSFRS-R). The duration of symptoms and rate of disease progression were also assessed. The regional FD value was calculated by a computational anatomy toolbox and compared among groups. The relationship between cortical FD values and clinical parameters was evaluated by Spearman correlation analysis. Results ALS patients showed decreased FD values in the left precentral gyrus and central sulcus, left circular sulcus of insula (superior segment), left cingulate gyrus and sulcus (middle-posterior part), right precentral gyrus, and right postcentral gyrus. The FD values in the right precentral gyrus were positively correlated to ALSFRS-R scores (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression (r = 0.44 and P = 0.023), whereas negatively correlated to the rate of disease progression ( Conclusions Our results suggest an ALS-related reduction in structural complexity involving the gray matter. FD analysis may shed more light on the pathophysiology of ALS.
Collapse
|
15
|
The degeneration of upper and lower motor neuron from the perspective of clinical neurological examination and MRI-electromyography manifold detection in amyotrophic lateral sclerosis. Neuroreport 2020; 32:23-28. [PMID: 33252476 DOI: 10.1097/wnr.0000000000001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to explore the upper motor neurons (UMN) and lower motor neurons (LMN) degeneration in amyotrophic lateral sclerosis (ALS) from the perspective of the clinical neurological examination and MRI-electromyography manifold detection, respectively. METHODS The clinical data, cortical thickness of corresponding areas in different body regions in MRI and electromyography data were collected from 108 classical ALS patients. RESULTS The kappa value of UMN and LMN involvement signs in the bulbar region (0.31) was higher than that of the left upper limb (-0.13), right upper limb (-0.27), left lower limb (-0.05) and right lower limb (-0.08). The cortical thickness in the positive LMN damage group was thinner than that of the negative LMN damage group in the left head-face area (P < 0.05; Cohen's d = 0.84); however, cortical thickness showed no significant differences in the right head-face, bilateral tongue-larynx, upper-limb, trunk and lower-limb areas between LMN-damage-positive and LMN-damage-negative groups. CONCLUSION The degeneration of motor neuron could be independent through UMN and LMN levels. The degenerative process was not only confined to UMN and LMN levels but can also expand to white matter fiber tracts. Thus, the degeneration of UMN and LMN might be independent of the motor system's three-dimensional anatomy.
Collapse
|
16
|
Ma X, Lu F, Chen H, Hu C, Wang J, Zhang S, Zhang S, Yang G, Zhang J. Static and dynamic alterations in the amplitude of low-frequency fluctuation in patients with amyotrophic lateral sclerosis. PeerJ 2020; 8:e10052. [PMID: 33194375 PMCID: PMC7643554 DOI: 10.7717/peerj.10052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Static changes in local brain activity in patients suffering from amyotrophic lateral sclerosis (ALS) have been studied. However, the dynamic characteristics of local brain activity are poorly understood. Whether dynamic alterations could differentiate patients with ALS from healthy controls (HCs) remains unclear. Methods A total of 54 patients with ALS (mean age = 48.71 years, male/female = 36/18) and 54 (mean age = 48.30 years, male/female = 36/18) HCs underwent magnetic resonance imaging scans. To depict static alterations in cortical activity, amplitude of low-frequency fluctuations (ALFF) which measures the total power of regional activity was computed. Dynamic ALFF (d-ALFF) from all subjects was calculated using a sliding-window approach. Statistical differences in ALFF and d-ALFF between both groups were used as features to explore whether they could differentiate ALS from HC through support vector machine method. Results In contrast with HCs, patients with ALS displayed increased ALFF in the right inferior temporal gyrus and bilateral frontal gyrus and decreased ALFF in the left middle occipital gyrus and left precentral gyrus. Furthermore, patients with ALS demonstrated lower d-ALFF in widespread regions, including the right lingual gyrus, left superior temporal gyrus, bilateral precentral gyrus, and left paracentral lobule by comparison with HCs. In addition, the ALFF in the left superior orbitofrontal gyrus had a tendency of correlation with ALSFRS-R score and disease progression rate. The classification performance in distinguishing ALS was higher with both features of ALFF and d-ALFF than that with a single approach. Conclusions Decreased dynamic brain activity in the precentral gyrus, paracentral gyrus, lingual gyrus, and temporal regions was found in the ALS group. The combined ALFF and d-ALFF could distinguish ALS from HCs with a higher accuracy than ALFF and d-ALFF alone. These findings may provide important evidence for understanding the neuropathology underlying ALS.
Collapse
Affiliation(s)
- Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, China.,MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Caihong Hu
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiao Wang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Sheng Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Shuqin Zhang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Cancer Institute, Chongqing, China.,Chongqing Cancer Hospital, Chongqing, China
| |
Collapse
|
17
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
18
|
Chen QF, Zhang XH, Huang NX, Chen HJ. Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor Imaging and Support Vector Machine. Front Neurol 2020; 11:275. [PMID: 32411072 PMCID: PMC7198809 DOI: 10.3389/fneur.2020.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: White matter (WM) impairments involving both motor and extra-motor areas have been well-documented in amyotrophic lateral sclerosis (ALS). This study tested the potential of diffusion measurements in WM for identifying ALS based on support vector machine (SVM). Methods: Voxel-wise fractional anisotropy (FA) values of diffusion tensor images (DTI) were extracted from 22 ALS patients and 26 healthy controls and served as discrimination features. The revised ALS Functional Rating Scale (ALSFRS-R) was employed to assess ALS severity. Feature ranking and selection were based on Fisher scores. A linear kernel SVM algorithm was applied to build the classification model, from which the classification performance was evaluated. To promote classifier generalization ability, a leave-one-out cross-validation (LOOCV) method was adopted. Results: By using the 2,400~3,400 ranked features as optimal features, the highest classification accuracy of 83.33% (sensitivity = 77.27% and specificity = 88.46%, P = 0.0001) was achieved, with an area under receiver operating characteristic curve of 0.862. The predicted function value was positively correlated with patient ALSFRS-R scores (r = 0.493, P = 0.020). In the optimized SVM model, FA values from several regions mostly contributed to classification, primarily involving the corticospinal tract pathway, postcentral gyrus, and frontal and parietal areas. Conclusions: Our results suggest the feasibility of ALS diagnosis based on SVM analysis and diffusion measurements of WM. Additional investigations using a larger cohort is recommended in order to validate the results of this study.
Collapse
Affiliation(s)
- Qiu-Feng Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
19
|
Dominant Heterogeneity of Upper and Lower Motor Neuron Degeneration to Motor Manifestation of Involved Region in Amyotrophic Lateral Sclerosis. Sci Rep 2019; 9:20059. [PMID: 31882886 PMCID: PMC6934517 DOI: 10.1038/s41598-019-56665-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to localize the anatomic distribution of upper motor neuron (UMN) loss through examining cortical thickness at the clinical onset of amyotrophic lateral sclerosis (ALS) and explore motor manifestation in functionally impaired body region attribute to impairment of lower motor neuron (LMN) or UMN or mixed LMN and UMN? The clinical features, cortical thickness of corresponding areas from different body regions in MRI and electromyography (EMG) data were collected from 108 classical ALS patients. The cortical thickness was thinner in ALS group than control group in bilateral head-face and upper-limb areas (p < 0.05). In head-face area, the cortical thickness of bulbar-onset group was significantly lower than that of control groups (p < 0.05). In upper-limb areas, the cortical thickness of cervical-onset group was significantly thinner than that of control group. Notably, the bulbar ALSFRS-R subscore was correlated with cortical thickness in bilateral head-face areas (p < 0.05). The bulbar ALSFRS-R subscore of the positive LMN damage group was lower compared to that of the negative LMN damage group (P < 0.001). The limb ALSFRS-R subscore correlated with compound muscle action potential (CMAP) amplitudes of median, ulnar, peroneal, and tibial nerves (P < 0.001), but was not related to cortical thickness. In conclusion, the UMN degeneration in ALS was derived from focal initiation, bulbar- and cervical-onset may date from head-face and upper-limb areas in motor homunculus cortex, respectively. The bulbar dysfunction was resulted from the mixed UMN and LMN impairment, while limb dysfunction derived mostly from LMN loss.
Collapse
|
20
|
Johns SLM, Ishaque A, Khan M, Yang YH, Wilman AH, Kalra S. Quantifying changes on susceptibility weighted images in amyotrophic lateral sclerosis using MRI texture analysis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:396-403. [PMID: 31025885 DOI: 10.1080/21678421.2019.1599024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: Susceptibility-weighted imaging (SWI) has been used to identify neurodegeneration in amyotrophic lateral sclerosis (ALS) through qualitative gross visual comparison of signal intensity. The aim of this study was to quantitatively identify cerebral degeneration in ALS on SWI using texture analysis. Methods: SW images were acquired from 17 ALS patients (58.4 ± 10.3 years, 13M/4F, ALSFRS-R 41.2 ± 4.1) and 18 healthy controls (56.3 ± 17.6 years, 9M/9F) at 4.7 tesla. Textures were computed within the precentral gyrus and basal ganglia and compared between patients and controls using ANCOVA with age and gender as covariates. Texture features were correlated with clinical measures in patients. Texture features found to be significantly different between patients and controls in the precentral gyrus were then used in a whole-brain 3D texture analysis. Results: The texture feature autocorrelation was significantly higher in ALS patients compared to healthy controls in the precentral gyrus and basal ganglia (p < 0.05). Autocorrelation correlated significantly with clinical measures such as disease progression rate and finger tapping speed (p < 0.05). Whole brain 3D texture analysis using autocorrelation revealed differences between ALS patients and controls within the precentral gyrus on SWI images (p < 0.001). Conclusion: Texture analysis on SWI can quantitatively identify cerebral differences between ALS patients and controls.
Collapse
Affiliation(s)
- Scott L M Johns
- a Department of Biological Sciences , University of Alberta , Edmonton , Canada
| | - Abdullah Ishaque
- b Neuroscience and Mental Health Institute , University of Alberta , Edmonton , Canada.,c Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| | - Muhammad Khan
- c Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| | - Yee-Hong Yang
- d Department of Computing Science , University of Alberta , Edmonton , Canada
| | - Alan H Wilman
- e Department of Biomedical Engineering , University of Alberta , Edmonton , Canada, and
| | - Sanjay Kalra
- b Neuroscience and Mental Health Institute , University of Alberta , Edmonton , Canada.,d Department of Computing Science , University of Alberta , Edmonton , Canada.,e Department of Biomedical Engineering , University of Alberta , Edmonton , Canada, and.,f Department of Medicine, Division of Neurology , University of Alberta , Edmonton , Canada
| |
Collapse
|
21
|
Serra A, Galdi P, Pesce E, Fratello M, Trojsi F, Tedeschi G, Tagliaferri R, Esposito F. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization. Int J Neural Syst 2019; 29:1950007. [PMID: 30929575 DOI: 10.1142/s0129065719500072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging allows acquiring functional and structural connectivity data from which high-density whole-brain networks can be derived to carry out connectome-wide analyses in normal and clinical populations. Graph theory has been widely applied to investigate the modular structure of brain connections by using centrality measures to identify the "hub" of human connectomes, and community detection methods to delineate subnetworks associated with diverse cognitive and sensorimotor functions. These analyses typically rely on a preprocessing step (pruning) to reduce computational complexity and remove the weakest edges that are most likely affected by experimental noise. However, weak links may contain relevant information about brain connectivity, therefore, the identification of the optimal trade-off between retained and discarded edges is a subject of active research. We introduce a pruning algorithm to identify edges that carry the highest information content. The algorithm selects both strong edges (i.e. edges belonging to shortest paths) and weak edges that are topologically relevant in weakly connected subnetworks. The newly developed "strong-weak" pruning (SWP) algorithm was validated on simulated networks that mimic the structure of human brain networks. It was then applied for the analysis of a real dataset of subjects affected by amyotrophic lateral sclerosis (ALS), both at the early (ALS2) and late (ALS3) stage of the disease, and of healthy control subjects. SWP preprocessing allowed identifying statistically significant differences in the path length of networks between patients and healthy subjects. ALS patients showed a decrease of connectivity between frontal cortex to temporal cortex and parietal cortex and between temporal and occipital cortex. Moreover, degree of centrality measures revealed significantly different hub and centrality scores between patient subgroups. These findings suggest a widespread alteration of network topology in ALS associated with disease progression.
Collapse
Affiliation(s)
- Angela Serra
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,†Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Paola Galdi
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,‡MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Emanuele Pesce
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy.,§International Digital Laboratory, WMG, University of Coventry, CV4 7AL, UK
| | - Michele Fratello
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Francesca Trojsi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Gioacchino Tedeschi
- ¶Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università Degli Studi Della Campania "Luigi Vanvitelli", Napoli, 80138, Italy
| | - Roberto Tagliaferri
- *NeuRoNeLab, Department of Management and Innovation Systems, University of Salerno, Fisciano (Sa), 84084, Italy
| | - Fabrizio Esposito
- ∥Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (Sa), 84081, Italy
| |
Collapse
|
22
|
Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, Zhou C, Luo C, Zhang J. Abnormal topological organization of structural covariance networks in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2018; 21:101619. [PMID: 30528369 PMCID: PMC6411656 DOI: 10.1016/j.nicl.2018.101619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/03/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
Abstract
Neuroimaging studies of patients with amyotrophic lateral sclerosis (ALS) have shown widespread alterations in structure, function, and connectivity in both motor and non-motor brain regions, suggesting multi-systemic neurobiological abnormalities that might impact large-scale brain networks. Here, we examined the alterations in the topological organization of structural covariance networks of ALS patients (N = 60) compared with normal controls (N = 60). We found that structural covariance networks of ALS patients showed a consistent rearrangement towards a regularized architecture evidenced by increased path length, clustering coefficient, small-world index, and modularity, as well as decreased global efficiency, suggesting inefficient global integration and increased local segregation. Locally, ALS patients showed decreased nodal degree and betweenness in the gyrus rectus and/or Heschl's gyrus, and increased betweenness in the supplementary motor area, triangular part of the inferior frontal gyrus, supramarginal gyrus and posterior cingulate cortex. In addition, we identified a different number and distribution of hubs in ALS patients, showing more frontal and subcortical hubs than in normal controls. In conclusion, we reveal abnormal topological organization of structural covariance networks in ALS patients, and provide network-level evidence for the concept that ALS is a multisystem disorder with a cerebral involvement extending beyond the motor areas.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinru Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Na Zhang
- School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong Province, PR China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400044, PR China.
| |
Collapse
|
23
|
Wirth AM, Khomenko A, Baldaranov D, Kobor I, Hsam O, Grimm T, Johannesen S, Bruun TH, Schulte-Mattler W, Greenlee MW, Bogdahn U. Combinatory Biomarker Use of Cortical Thickness, MUNIX, and ALSFRS-R at Baseline and in Longitudinal Courses of Individual Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:614. [PMID: 30104996 PMCID: PMC6077217 DOI: 10.3389/fneur.2018.00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative process affecting upper and lower motor neurons as well as non-motor systems. In this study, precentral and postcentral cortical thinning detected by structural magnetic resonance imaging (MRI) were combined with clinical (ALS-specific functional rating scale revised, ALSFRS-R) and neurophysiological (motor unit number index, MUNIX) biomarkers in both cross-sectional and longitudinal analyses. Methods: The unicenter sample included 20 limb-onset classical ALS patients compared to 30 age-related healthy controls. ALS patients were treated with standard Riluzole and additional long-term G-CSF (Filgrastim) on a named patient basis after written informed consent. Combinatory biomarker use included cortical thickness of atlas-based dorsal and ventral subdivisions of the precentral and postcentral cortex, ALSFRS-R, and MUNIX for the musculus abductor digiti minimi (ADM) bilaterally. Individual cross-sectional analysis investigated individual cortical thinning in ALS patients compared to age-related healthy controls in the context of state of disease at initial MRI scan. Beyond correlation analysis of biomarkers at cross-sectional group level (n = 20), longitudinal monitoring in a subset of slow progressive ALS patients (n = 4) explored within-subject temporal dynamics of repeatedly assessed biomarkers in time courses over at least 18 months. Results: Cross-sectional analysis demonstrated individually variable states of cortical thinning, which was most pronounced in the ventral section of the precentral cortex. Correlations of ALSFRS-R with cortical thickness and MUNIX were detected. Individual longitudinal biomarker monitoring in four slow progressive ALS patients revealed evident differences in individual disease courses and temporal dynamics of the biomarkers. Conclusion: A combinatory use of structural MRI, neurophysiological and clinical biomarkers allows for an appropriate and detailed assessment of clinical state and course of disease of ALS.
Collapse
Affiliation(s)
- Anna M Wirth
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany.,Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Andrei Khomenko
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Dobri Baldaranov
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Ohnmar Hsam
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Thomas Grimm
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Mark W Greenlee
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Li W, Zhang J, Zhou C, Hou W, Hu J, Feng H, Zheng X. Abnormal Functional Connectivity Density in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2018; 10:215. [PMID: 30065647 PMCID: PMC6056617 DOI: 10.3389/fnagi.2018.00215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose: Amyotrophic lateral sclerosis (ALS) is a motor neuro-degenerative disorder that also damages extra-motor neural pathways. A significant proportion of existing evidence describe alterations in the strengths of functional connectivity, whereas the changes in the density of these functional connections have not been explored. Therefore, our study seeks to identify ALS-induced alternations in the resting-state functional connectivity density (FCD). Methods: Two groups comprising of 38 ALS patients and 35 healthy participants (age and gender matched) were subjected to the resting-state functional magnetic resonance imaging (MRI) scanning. An ultra-fast graph theory method known as FCD mapping was utilized to calculate the voxel-wise short- and long-range FCD values of the brain for each participant. FCD values of patients and controls were compared based on voxels in order to discern cerebral regions that possessed significant FCD alterations. For areas demonstrating a group effect of atypical FCD in ALS, seed-based functional connectivity analysis was then investigated. Partial correlation analyses were carried out between aberrant FCDs and several clinical variables, controlling for age, gender, and total intracranial volume. Results: Patients with ALS were found to have decreased short-range FCD in the primary motor cortex and increased long-range FCD in the premotor cortex. Extra-motor areas that also displayed extensive FCD alterations encompassed the temporal cortex, insula, cingulate gyrus, occipital cortex, and inferior parietal lobule. Seed-based correlation analysis further demonstrated that these regions also possessed disrupted functional connectivity. However, no significant correlations were identified between aberrant FCDs and clinical variables. Conclusion: FCD changes in the regions identified represent communication deficits and impaired functional brain dynamics, which might underlie the motor, motor control, language, visuoperceptual and high-order cognitive deficits in ALS. These findings support the fact that ALS is a disorder affecting multiple systems. We gain a deeper insight of the neural mechanisms underlying ALS.
Collapse
Affiliation(s)
- Weina Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyang Zhou
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Jun Hu
- Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| |
Collapse
|
25
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
26
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|
27
|
Zhang Y, Fang T, Wang Y, Guo X, Alarefi A, Wang J, Jiang T, Zhang J. Occipital cortical gyrification reductions associate with decreased functional connectivity in amyotrophic lateral sclerosis. Brain Imaging Behav 2018; 11:1-7. [PMID: 26780240 DOI: 10.1007/s11682-015-9499-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscular weakness and atrophy. Several morphometric studies have been conducted to investigate the gray matter volume or thickness changes in ALS, whereas the cortical folding pattern remains poorly understood. In the present study, we applied a surface-based local gyrification index (LGI) from high resolution MRI data to quantify the cortical folding in matched samples of 25 ALS patients versus 25 healthy controls. Using resting-state fMRI data, we further conducted seed-based functional connectivity analysis to explore the functional correlate of the cortical folding changes. We found that ALS patients had significantly reduced LGI in right occipital cortex and that abnormality in this region associated with decreased functional connectivity in the bilateral precuneus. This set of findings was speculated to result from disturbed white matter connectivity in ALS. In the patient group, we revealed significant negative correlations between disease duration and the LGIs of a cluster in the left superior frontal gyrus, which may reflect the cognitive deterioration in ALS. In summary, our results suggest that LGI may provide a useful means to assess ALS-related neurodegeneration and to study the pathophysiology of ALS.
Collapse
Affiliation(s)
- Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Fang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yue Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Abdulqawi Alarefi
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
28
|
Cakmak YO, Ekinci G, Heinecke A, Çavdar S. A Possible Role of Prolonged Whirling Episodes on Structural Plasticity of the Cortical Networks and Altered Vertigo Perception: The Cortex of Sufi Whirling Dervishes. Front Hum Neurosci 2017; 11:3. [PMID: 28167905 PMCID: PMC5253366 DOI: 10.3389/fnhum.2017.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/03/2017] [Indexed: 12/14/2022] Open
Abstract
Although minutes of a spinning episode may induce vertigo in the healthy human, as a result of a possible perceptional plasticity, Sufi Whirling Dervishes (SWDs) can spin continuously for an hour without a vertigo perception.This unique long term vestibular system stimulation presents a potential human model to clarify the cortical networks underlying the resistance against vertigo. This study, therefore, aimed to investigate the potential structural cortical plasticity in SWDs. Magnetic resonance imaging (MRI) of 10 SWDs and 10 controls were obtained, using a 3T scanner. Cortical thickness in the whole cortex was calculated. Results demonstrated significantly thinner cortical areas for SWD subjects compared with the control group in the hubs of the default mode network (DMN), as well as in the motion perception and discrimination areas including the right dorsolateral prefrontal cortex (DLPFC), the right lingual gyrus and the left visual area 5 (V5)/middle temporal (MT) and the left fusiform gyrus. In conclusion, this is the first report that warrants the potential relationship of the motion/body perception related cortical networks and the prolonged term of whirling ability without vertigo or dizziness.
Collapse
Affiliation(s)
- Yusuf O Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago Dunedin, New Zealand
| | - Gazanfer Ekinci
- Radiology Department, School of Medicine, Marmara University Istanbul, Turkey
| | - Armin Heinecke
- Brain Innovation BV, Biopartner Center Maastricht, Netherlands
| | - Safiye Çavdar
- Department of Anatomy, School of Medicine, Koc University Istanbul, Turkey
| |
Collapse
|
29
|
Fogarty MJ, Mu EWH, Noakes PG, Lavidis NA, Bellingham MC. Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2016; 4:77. [PMID: 27488828 PMCID: PMC4973034 DOI: 10.1186/s40478-016-0347-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by the death of upper (corticospinal) and lower motor neurons (MNs) with progressive muscle weakness. This incurable disease is clinically heterogeneous and its aetiology remains unknown. Increased excitability of corticospinal MNs has been observed prior to symptoms in human and rodent studies. Increased excitability has been correlated with structural changes in neuronal dendritic arbors and spines for decades. Here, using a modified Golgi-Cox staining method, we have made the first longitudinal study examining the dendrites of pyramidal neurons from the motor cortex, medial pre-frontal cortex, somatosensory cortex and entorhinal cortex of hSOD1G93A (SOD1) mice compared to wild-type (WT) littermate controls at postnatal (P) days 8–15, 28–35, 65–75 and 120. Progressive decreases in dendritic length and spine density commencing at pre-symptomatic ages (P8-15 or P28-35) were observed in layer V pyramidal neurons within the motor cortex and medial pre-frontal cortex of SOD1 mice compared to WT mice. Spine loss without concurrent dendritic pathology was present in the pyramidal neurons of the somatosensory cortex from disease-onset (P65-75). Our results from the SOD1 model suggest that dendritic and dendritic spine changes foreshadow and underpin the neuromotor phenotypes present in ALS and may contribute to the varied cognitive, executive function and extra-motor symptoms commonly seen in ALS patients. Determining if these phenomena are compensatory or maladaptive may help explain differential susceptibility of neurons to degeneration in ALS.
Collapse
|
30
|
García Santos JM, Inuggi A, Gómez Espuch J, Vázquez C, Iniesta F, Blanquer M, María Moraleda J, Martínez S. Spinal cord infusion of stem cells in amyotrophic lateral sclerosis: Magnetic resonance spectroscopy shows metabolite improvement in the precentral gyrus. Cytotherapy 2016; 18:785-96. [DOI: 10.1016/j.jcyt.2016.03.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/19/2016] [Accepted: 03/20/2016] [Indexed: 11/29/2022]
|
31
|
Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127:2643-60. [PMID: 27291884 DOI: 10.1016/j.clinph.2016.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
Abstract
Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS.
Collapse
|
32
|
Agosta F, Ferraro PM, Riva N, Spinelli EG, Chiò A, Canu E, Valsasina P, Lunetta C, Iannaccone S, Copetti M, Prudente E, Comi G, Falini A, Filippi M. Structural brain correlates of cognitive and behavioral impairment in MND. Hum Brain Mapp 2016; 37:1614-26. [PMID: 26833930 DOI: 10.1002/hbm.23124] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess the structural correlates of cognitive and behavioral impairment in motor neuron diseases (MND) using multimodal MRI. METHODS One hundred one patients with sporadic MND (56 classic amyotrophic lateral sclerosis, 31 upper motor neuron phenotype, and 14 lower motor neuron phenotype) and 51 controls were enrolled. Patients were classified into MND with a pure motor syndrome (MND-motor) and with cognitive/behavioral symptoms (MND-plus). Cortical thickness measures and diffusion tensor (DT) metrics of white matter (WM) tracts were assessed. A random forest approach was used to explore the independent role of cortical and WM abnormalities in explaining major cognitive and behavioral symptoms. RESULTS There were 48 MND-motor and 53 MND-plus patients. Relative to controls, both patient groups showed a distributed cortical thinning of the bilateral precentral gyrus, insular and cingulate cortices, and frontotemporal regions. In all regions, there was a trend toward a more severe involvement in MND-plus cases, particularly in the temporal lobes. Both patient groups showed damage to the motor callosal fibers, which was more severe in MND-plus. MND-plus patients also showed a more severe involvement of the extra-motor WM tracts. The best predictors of executive and non-executive deficits and behavioral symptoms in MND were diffusivity abnormalities of the corpus callosum and frontotemporal tracts, including the uncinate, cingulum, and superior longitudinal fasciculi. CONCLUSIONS Cortical thinning and WM degeneration are highly associated with neuropsychological and behavioral symptoms in patients with MND. DT MRI metrics seem to be the most sensitive markers of extra-motor deficits within the MND spectrum.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Center, University of Torino, Torino, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Evelina Prudente
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Serena Onlus Foundation, NEuroMuscular Omnicenter, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis: quantitative meta-analyses of voxel-based morphometry studies. Neurobiol Aging 2015; 36:3288-3299. [PMID: 26362941 DOI: 10.1016/j.neurobiolaging.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 02/05/2023]
Abstract
Considerable evidence from previous voxel-based morphometry studies indicates widespread but heterogeneous gray matter (GM) deficits in amyotrophic lateral sclerosis (ALS). Here, we aimed to investigate the concurrence across voxel-based morphometry studies to help clarify the spatial pattern of GM abnormalities that underlie this condition. Comprehensive meta-analyses to assess regional GM anomalies in ALS were conducted with the Anisotropic Effect Size version of Signed Differential Mapping software package. Twenty studies, which reported 22 comparisons and were composed of 454 ALS patients and 426 healthy controls, were included in the meta-analyses. Regional GM atrophy in ALS was consistently found in the frontal, temporal, and somatosensory areas. Meta-regression demonstrated that the disease duration, disease severity, and age were significantly related to GM deficits in ALS patients. The present meta-analysis provides convergent evidence that ALS is a multisystem degenerative disorder that is accompanied by a unique and widespread pattern of robust cortical GM atrophy. Future studies should investigate whether this atrophy pattern is a diagnostic and prognostic marker.
Collapse
|
34
|
Mohammadi B, Kollewe K, Cole DM, Fellbrich A, Heldmann M, Samii A, Dengler R, Petri S, Münte TF, Krämer UM. Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring. Hum Brain Mapp 2015; 36:2878-89. [PMID: 25913637 DOI: 10.1002/hbm.22814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Department of Neurology, University Lübeck, Lübeck, Germany
- CNS-LAB, International Neuroscience Institute, Hannover, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - David M Cole
- Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Anja Fellbrich
- Department of Neurology, University Lübeck, Lübeck, Germany
| | | | - Amir Samii
- CNS-LAB, International Neuroscience Institute, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas F Münte
- Department of Neurology, University Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Germany
| |
Collapse
|
35
|
Wang XD, Ren M, Zhu MW, Gao WP, Zhang J, Shen H, Lin ZG, Feng HL, Zhao CJ, Gao K. Corpus callosum atrophy associated with the degree of cognitive decline in patients with Alzheimer's dementia or mild cognitive impairment: a meta-analysis of the region of interest structural imaging studies. J Psychiatr Res 2015; 63:10-9. [PMID: 25748753 DOI: 10.1016/j.jpsychires.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Individual structural neuroimaging studies of the corpus callosum (CC) in Alzheimer's disease (AD) and mild cognitive impairment (MCI) with the region of interest (ROI) analysis have yielded inconsistent findings. The aim of this study was to conduct a meta-analysis of structural imaging studies using ROI technique to measure the CC midsagittal area changes in patients with AD or MCI. Databases of PubMed, the Cochrane Library, the ISI Web of Science, and Science Direct from inception to June 2014 were searched with key words "corpus callosum" or "callosal", plus "Alzheimer's disease" or "mild cognitive impairment". Twenty-three studies with 603 patients with AD, 146 with MCI, and 638 healthy controls were included in this meta-analysis. Effect size was used to measure the difference between patients with AD or MCI and healthy controls. Significant callosal atrophy was found in MCI patients with an effect size of -0.36 (95% CI, -0.57 to -0.14; P = 0.001). The degree of the CC atrophy in mild AD was less severe than that in moderate AD with a mean effect size -0.69 (95% CI, -0.89 to -0.49) versus -0.92 (95% CI, -1.16 to -0.69), respectively. Comparing with healthy controls, patients with MCI had atrophy in the anterior portion of the CC (i.e., rostrum and genu). In contrast, patients with AD had atrophy in both anterior and posterior portions (i.e., splenium). These results suggest that callosal atrophy may be related to the degree of cognitive decline in patients with MCI and AD, and it may be used as a biomarker for patients with cognitive deficit even before meeting the criteria for AD.
Collapse
Affiliation(s)
- Xu-Dong Wang
- Departments of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Ren
- Departments of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandon Province, PR China
| | - Min-Wei Zhu
- Departments of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wen-Peng Gao
- Bio-X Center, Harbin Institute of Technology, Harbin, Heilongjiang Province, PR China
| | - Jun Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong Shen
- Departments of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Zhi-Guo Lin
- Departments of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hong-Lin Feng
- Departments of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| | - Chang-Jiu Zhao
- Department of Nuclear Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| | - Keming Gao
- Mood and Anxiety Clinic in the Mood Disorder Program, Department of Psychiatry, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
36
|
Hussain A, Utz MJ, Tian W, Liu X, Ekholm S. Imaging and Diseases of the Ascending and Descending Pathways. Semin Ultrasound CT MR 2014; 35:474-86. [DOI: 10.1053/j.sult.2014.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. J Neurol 2014; 261:1871-80. [PMID: 25022938 DOI: 10.1007/s00415-014-7426-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/14/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Abstract
To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p < 0.001). The LMN ALS variants demonstrated the highest rates of cortical thinning in the precentral gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.
Collapse
|