1
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
3
|
Khormi I, Al-Iedani O, Casagranda S, Papageorgakis C, Alshehri A, Lea R, Liebig P, Ramadan S, Lechner-Scott J. CEST 2022 - Differences in APT-weighted signal in T1 weighted isointense lesions, black holes and normal-appearing white matter in people with relapsing-remitting multiple sclerosis. Magn Reson Imaging 2023:S0730-725X(23)00098-X. [PMID: 37321380 DOI: 10.1016/j.mri.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE To evaluate amide proton transfer weighted (APTw) signal differences between multiple sclerosis (MS) lesions and contralateral normal-appearing white matter (cNAWM). Cellular changes during the demyelination process were also assessed by comparing APTw signal intensity in T1weighted isointense (ISO) and hypointense (black hole -BH) MS lesions in relation to cNAWM. METHODS Twenty-four people with relapsing-remitting MS (pw-RRMS) on stable therapy were recruited. MRI/APTw acquisitions were undertaken on a 3 T MRI scanner. The pre and post-processing, analysis, co-registration with structural MRI maps, and identification of regions of interest (ROIs) were all performed with Olea Sphere 3.0 software. Generalized linear model (GLM) univariate ANOVA was undertaken to test the hypotheses that differences in mean APTw were entered as dependent variables. ROIs were entered as random effect variables, which allowed all data to be included. Regions (lesions and cNAWM) and/or structure (ISO and BH) were the main factor variables. The models also included age, sex, disease duration, EDSS, and ROI volumes as covariates. Receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic performance of these comparisons. RESULTS A total of 502 MS lesions manually identified on T2-FLAIR from twenty-four pw-RRMS were subcategorized as 359 ISO and 143 BH with reference to the T1-MPRAGE cerebral cortex signal. Also, 490 ROIs of cNAWM were manually delineated to match the MS lesion positions. A two-tailed t-test showed that mean APTw values were higher in females than in males (t = 3.52, p < 0.001). Additionally, the mean APTw values of MS lesions were higher than those of cNAWM after accounting for covariates (mean lesion = 0.44, mean cNAWM = 0.13, F = 44.12, p < 0.001).The mean APTw values of ISO lesions were higher than those of cNAWM after accounting for covariates (mean ISO lesions = 0.42, mean cNAWM = 0.21, F = 12.12, p < 0.001). The mean APTw values of BH were also higher than those of cNAWM (mean BH lesions = 0.47, mean cNAWM = 0.033, F = 40.3, p < 0.001). The effect size (i.e., difference between lesion and cNAWM) for BH was found to be higher than for ISO (14 vs. 2). Diagnostic performance showed that APT was able to discriminate between all lesions and cNAWM with an accuracy of >75% (AUC = 0.79, SE = 0.014). Discrimination between ISO lesions and cNAWM was accomplished with an accuracy of >69% (AUC = 0.74, SE = 0.018), while discrimination between BH lesions and cNAWM was achieved at an accuracy of >80% (AUC = 0.87, SE = 0.021). CONCLUSIONS Our results highlight the potential of APTw imaging for use as a non-invasive technique that is able to provide essential molecular information to clinicians and researchers so that the stages of inflammation and degeneration in MS lesions can be better characterized.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, New Lambton Heights, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| | | | | | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | | | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia; School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia
| |
Collapse
|
4
|
Mohamed AAB, Algahalan HA, Thabit MN. Correlation between functional MRI techniques and early disability in ambulatory patients with relapsing–remitting MS. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a common neurological disorder which can lead to an occasional damage to the central nervous system. Conventional magnetic resonance imaging (cMRI) is an important modality in the diagnosis of MS; however, correlation between cMRI findings and clinical impairment is weak. Non-conventional MRI techniques including apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (MRS) investigate the metabolic changes over the course of MS and overcome the limits of cMRI.
A total of 80 patients with MS and 20 age and sex-matched healthy control subjects were enrolled in this cross-sectional study. Ambulatory patients with relapsing–remitting MS (RRMS) were recruited. Expanded Disability Status Scale (EDSS) was used to assess the disability and the patients were categorized into three groups “no disability”, “minimal disability” and “moderate disability”. All patients underwent cMRI techniques. ADC was measured in MS plaques and in normal appearing white matter (NAWM) adjacent and around the plaque. All metabolites concentrations were expressed as ratios including N-acetyl-aspartate/creatine (NAA/Cr), choline/N-acetyl-aspartate (Cho/NAA) and choline/creatine (Cho/Cr). ADC and metabolite concentrations were measured in the normal white matter of 20 healthy control subjects.
Results
The study was carried on 80 MS patients [36 males (45%) and 44 females (55%)] and 20 healthy control [8 males (40%) and 12 females (60%)]. The ADC values and MRS parameters in NAWM of patients with MS were significantly different from those of the control group. The number of the plaques on T2 images and black holes were significantly higher at “Minimal disability” group. Most of the enhanced plaques were at the “Moderate disability” group with P value < 0.001. The mean of ADC in the group 1, 2 and 3 of disability was 1.12 ± 0.19, 1.50 ± 0.35, 1.51 ± 0.36, respectively, with P value < 0. 001. In the group 1, 2 and 3 of disability, the mean of NAA/Cr ratio at the plaque was 1.34 ± 0.44, 1.59 ± 0.51 and 1.11 ± 0.15, respectively, with P value equal 0.001.
Conclusion
The non-conventional quantitative MRI techniques are useful tools for detection of early disability in MS patients.
Collapse
|
5
|
Heckova E, Dal-Bianco A, Strasser B, Hangel GJ, Lipka A, Motyka S, Hingerl L, Rommer PS, Berger T, Hnilicová P, Kantorová E, Leutmezer F, Kurča E, Gruber S, Trattnig S, Bogner W. Extensive Brain Pathologic Alterations Detected with 7.0-T MR Spectroscopic Imaging Associated with Disability in Multiple Sclerosis. Radiology 2022; 303:141-150. [PMID: 34981978 DOI: 10.1148/radiol.210614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability. Materials and Methods Free-induction decay MRSI was performed at 7.0 T. Participants with MS and age- and sex-matched healthy controls were recruited prospectively between January 2016 and December 2017. Metabolic ratios were obtained in white matter lesions, NAWM, and CGM regions. Subgroup analysis for MS-related disability based on Expanded Disability Status Scale (EDSS) scores was performed using analysis of covariance. Partial correlations were applied to explore associations between metabolic ratios and disability. Results Sixty-five participants with MS (mean age ± standard deviation, 34 years ± 9; 34 women) and 20 age- and sex-matched healthy controls (mean age, 32 years ± 7; 11 women) were evaluated. Higher signal intensity of myo-inositol (mI) with and without reduced signal intensity of N-acetylaspartate (NAA) was visible on metabolic images in the NAWM of participants with MS. A higher ratio of mI to total creatine (tCr) was observed in the NAWM of the centrum semiovale of all MS subgroups, including participants without disability (marginal mean ± standard error, healthy controls: 0.78 ± 0.04; EDSS 0-1: 0.86 ± 0.03 [P = .02]; EDSS 1.5-3: 0.95 ± 0.04 [P < .001]; EDSS ≥3.5: 0.94 ± 0.04 [P = .001]). A lower ratio of NAA to tCr was found in MS subgroups with disabilities, both in their NAWM (marginal mean ± standard error, healthy controls: 1.46 ± 0.04; EDSS 1.5-3: 1.33 ± 0.03 [P = .03]; EDSS ≥3.5: 1.30 ± 0.04 [P = .01]) and CGM (marginal mean ± standard error, healthy controls: 1.42 ± 0.05; EDSS ≥3.5: 1.23 ± 0.05 [P = .006]). mI/NAA correlated with EDSS (NAWM of centrum semiovale: r = 0.47, P < .001; parietal NAWM: r = 0.43, P = .002; frontal NAWM: r = 0.34, P = .01; frontal CGM: r = 0.37, P = .004). Conclusion MR spectroscopic imaging at 7.0 T allowed in vivo visualization of multiple sclerosis pathologic findings not visible at T1- or T2-weighted MRI. Metabolic abnormalities in the normal-appearing white matter and cortical gray matter were associated with disability. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Barker in this issue.
Collapse
Affiliation(s)
- Eva Heckova
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Assunta Dal-Bianco
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Bernhard Strasser
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Gilbert J Hangel
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Alexandra Lipka
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Stanislav Motyka
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Lukas Hingerl
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Paulus S Rommer
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Thomas Berger
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Petra Hnilicová
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Ema Kantorová
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Fritz Leutmezer
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Egon Kurča
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Stephan Gruber
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Siegfried Trattnig
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| | - Wolfgang Bogner
- From the High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria (E.H., B.S., G.J.H., A.L., S.M., L.H., S.G., S.T., W.B.); Departments of Neurology (A.D.B., P.S.R., T.B., F.L.) and Neurosurgery (G.J.H.), Medical University of Vienna, Vienna, Austria; Biomedical Center Martin (P.H.) and Clinic of Neurology (E. Kantorová, E. Kurča), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; and Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria (S.T.)
| |
Collapse
|
6
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
7
|
Swanberg KM, Landheer K, Pitt D, Juchem C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Front Neurol 2019; 10:1173. [PMID: 31803127 PMCID: PMC6876616 DOI: 10.3389/fneur.2019.01173] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T1 and T2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States.,Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
8
|
Basha MAA, Bessar MA, Ahmed AF, Elfiki IM, Elkhatib THM, Mohamed AME. Does MR spectroscopy of normal-appearing cervical spinal cord in patients with multiple sclerosis have diagnostic value in assessing disease progression? A prospective comparative analysis. Clin Radiol 2018; 73:835.e1-835.e9. [PMID: 29853303 DOI: 10.1016/j.crad.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
AIM To clarify the role of magnetic resonance spectroscopy (MRS) in examining the normal-appearing cervical spinal cord of patients with multiple sclerosis (MS) to detect metabolite abnormalities in this disease and to assess its progression. MATERIAL AND METHODS Thirty-six patients with MS and 30 healthy controls were enrolled. Each patient was submitted to MRS performed using a 1.5 T magnetic resonance imaging (MRI) scanner. The spectra of total N-acetyl-aspartate (tNAA), choline (Cho), creatine (Cr), and myoinositol (M-Ins), as well as the metabolite ratios of tNAA/Cr, tNAA/Cho, Cho/Cr, and M-Ins/Cr of the two groups were measured and compared. The correlations between the metabolite concentrations, disease duration, and clinical disability (expanded disability status scale, EDSS) were further explored. RESULTS Significantly lower tNAA and higher M-Ins were observed in MS patients than in health controls. The tNAA/Cr and tNAA/Cho ratios were significantly lower in MS patients than in healthy controls. In MS patients, the EDSS was correlated with the tNAA/Cr ratio. The spinal cord cross-sectional area was significantly smaller in MS patients than in healthy controls. CONCLUSION Reduced tNAA and increased M-Ins are important, sensitive indices for differentiating between MS patients and healthy controls. In MS patients, before lesions appear, MRS of the spinal cord may provide crucial information for assessing disease progression.
Collapse
Affiliation(s)
- M A A Basha
- Department of Diagnostic Radiology, Zagazig University, Egypt.
| | - M A Bessar
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - A F Ahmed
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | - I M Elfiki
- Department of Diagnostic Radiology, Zagazig University, Egypt
| | | | - A M E Mohamed
- Department of Ophthalmology, Zagazig University, Egypt
| |
Collapse
|
9
|
Duan Y, Liu Z, Liu Y, Huang J, Ren Z, Sun Z, Chen H, Dong H, Ye J, Li K. Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Acta Radiol 2017; 58:1132-1137. [PMID: 28173728 DOI: 10.1177/0284185116683575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Previous studies with a small sample size have not reported metabolic changes in neuromyelitis optica (NMO). Metabolic changes, such as decreased N-acetylaspartate (NAA), are well-established in patients with multiple sclerosis (MS). It remains unknown whether different patterns of metabolic changes occur in NMO and MS. Purpose To investigate the metabolic changes in normal-appearing white matter (NAWM) in NMO, compared with MS patients and healthy controls (HC), and correlate these changes with clinical disability. Material and Methods We recruited 27 patients with NMO, 24 patients with MS, and 24 HC. Each participant underwent chemical shift imaging with a 1H-MR spectroscopy operating in a 1.5 T magnetic resonance imaging (MRI) scanner. The absolute concentrations of NAA, choline (Cho), creatine (Cr) as well as the metabolite ratios of NAA/Cr, Cho/Cr, and NAA/Cho were measured and compared among the groups. The correlations between the metabolic concentrations, disease duration, and clinical disability (Expanded Disability Status Scale, EDSS) were further explored. Results Compared with HC, a mild increase of Cho without significant NAA changes was observed in NMO patients, while both a significant reduction of NAA and an increase of Cho were observed in MS patients. The absolute concentration of NAA and NAA/Cho ratio were significantly decreased in MS patients in a direct comparison with NMO patients. In MS patients, the EDSS was correlated with the NAA/Cr and Cho/Cr ratios. Conclusion A reduction of NAA was not observed in NMO, implying axonal or neuronal damage may be absent in NAWM for NMO, which is different from MS. A mild increase in Cho was observed in NAWM of NMO patients, suggesting that subtle metabolic changes occur in NMO.
Collapse
Affiliation(s)
- Yunyun Duan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zheng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Jing Huang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zhuoqiong Ren
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Zheng Sun
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, PR China
- Brain Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| |
Collapse
|
10
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Magnetic resonance imaging (MRI) is sensitive to lesion formation both in the brain and spinal cord. Imaging plays a prominent role in the diagnosis and monitoring of MS. Over a dozen anti-inflammatory therapies are approved for MS and the development of many of these medications was made possible through the use of contrast-enhancing lesions on MRI as a phase II outcome. A similar phase II outcome method for the neurodegeneration that underlies progressive courses of the disease is still unavailable. Although magnetic resonance is an invaluable tool for the diagnosis and monitoring of treatment effects in MS, several imaging barriers still exist. In general, MRI is less sensitive to gray matter lesions, lacks pathological specificity, and does not provide quantitative data easily. Several advanced imaging methods including diffusion tensor imaging, magnetization transfer, functional MRI, myelin water fraction imaging, ultra-high field MRI, positron emission tomography, and optical coherence tomography of the retina study promising ways of overcoming the difficulties in MS imaging.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy. PLoS One 2014; 9:e115304. [PMID: 25517503 PMCID: PMC4269459 DOI: 10.1371/journal.pone.0115304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 11/20/2014] [Indexed: 02/02/2023] Open
Abstract
The aim of these studies was to provide reference data on intersubject variability and reproducibility of metabolite ratios for Choline/Creatine (Cho/Cr), N-acetyl aspartate/Choline (NAA/Cho) and N-acetyl aspartate/Creatine (NAA/Cr), and individual signal-intensity normalised metabolite concentrations of NAA, Cho and Cr. Healthy volunteers underwent imaging on two occasions using the same 3T Siemens Verio magnetic resonance scanner. At each session two identical Metabolic Imaging and Data Acquisition Software (MIDAS) sequences were obtained along with standard structural imaging. Metabolite maps were created and regions of interest applied in normalised space. The baseline data from all 32 volunteers were used to calculate the intersubject variability, while within session and between session reproducibility were calculated from all the available data. The reproducibility of measurements were used to calculate the overall and within session 95% prediction interval for zero change. The within and between session reproducibility data were lower than the values for intersubject variability, and were variable across the different brain regions. The within and between session reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and Cr (11.8%, 11.4%, 14.3 and 10.6% vs. 11.9%, 11.4%, 13.5% and 10.5% respectively), but for NAA/Creatine and NAA between session reproducibility was lower (9.3% and 9.1% vs. 10.1% and 9.9%; p <0.05). This study provides additional reference data that can be utilised in interventional studies to quantify change within a single imaging session, or to assess the significance of change in longitudinal studies of brain injury and disease.
Collapse
|
12
|
Minagar A. Multiple Sclerosis: An Overview of Clinical Features, Pathophysiology, Neuroimaging, and Treatment Options. ACTA ACUST UNITED AC 2014. [DOI: 10.4199/c00116ed1v01y201408isp055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Lee JY, Taghian K, Petratos S. Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability? Acta Neuropathol Commun 2014; 2:97. [PMID: 25159125 PMCID: PMC4243718 DOI: 10.1186/s40478-014-0097-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
Axonal degeneration is a major determinant of permanent neurological impairment during multiple sclerosis (MS). Due to the variable course of clinical disease and the heterogeneity of MS lesions, the mechanisms governing axonal degeneration may differ between disease stages. While the etiology of MS remains elusive, there now exist potential prognostic biomarkers that can predict the conversion to clinically definite MS. Specialized imaging techniques identifying axonal injury and drop-out are becoming established in clinical practice as a predictive measure of MS progression, such as optical coherence tomography (OCT) or diffusion tensor imaging (DTI). However, these imaging techniques are still being debated as predictive biomarkers since controversy surrounds their lesion-specific association with expanded disability status scale (EDSS). A more promising diagnostic measure of axonal degeneration has been argued for the detection of reduced N-acetyl aspartate (NAA) and Creatine ratios via magnetic resonance spectroscopic (MRS) imaging, but again fail with its specificity for predicting actual axonal degeneration. Greater accuracy of predictive biomarkers is therefore warranted and may include CSF neurofilament light chain (NF-L) and neurofilament heavy chain (NF-H) levels, for progressive MS. Furthermore, defining the molecular mechanisms that occur during the neurodegenerative changes in the various subgroups of MS may in fact prove vital for the future development of efficacious neuroprotective therapies. The clinical translation of a combined Na+ and Ca2+ channel blocker may lead to the establishment of a bona fide neuroprotective agent for the treatment of progressive MS. However, more specific therapeutic targets to limit axonal damage in MS need investigation and may include such integral axonal proteins such as the collapsin response mediator protein-2 (CRMP-2), a molecule which upon post-translational modification may propagate axonal degeneration in MS. In this review, we discuss the current clinical determinants of axonal damage in MS and consider the cellular and molecular mechanisms that may initiate these neurodegenerative changes. In particular we highlight the therapeutic candidates that may formulate novel therapeutic strategies to limit axonal degeneration and EDSS during progressive MS.
Collapse
|
14
|
Filippi M, Charil A, Rovaris M, Absinta M, Rocca MA. Insights from magnetic resonance imaging. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:115-149. [PMID: 24507516 DOI: 10.1016/b978-0-444-52001-2.00006-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent years have witnessed impressive advancements in the use of magnetic resonance imaging (MRI) for the assessment of patients with multiple sclerosis (MS). Complementary to the clinical evaluation, conventional MRI (cMRI) provides crucial pieces of information for the diagnosis of MS, the understanding of its natural history, and monitoring the efficacy of experimental treatments. Measures derived from cMRI present clear advantages over the clinical assessment, including their more objective nature and an increased sensitivity to MS-related changes. However, the correlation between these measures and the clinical manifestations of the disease remains weak, and this can be explained, at least partially, by the limited ability of cMRI to characterize and quantify the heterogeneous features of MS pathology. Quantitative MR-based techniques have the potential to overcome the limitations of cMRI. Magnetization transfer MRI, diffusion-weighted and diffusion tensor MRI with fiber tractography, proton magnetic resonance spectroscopy, T1 and T2 relaxation time measurement, and functional MRI are contributing to elucidate the mechanisms that underlie injury, repair, and functional adaptation in patients with MS. All conventional and nonconventional MR techniques will benefit from the use of high-field MR systems (3.0T or more).
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Arnaud Charil
- Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Rovaris
- Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Martina Absinta
- Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is pathologically characterized by inflammatory demyelination and neurodegeneration. Axonal damage, along with neuronal loss, occurs from disease onset and may lead to progressive and permanent disability. In contrast with the inflammatory pathways, the molecular mechanisms leading to MS neurodegeneration remain largely elusive. With improved understanding of these mechanisms, new potential therapeutic targets for neuroprotection have emerged. We review the current understanding of neurodegenerative processes at play in MS and discuss potential outcome measures and targets for neuroprotection trials.
Collapse
Affiliation(s)
- Amir-Hadi Maghzi
- Multiple Sclerosis Center, Department of Neurology, University of California San Francisco (UCSF), 675 Nelson Rising Lane, 2nd floor, Room 221F, Box 3206, 94158, San Francisco, CA, USA,
| | | | | |
Collapse
|
16
|
Mistry N, Abdel-Fahim R, Mougin O, Tench C, Gowland P, Evangelou N. Cortical lesion load correlates with diffuse injury of multiple sclerosis normal appearing white matter. Mult Scler 2013; 20:227-33. [PMID: 23858017 DOI: 10.1177/1352458513496344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Degeneration of central nervous system normal appearing white matter (NAWM) underlies disability and progression in multiple sclerosis (MS). Axon loss typifies NAWM degeneration. OBJECTIVE The objective of this paper is to assess correlation between cortical lesion load and magnetisation transfer ratio (MTR) of the NAWM in MS. This was in order to test the hypothesis that cortical lesions cause NAWM degeneration. METHODS Nineteen patients with MS underwent 7 Tesla magnetisation-prepared-rapid-acquisition-gradient-echo (MPRAGE), and magnetisation transfer ratio (MTR) brain magnetic resonance imaging (MRI). Cortical lesions were identified using MPRAGE and MTR images of cortical ribbons. White matter lesions (WMLs) were segmented using MPRAGE images. WML maps were subtracted from white matter volumes to produce NAWM masks. Pearson correlation was calculated for NAWM MTR vs cortical lesion load, and WML volumes. RESULTS Cortical lesion volumes and counts all had significant correlation with NAWM mean MTR. The strongest correlation was with cortical lesion volumes obtained using MTR images (r = -0.6874, p = 0.0006). WML volume had no significant correlation with NAWM mean MTR (r = -0.08706, p = 0.3615). CONCLUSION Our findings are consistent with the hypothesis that cortical lesions cause NAWM degeneration. This implicates cortical lesions in the pathogenesis of NAWM axon loss, which underpins long-term disability and progression in MS.
Collapse
Affiliation(s)
- Niraj Mistry
- Division of Clinical Neurology, University of Nottingham, Queen's Medical Centre, UK
| | | | | | | | | | | |
Collapse
|
17
|
Vingara LK, Yu HJ, Wagshul ME, Serafin D, Christodoulou C, Pelczer I, Krupp LB, Maletić-Savatić M. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage 2013; 82:586-94. [PMID: 23751863 DOI: 10.1016/j.neuroimage.2013.05.125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022] Open
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) is capable of noninvasively detecting metabolic changes that occur in the brain tissue in vivo. Its clinical utility has been limited so far, however, by analytic methods that focus on independently evaluated metabolites and require prior knowledge about which metabolites to examine. Here, we applied advanced computational methodologies from the field of metabolomics, specifically partial least squares discriminant analysis and orthogonal partial least squares, to in vivo (1)H-MRS from frontal lobe white matter of 27 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy controls. We chose RRMS, a chronic demyelinating disorder of the central nervous system, because its complex pathology and variable disease course make the need for reliable biomarkers of disease progression more pressing. We show that in vivo MRS data, when analyzed by multivariate statistical methods, can provide reliable, distinct profiles of MRS-detectable metabolites in different patient populations. Specifically, we find that brain tissue in RRMS patients deviates significantly in its metabolic profile from that of healthy controls, even though it appears normal by standard MRI techniques. We also identify, using statistical means, the metabolic signatures of certain clinical features common in RRMS, such as disability score, cognitive impairments, and response to stress. This approach to human in vivo MRS data should promote understanding of the specific metabolic changes accompanying disease pathogenesis, and could provide biomarkers of disease progression that would be useful in clinical trials.
Collapse
Affiliation(s)
- Lisa K Vingara
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Decreased frontal N-acetylaspartate levels in adolescents concurrently using both methamphetamine and marijuana. Behav Brain Res 2013; 246:154-61. [PMID: 23466689 DOI: 10.1016/j.bbr.2013.02.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The potential neurochemical toxicity associated with methamphetamine (MA) or marijuana (MJ) use on the developing adolescent brain is unclear, particularly with regard to individuals with concomitant use of MA and MJ (MA+MJ). In this study, proton magnetic resonance spectroscopy (MRS) was utilized to measure in vivo brain N-acetylaspartate plus N-acetylaspartyl glutamate (tNAA, an indicator of intact neuronal integrity) levels. METHODS Three adolescent groups from Cape Town, South Africa completed MRS scans as well as clinical measures including a drug use history. Subjects included (1) nine MA (age=15.7±1.37), (2) eight MA+MJ (age=16.2±1.16) using adolescents and (3) ten healthy controls (age=16.8±0.62). Single voxel spectra were acquired from midfrontal gray matter using a point-resolved spectroscopy sequence (PRESS). The MRS data were post-processed in the fully automated approach for quantitation of metabolite ratios to phosphocreatine plus creatine (PCr+Cr). RESULTS A significant reduction in frontal tNAA/PCr+Cr ratios was seen in the MA+MJ group compared to the healthy controls (p=0.01, by 7.2%) and to the MA group (p=0.04, by 6.9%). Significant relationships were also observed between decreased tNAA/PCr+Cr ratios and drug use history of MA or MJ (total cumulative lifetime dose, age of onset, and duration of MA and MJ exposure) only in the MA+MJ group (all p<0.05). CONCLUSIONS These findings suggest that in adolescents, concomitant heavy MA+MJ use may contribute to altered brain metabolites in frontal gray matter. The significant associations between the abnormal tNAA/PCr+Cr ratios and the drug use history suggest that MA+MJ abuse may induce neurotoxicity in a dose-responsive manner in adolescent brain.
Collapse
|
19
|
González Toledo E, Nader M, Thomas-Ogunniyi J, Wilson J. Anaplastic ganglioglioma of the brainstem in an adult. Neuroradiol J 2012; 25:325-9. [PMID: 24028985 DOI: 10.1177/197140091202500307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022] Open
Abstract
Gangliogliomas are neoplasms with neuronal and glial components. The most common location is the temporal lobe and for that reason those patients have seizures as the major complaint. Gangliogliomas with anaplastic features are uncommon. A 33-year-old man presented with a two-year history of progressively worsening right-sided weakness and contractures. Physical examination demonstrated right-sided weakness and contractures involving the upper and lower extremities. Magnetic resonance demonstrated multiple nodules involving the tegmental pons with a small projection into the prepontine cistern on the left, midbrain tegmentum on the left in the subthalamic region. The patient was studied by MRI on T1WI, T2WI, FLAIR, DWI, and magnetic resonance spectroscopy. He underwent a craniotomy and biopsy of the mass. Histological examination of the specimen revealed glial proliferation. Based on these findings the pathologic diagnosis was anaplastic ganglioglioma. Only one previous report of an anaplastic astrocytoma in the cerebello-pontine angle in an adult has been published. In children three cases were reported, only one with magnetic resonance. Our case showed multiple nodular structures hypointense on T1 and hyperintense on T2 and FLAIR with enhancement on T1 after injection of paramagnetic contrast. Only in this contribution T2 value were diffusion-weighted and ADC characteristics and (1)H spectroscopy analyzed.
Collapse
Affiliation(s)
- E González Toledo
- Department of Radiology, Louisiana State University Health Sciences Center; Shreveport, LA, USA -
| | | | | | | |
Collapse
|
20
|
Mistry N, Tallantyre EC, Dixon JE, Galazis N, Jaspan T, Morgan PS, Morris P, Evangelou N. Focal multiple sclerosis lesions abound in ‘normal appearing white matter’. Mult Scler 2011; 17:1313-23. [DOI: 10.1177/1352458511415305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: The ‘normal appearing white matter’ (NAWM) in multiple sclerosis (MS) is known to be abnormal using quantitative magnetic resonance (MR) techniques. The aetiology of the changes in NAWM remains debatable. Objective: To investigate whether high-field and ultra high-field T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) MRI enables detection of MS white matter lesions in areas defined as NAWM using high-field T2-weighted fluid attenuation inversion recovery (FLAIR) MRI; that is, to ascertain whether undetected lesions are likely contributors to the burden of abnormality in similarly defined NAWM. Methods: Fourteen MS patients underwent MRI scans using 3T FLAIR and MPRAGE and 7 Tesla (7T) MPRAGE sequences. Independent observers identified lesions on 3T FLAIR and (7T and 3T) MPRAGE images. The detection of every individual lesion was then compared for each image type. Results: We identified a total of 812 white matter lesions on 3T FLAIR. Using 3T MPRAGE, 186 additional lesions were detected that were not detected using 3T FLAIR. Using 7T MPRAGE, 231 additional lesions were detected that were not detected using 3T FLAIR. Conclusions: MRI with 3T and 7T MPRAGE enables detection of MS lesions in areas defined as NAWM using 3T FLAIR. Focal MS lesions contribute to the abnormalities known to exist in the NAWM.
Collapse
Affiliation(s)
- Niraj Mistry
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| | - Emma C Tallantyre
- Clinical Neurology Department, Nottingham University Hospitals NHS Trust, UK
| | - Jennifer E Dixon
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Nicolas Galazis
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| | - Tim Jaspan
- Department of Neuroradiology, Nottingham University Hospitals NHS Trust, UK
| | - Paul S Morgan
- Department of Medical Physics, Nottingham University Hospitals NHS Trust, UK
| | - Peter Morris
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Nikos Evangelou
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| |
Collapse
|
21
|
Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol 2011; 258:2113-27. [DOI: 10.1007/s00415-011-6117-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
|
22
|
Marliani AF, Clementi V, Albini Riccioli L, Agati R, Carpenzano M, Salvi F, Leonardi M. Quantitative cervical spinal cord 3T proton MR spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 2010; 31:180-4. [PMID: 19729541 DOI: 10.3174/ajnr.a1738] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain proton MR spectroscopy ((1)H-MR spectroscopy) is a useful technique for evaluating neuronal/axonal damage and demyelization in multiple sclerosis (MS). Because MS disability is frequently related to spinal cord lesions, potential markers for MS stage differentiation and severity would require in vivo quantification of spinal integrity. However, few spectroscopy studies have investigated cervical disease due to technical difficulties. The present study used 3T (1)H-MR spectroscopy to measure the main metabolites in cervical spinal cord plaques of a group in patients with relapsing-remitting MS (RRMS) and compared them with metabolite measurements in healthy volunteers. MATERIALS AND METHODS A (1)H-MR point-resolved spectroscopy sequence volume of interest was prescribed along the main axis of the cord between C2 and C3 levels on a plaque in a group of 15 patients with RRMS for a total acquisition time of approximately 14 minutes. MR spectroscopy data were analyzed by the user-independent fitting routine LCModel, and relative metabolite concentrations were expressed by the absolute concentration ratios. A Student t test was used to evaluate the difference compared with the healthy metabolite content previously published. RESULTS We found a significant decrease of total N-acetylaspartate/choline and an increase in choline/creatine and myo-inositol/creatine content on MS plaques in comparison with healthy cervical spine tissue. CONCLUSIONS In vivo (1)H-MR spectroscopy, if confirmed by other similar studies, should be as reliable for clinical studies as it is in brain imaging. Moreover, (1)H-MR spectroscopy allows examination of spinal cord integrity at a biochemical level and may be sensitive to subtle changes occurring during the course of MS disease.
Collapse
Affiliation(s)
- A F Marliani
- Department of Neuroradiology, Bellaria Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bar-Zohar D, Agosta F, Goldstaub D, Filippi M. Magnetic resonance imaging metrics and their correlation with clinical outcomes in multiple sclerosis: a review of the literature and future perspectives. Mult Scler 2008; 14:719-27. [PMID: 18424478 DOI: 10.1177/1352458507088102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance imaging (MRI) has revolutionized the diagnosis and management of patients with multiple sclerosis (MS). Conventional MRI metrics are employed as primary endpoints in proof-of-concept clinical trials evaluating new drugs for MS and as secondary endpoints in definitive phase III trials. Metrics derived from non-conventional MRI techniques are now emerging and hold significant promise since they appear to be more correlated with the most disabling features of MS. However, none of these has been approved for use as a surrogate endpoint for accumulation of physical disability, which is the most important clinical endpoint of this disease. Taking into account the large numbers of patients needed, the extensive exposure to placebo, and the relatively long duration required for phase III clinical trials to show a meaningful effect on progression of disability, the need for a valid, reliable, and objective paraclinical marker of disease evolution cannot be overemphasized. This paper reviews the most up-to-date data regarding MRI techniques, their relationship with central nervous system pathology, as well as with clinical endpoints, and proposes future insights into the use of MRI metrics as surrogate endpoints in clinical trials of MS.
Collapse
Affiliation(s)
- D Bar-Zohar
- Multiple Sclerosis and Autoimmune Diseases Section, Innovative Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | | | | | | |
Collapse
|
24
|
Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R. MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 2007; 4:602-17. [PMID: 17920541 PMCID: PMC7479680 DOI: 10.1016/j.nurt.2007.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic resonance imaging (MRI) has played a central role in the diagnosis and management of multiple sclerosis (MS). In addition, MRI metrics have become key supportive outcome measures to explore drug efficacy in clinical trials. Conventional MRI measures have contributed to the understanding of MS pathophysiology at the macroscopic level yet have failed to provide a complete picture of underlying MS pathology. They also show relatively weak relationships to clinical status such as predictive strength for clinical progression. Advanced quantitative MRI measures such as magnetization transfer, spectroscopy, diffusion imaging, and relaxometry techniques are somewhat more specific and sensitive for underlying pathology. These measures are particularly useful in revealing diffuse damage in cerebral white and gray matter and therefore may help resolve the dissociation between clinical and conventional MRI findings. In this article, we provide an overview of the array of tools available with brain and spinal cord MRI technology as it is applied to MS. We review the most recent data regarding the role of conventional and advanced MRI techniques in the assessment of MS. We focus on the most relevant pathologic and clinical correlation studies relevant to these measures.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - James Stankiewicz
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Ashish Arora
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Zachary D. Guss
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Rohit Bakshi
- Department of Neurology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
- Department of Radiology, Center for Neurological Imaging, Partners MS Center, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
25
|
Charil A, Filippi M. Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J Neurol Sci 2007; 259:7-15. [PMID: 17397873 DOI: 10.1016/j.jns.2006.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/18/2006] [Accepted: 08/31/2006] [Indexed: 11/24/2022]
Abstract
A number of recent magnetic resonance imaging studies have challenged the classical view of multiple sclerosis (MS) as a "two-stage" disease where an early inflammatory demyelinating phase with focal macroscopic lesions formed in the white matter (WM) of the central nervous system is followed by a late neurodegenerative phase, which is believed to be a mere consequence of repeated inflammatory insults and irreversible demyelination. These studies have consistently shown the presence of diffuse normal-appearing WM damage, marked gray matter involvement and significant cortical functional reorganization, as well as the occurrence of the neurodegenerative component of MS from the earliest clinical stages of the disease with only a partial relation to MRI markers of inflammatory demyelination. The present review argues that MS can no longer be viewed as a "two-stage" disease, which suggests that the two pathological components are dissociated in time, but rather as a "simultaneous two-component" disease, where the relative contributions of the various pathological processes of the disease to the development of "fixed" disability, their relationship and their evolution over time need to be clarified. This new view of MS should inform the development of future research protocols to define its actual physiopathology and prompt the institution of early treatment which should ideally target not only inflammatory demyelination, but also the neurodegenerative aspects of the disease, as well as promote neuroprotection and enhance reparative mechanisms and adaptive functional reorganization of the cortex.
Collapse
Affiliation(s)
- Arnaud Charil
- Neuroimaging Research Unit, Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
26
|
Jansen JFA, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006; 240:318-32. [PMID: 16864664 DOI: 10.1148/radiol.2402050314] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen 1 (1H) magnetic resonance (MR) spectroscopy enables noninvasive in vivo quantification of metabolite concentrations in the brain. Currently, metabolite concentrations are most often presented as ratios (eg, relative to creatine) rather than as absolute concentrations. Despite the success of this approach, it has recently been suggested that relative quantification may introduce substantial errors and can lead to misinterpretation of spectral data and to erroneous metabolite values. The present review discusses relevant methods to obtain absolute metabolite concentrations with a clinical MR system by using single-voxel spectroscopy or chemical shift imaging. Important methodological aspects in an absolute quantification strategy are addressed, including radiofrequency coil properties, calibration procedures, spectral fitting methods, cerebrospinal fluid content correction, macromolecule suppression, and spectral editing. Techniques to obtain absolute concentrations are now available and can be successfully applied in clinical practice. Although the present review is focused on 1H MR spectroscopy of the brain, a large part of the methodology described can be applied to other tissues as well.
Collapse
Affiliation(s)
- Jacobus F A Jansen
- Department of Radiology, Maastricht University Hospital, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Abstract
In addition to providing information on tissue structure, magnetic resonance (MR) technology offers the potential to investigate tissue metabolism and function. MR spectroscopy (MRS) offers a wealth of data on the biochemistry of a selected brain tissue volume, which represent potential surrogate markers for the pathology underlying multiple sclerosis (MS). In particular, the N-acetylaspartate peak in an MR spectrum is a putative marker of neuronal and axonal integrity, and the choline peak appears to reflect cell-membrane metabolism. On this basis, a diminished N-acetylaspartate peak is interpreted to represent neuronal/axonal dysfunction or loss, and an elevated choline peak represents heightened cell-membrane turnover, as seen in demyelination, remyelination, inflammation, or gliosis. Therefore, MRS may provide a unique tool to evaluate the severity of MS, establish a prognosis, follow disease evolution, understand its pathogenesis, and evaluate the efficacy of therapeutic interventions, which complements the information obtained from the various forms of assessment made by conventional MR imaging.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Interventional Imaging, University of Texas Medical School at Houston, TX 77030, USA.
| |
Collapse
|
28
|
Karussis D, Grigoriadis S, Polyzoidou E, Grigoriadis N, Slavin S, Abramsky O. Neuroprotection in multiple sclerosis. Clin Neurol Neurosurg 2006; 108:250-4. [PMID: 16413962 DOI: 10.1016/j.clineuro.2005.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In chronic inflammatory diseases like multiple sclerosis (MS), neuroprotection refers to strategies aimed at prevention of the irreversible damage of various neuronal and glial cell populations, and promoting regeneration. It is increasingly recognized that MS progression, in addition to demyelination, leads to substantial irreversible damage to, and loss of neurons, resulting in brain atrophy and cumulative disability. One of the most promising neuroprotective strategies involves the use of bone marrow derived stem cells. Both hematopoietic and non-hematopoietic (stromal) cells can, under certain circumstances, differentiate into cells of various neuronal and glial lineages. Neuronal stem cells have also been reported to suppress EAE by exerting direct in situ immunomodulating effects, in addition to their ability to provide a potential source for remyelination and neuroregeneration. Preliminary results from our laboratory indicate that intravenous or intracerebral/intraventricular injection of bone marrow derived stromal cells could differentiate in neuronal/glial cells and suppress the clinical signs of chronic EAE. Both bone marrow and neuronal stem cells may therefore have a therapeutic potential in MS. It seems that future treatment strategies for MS should combine immunomodulation with neuroprotective modalities to achieve maximal clinical benefit.
Collapse
Affiliation(s)
- Dimitrios Karussis
- Department of Neurology and the Agnes Ginges Center for Neurogenetics, Laboratory of Neuroimmunology, Hadassah University Hospital, Jerusalem, Ein-Karem IL-91120, Israel.
| | | | | | | | | | | |
Collapse
|