1
|
Di Stasi V, Contaldo A, Birtolo LI, Shahini E. Interplay of Cardiometabolic Syndrome and Biliary Tract Cancer: A Comprehensive Analysis with Gender-Specific Insights. Cancers (Basel) 2024; 16:3432. [PMID: 39410050 PMCID: PMC11476000 DOI: 10.3390/cancers16193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024] Open
Abstract
BTC overall incidence is globally increasing. CCA, including its subtypes, is a form of BTC. MetS, obesity, MASLD, and diabetes are all linked to CCA in interconnected ways. The link between obesity and CCA is less well-defined in Eastern countries as compared to Western. Although more research is needed to determine the relationship between MASLD and extrahepatic CCA (eCCA), MASLD may be a concurrent risk factor for intrahepatic CCA, particularly in populations with established or unidentified underlying liver disease. Interestingly, the risk of biliary tract cancer (BTC) seemed to be higher in patients with shorter diabetes durations who were not treated with insulin. Therefore, early detection and prevention of chronic liver disease, as well as additional intervention studies, will undoubtedly be required to determine whether improvements to MetS, weight loss, and diabetes therapy can reduce the risk and progression of BTC. However, further studies are needed to understand how reproductive hormones are involved in causing BTC and to develop consistent treatment for patients. Finally, it is critical to carefully assess the cardiological risk in BTC patients due to their increased intrinsic cardiovascular risk, putting them at risk for thrombotic complications, cardiovascular death, cardiac metastasis, and nonbacterial thrombotic endocarditis. This review aimed to provide an updated summary of the relation between the abovementioned cardio-metabolic conditions and BTC.
Collapse
Affiliation(s)
- Vincenza Di Stasi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Antonella Contaldo
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Umberto I Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
2
|
Dong F, Su L, Tan J, Luo H. The anticancer effect of
EGFR
‐targeting artificial
microRNA
controlled by
SLPI
promoter in nasopharyngeal carcinoma. J Clin Lab Anal 2022; 36:e24729. [DOI: 10.1002/jcla.24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Feilin Dong
- Medical College Soochow University Suzhou China
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Lizhong Su
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Jun Tan
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Hui Luo
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| |
Collapse
|
3
|
Detarya M, Lert-Itthiporn W, Mahalapbutr P, Klaewkla M, Sorin S, Sawanyawisuth K, Silsirivanit A, Seubwai W, Wongkham C, Araki N, Wongkham S. Emerging roles of GALNT5 on promoting EGFR activation in cholangiocarcinoma: a mechanistic insight. Am J Cancer Res 2022; 12:4140-4159. [PMID: 36225633 PMCID: PMC9548001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer in that the incidence is now increasing worldwide. N-acetylgalactosaminyltransferase 5 (GALNT5), an enzyme that initiates the first step of mucin type-O glycosylation, has been reported to promote aggressiveness of CCA cells via the epithelial to the mesenchymal transition (EMT) process, and Akt/Erk activation. In this study, the clinical and biological relevance of GALNT5 and the molecular mechanisms by which GALNT5 modulated EGFR in promoting CCA progression were examined. Using publicly available datasets, upregulation of GALNT5 in patient CCA tissues and its correlation with EGFR expression was noted. High levels of GALNT5 were significantly associated with the short survival of patients, suggesting a prognostic marker of GALNT5 for CCA. GALNT5 modulated EGFR expression as shown in CCA cell lines. Upregulation of GALNT5 significantly increased EGFR mRNA and protein in GALNT5 overexpressing cells, whereas suppression of GALNT5 expression gave the opposite results. The molecular dynamics simulations and MM/PB(GB)SA-based free energy calculations showed that O-glycosylation on the EGFR extracellular domain enhanced the structural stability, compactness, and H-bond formation of the EGF/GalNAc-EGFR complex compared with those of EGF/EGFR. This stabilized the growth factor binding site and fostered stronger interactions between EGF and EGFR. Using the EGF-induced EGFR activation model, GALNT5 was shown to mediate EGFR stability via a decreased rate of EGFR degradation and enhanced EGFR activity by increasing the binding affinity of EGF/EGFR that consequently increasing the activation of EGFR and its downstream effectors Akt and Erk. In summary, GALNT5 was upregulated in CCA tissues and associated with a worse prognosis. The study identified for the first time the impacts of GALNT5 on EGFR activity by increasing: 1) EGFR expression via a transcriptional-dependent mechanism, 2) EGFR stability by reducing EGFR degradation, and 3) EGFR activation through an increased binding affinity of EGF/EGFR which all together fostered the activation of EGFR. These results expanded the understanding of the molecular mechanism of how GALNT5 impacted CCA progression and suggested GALNT5 as a new target for therapeutic intervention against metastatic CCA.
Collapse
Affiliation(s)
- Marutpong Detarya
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Methus Klaewkla
- Future Health Innovation Technology Co., Ltd.Bangkok 10170, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto UniversityKumamoto 860-8556, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, and Center for Translational Medicine, Khon Kaen UniversityKhon Kaen 40002, Thailand
| |
Collapse
|
4
|
Bär SI, Dittmer A, Nitzsche B, Ter-Avetisyan G, Fähling M, Klefenz A, Kaps L, Biersack B, Schobert R, Höpfner M. Chimeric HDAC and the cytoskeleton inhibitor broxbam as a novel therapeutic strategy for liver cancer. Int J Oncol 2022; 60:73. [PMID: 35485292 PMCID: PMC9097774 DOI: 10.3892/ijo.2022.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4′-(3′-bromo-4′,5′-dimethoxyphenyl)-oxazol-5′-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the under-lying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCEL-Ligence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predomi-nant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Sofia Isolde Bär
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Alexandra Dittmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Gohar Ter-Avetisyan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, D-10117 Berlin, Germany
| |
Collapse
|
5
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
6
|
Integrating Metabolomics and Network Pharmacology to Explore the Protective Effect of Ginsenoside Re against Radiotherapy Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5436979. [PMID: 35310032 PMCID: PMC8933113 DOI: 10.1155/2022/5436979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022]
Abstract
Ionizing radiation (IR) can cause radiation damage, mutagenesis, or carcinogenesis in the irradiated subject. It is manifested as metabolic disorders of the body and damage to the immune system, nervous system, and endocrine system, which can lead to physiological and pathological changes and endogenous metabolic disorders. Ginsenoside Re (G-Re), a single component of traditional Chinese medicine, has a certain ameliorating effect on radiation damage. However, its mechanism of action in the treatment of radiotherapy injury remains unclear. With this purpose, the hematopoietic function of mice damaged by X-ray radiation was studied, and the protective effect of G-Re on mice damaged by radiation was preliminarily evaluated. Network pharmacology and metabolomics analysis are used to further reveal the mechanism of G-Re to improve radiation damage through metabolomics research. Results of metabolomics analysis showed that 16 potential biomarkers were identified as participating in the therapeutic effect of G-Re on IR. Most of these metabolites are adjusted to recover after G-Re treatment. The pathways involved included glycerophospholipid metabolism, sphingolipid metabolism, and linoleic acid metabolism. According to network pharmacology analysis, we found 10 hub genes, which is partly consistent with the findings of metabolomics. Further comprehensive analysis focused on 4 key targets, including SRC, EGFR, AKT1, and MAPK8, and their related core metabolites and pathways. This study combines metabolomics and network pharmacology analysis to explore the key targets and mechanisms of G-Re in the treatment of IR, in order to provide new strategies for clinical treatment of radiotherapy injury.
Collapse
|
7
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
8
|
Ghidini M, Ramai D, Facciorusso A, Singh J, Tai W, Rijavec E, Galassi B, Grossi F, Indini A. Metabolic disorders and the risk of cholangiocarcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:999-1007. [PMID: 34423721 DOI: 10.1080/17474124.2021.1946393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy which arises from the biliary epithelium. Carcinogenesis of CCA is mainly linked to aberrant glucose metabolism and creation of an immunosuppressive environment around normal biliary epithelium. The incidence of CCA is higher in the East due to Opisthorchis viverrini, an endemic liver fluke. CCA has also be attributed to genetic, metabolic, and lifestyle risk factors.Areas covered: Differences in epidemiological risk factors are associated with varying phenotypes of CCA. Metabolic risk factors include diabetes, obesity, nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), dyslipidemia, and metabolic syndrome. Inherited metabolic risk factors include Wilson's disease and hemochromatosis. Metabolic disease is associated with a higher risk of CCA, with higher risk for the intrahepatic form. In this review, the authors provide an overview of available evidence regarding metabolic conditions associated with the development of CCA.Expert opinion: Metabolic disease is associated with a higher risk of intrahepatic CCA compared to its extrahepatic or hilar counterpart. As rates of obesity and metabolic syndrome increase, particularly in the West, it is conceivable that the incidence of CCA will also rise in the next years.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daryl Ramai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, USA
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Jameel Singh
- Department of Internal Medicine, Mather Hospital, Northwell Health, Port Jefferson, New York, USA
| | - Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, USA
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Grossi
- Department of Medicine and Surgery, Medical Oncology Unit, ASST Sette Laghi, Varese, Italy
| | - Alice Indini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Choi JH, Park JY. Insulin-Like Growth Factor-1 Receptor Targeted Fluorescent Imaging for Gallbladder Cancer in Orthotopic Mouse Models. Gut Liver 2021; 16:606-612. [PMID: 34462395 PMCID: PMC9289833 DOI: 10.5009/gnl210164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 11/06/2022] Open
Abstract
Background/Aims Gallbladder cancer is fatal, but fluorescent imaging technology can facilitate timely diagnosis and improve patient outcomes. Fluorophore-conjugated insulin-like growth factor-1 receptor (IGF-1R) targeted antibodies were used to visualize gallbladder cancer in orthotopic tumor mouse models. Methods Western blotting, flow cytometric analysis, and confocal microscopy detected the expression of IGF-1R in SNU-308, SNU-478, and SNU-1196 bile duct cancer cells. In vivo imaging of SNU-478 and SNU-1196 subcutaneous tumors and orthotopic gallbladder tumor models of SNU-478 were performed after injection with DyLight 650-conjugated IGF-1R antibody. Results Western blotting and flow cytometric analysis showed that IGF-1R was expressed in bile duct cancer cells, and confocal microscopy demonstrated that IGF-1R antibody was able to bind to IGF-1R on the cell membrane. Fluorescent IGF-1R antibody injected into the mouse tail vein made subcutaneous tumors and orthotopic tumors become fluorescent. The intensity of fluorescence from the tumor was stronger than that from surrounding normal tissues. Histochemical examination confirmed that the tumor was located inside the gallbladder and adjacent liver parenchyma of mice. Conclusions Our study showed that a fluorescent IGF-1R-targeted antibody could help detect gallbladder tumors. Tumor-specific imaging technology can be applied to endoscopy, laparoscopy, and robotic surgery for better management of gallbladder cancer.
Collapse
Affiliation(s)
- Jung Ha Choi
- Division of Gastroenterology, Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Osataphan S, Mahankasuwan T, Saengboonmee C. Obesity and cholangiocarcinoma: A review of epidemiological and molecular associations. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:1047-1059. [PMID: 34053180 DOI: 10.1002/jhbp.1001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022]
Abstract
Cholangiocarcinoma (CCA) is a malignancy of bile duct epithelium, and its incidence is increasing globally. Numerous factors are reported associated with an increased risk of CCA and vary among populations across different areas. Obesity is a major, worldwide public health problem that leads to several complications and is associated with increased cancer risk. Although several epidemiological studies have shown that obesity is likely associated with the increased risk of CCA, this association might be limited to Western countries. Multiple hormones, cytokines, and metabolite perturbations in obese states have been shown to enhance tumorigenicity and metastasis potentials. Understanding the biological linkage of obesity to CCA might lead to novel prevention and therapeutic approaches to CCA treatment. This review summarizes the current evidence and highlights the knowledge gaps regarding the relationship between obesity and CCA from epidemiological and molecular perspectives.
Collapse
Affiliation(s)
| | | | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Samatiwat P, Tabtimmai L, Suphakun P, Jiwacharoenchai N, Toviwek B, Kukongviriyapan V, Gleeson MP, Choowongkomon K. The Effect of the EGFR - Targeting Compound 3-[(4-Phenylpyrimidin-2-yl) Amino] Benzene-1-Sulfonamide (13f) against Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev 2021; 22:381-390. [PMID: 33639651 PMCID: PMC8190356 DOI: 10.31557/apjcp.2021.22.2.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is a noxious malignancy of epithelium of the bile duct with a low response rate to chemotherapy. The epidermal growth factor receptor (EGFR) signaling pathway is implicated in the development of cancerous cells, especially CCA. In this study, we report detailed biological profiling of 13f identified from our earlier hit expansion studies. The aim of this work was to expand our understanding of 13f via more detailed investigations of its mechanism of action against KKU-100, KKU-452 and KKU-M156 CCA cells, as well as in comparison to the EGFR inhibitor Gefitinib and non-specific chemotherapeutic agents such as Cisplatin. METHODS Inhibiting EGFR-Kinase, cytotoxicity, clonogenic assay, wound healing and apoptosis were performed. Levels of total expression of EGFR and EGFR phosphorylation proteins were detected. RESULTS 13f was confirmed as an inhibitor of EGFR with an IC50 value against the tyrosine kinase of EGFR of 22 nM and IC50 values for 48 h incubation period were 1.3 ± 1.9, 1.5 ± 0.4 and 1.7 ± 1.1 µM of KKU-100, KKU-452 and KKU-M156, respectively through dose- and time-dependent induction of early apoptosis of CCA cells. The compound also suppressed the clonogenic ability of KKU-100 and KKU-M156 cells stronger than Gefitinib, while potently inhibiting EGF-stimulated CCA cell migratory activity in KKU-452 cells. It was observed that under normal conditions EGFR was activated in CCA cells. EGF-stimulated basal expression of EGFR in KKU-452 cells was suppressed following 13f treatment, which was significantly greater than that of the marketed EGFR inhibitor Gefitinib. CONCLUSION In summary, our study showed that 13f has potent anti-cancer activities including antiproliferation, clonogenic ability and migration through the modulation of EGFR signaling pathway in CCA for the first time. The compound represents an interesting starting point as a potential chemotherapeutic agent in ongoing efforts to improve response rate in CCA patients.<br />.
Collapse
Affiliation(s)
- Papavee Samatiwat
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Lueacha Tabtimmai
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
| | - Prapasri Suphakun
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
| | - Nattanan Jiwacharoenchai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 10900, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - M. Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok. Thailand.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
- For Correspondence:
| |
Collapse
|
12
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Churiyah C, Ningsih S, Firdayani F. The Cytotoxic, Apoptotic Induction, and Cell Cycle Arrest Activities of Solanum nigrum L. Ethanolic Extract on MCF-7 Human Breast Cancer Cell. Asian Pac J Cancer Prev 2020; 21:3735-3741. [PMID: 33369475 PMCID: PMC8046323 DOI: 10.31557/apjcp.2020.21.12.3735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 01/13/2023] Open
Abstract
Objective: The purpose of this research was to evaluate the cytotoxic, cell cycle arrest, and apoptotic induction activities of the fruit of S. nigrum L. ethanolic-70% extract against MCF-7 human breast cancer cell. Methods: S. nigrum L. ripe fruit was blended and macerated with ethanol 70% and the filtrate was evaporated. The semisolid extract was then analyzed phytochemically. Cytotoxic analysis was performed using MCF-7 cancer and Vero normal cell by MTT method and followed by apoptotic and cell cycle arrest analysis using flow cytometry. Results: The phytochemical analysis resulted that extract contained total phenolic and flavonoid compounds with the level of 1.545±0.080% and 0.212±0.002%, respectively. Glycitin was the highest level of isoflavone compound, namely, 375.0844 mg/100 g extract. The cytotoxic evaluation revealed that the extract exhibited a selectively toxic effect between cancer and normal cell. The extract inhibited MCF-7 proliferation with IC50 value about 40.77±4.86 μg/mL and conversely toward Vero cell at lower cytotoxic activity with an IC50 value of 298.96±27.28 μg/mL. Evaluation of MCF-7 cell cycles demonstrated that the extract arrested the cell cycle in the S phase and continued to the G2/M phase at the half of the IC50 value. The extract induced apoptotic of MCF-7 cell about 43.31% in which this activity was nearly the same with doxorubicin as a positive control (59.14%). However, solamargine was predicted as the most active anticancer compounds by a molecular docking study so that it was suggested to measure the level of this compound. Conclusion: It can be concluded that the fruit of S. nigrum L. ethanolic-70% extract demonstrated cytotoxic activity toward MCF-7 breast cancer cell and nontoxic on Vero normal cell. Solamargine was predicted as the most active anticancer compound. This extract had an opportunity to be developed as a potential anticancer agent to overcome breast cancer diseases.
Collapse
Affiliation(s)
- Churiyah Churiyah
- Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology, LAPTIAB Building 611, Puspiptek Area, Serpong, Tangerang-Selatan, Indonesia
| | - Sri Ningsih
- Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology, LAPTIAB Building 611, Puspiptek Area, Serpong, Tangerang-Selatan, Indonesia
| | - Firdayani Firdayani
- Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology, LAPTIAB Building 611, Puspiptek Area, Serpong, Tangerang-Selatan, Indonesia
| |
Collapse
|
14
|
Saengboonmee C, Seubwai W, Lert-Itthiporn W, Sanlung T, Wongkham S. Association of Diabetes Mellitus and Cholangiocarcinoma: Update of Evidence and the Effects of Antidiabetic Medication. Can J Diabetes 2020; 45:282-290. [PMID: 33218924 DOI: 10.1016/j.jcjd.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a risk factor for cancer in many organs and associated with an increased risk of cholangiocarcinoma (CCA). The molecular linkage between these diseases has been demonstrated in preclinical studies, which have highlighted the role of hyperinsulinemia and hyperglycemia in the carcinogenesis and progression of CCA. Recent studies on the emerging role of antidiabetic medication in the development and progression of CCA showed a subclass of antidiabetic drug with a therapeutic effect on CCA. Although associations between CCA, insulin analogues and sulfonylureas are unclear, incretin-based therapy is likely associated with an increased risk for CCA, and may lead to CCA progression, as demonstrated by in vitro and in vivo experiments. In contrast, biguanides, especially metformin, exert an opposite effect, associated with a reduced risk of CCA and inhibited in vitro and in vivo CCA progression. The association between incretin-based therapy and the risk of CCA needs further clarification, as metformin is being studied in an ongoing clinical trial. Understanding the association between DM and CCA is critical for preventing the development of CCA in patients with DM, and for establishing the appropriateness of antidiabetic medication to treat CCA. Determining how metformin affects CCA can lead to repurposing this safe and well-known drug for improving CCA treatment, regardless of the diabetes status of patients.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States.
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanachai Sanlung
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Wang SH, Zhang WJ, Wu XC, Zhang MD, Weng MZ, Zhou D, Wang JD, Quan ZW. Long non-coding RNA Malat1 promotes gallbladder cancer development by acting as a molecular sponge to regulate miR-206. Oncotarget 2018; 7:37857-37867. [PMID: 27191262 PMCID: PMC5122355 DOI: 10.18632/oncotarget.9347] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (Malat1) functions as an oncogene in many types of human cancer. In this study, we show that Malat1 is overexpressed in gallbladder cancer (GBC) tissue and cells. The high Malat1 levels correlated positively with tumor size and lymphatic metastasis, and correlated negatively with overall survival. We also show that Malat1 functions as a competing endogenous RNA (ceRNA) for miR-206. Because miR-206 directly suppresses expression of ANXA2 and KRAS, which are thought to promote GBC progression, Malat1 binding of miR-206 in GBC tissue and cells has an oncogenic effect. Conversely, Malat1 knockdown inhibits proliferation and invasion by GBC cells while increasing apoptosis. In vivo, silencing Malat1 decreases tumor volume. These results suggest Malat1 could potentially serve as a therapeutic target and prognostic marker for GBC.
Collapse
Affiliation(s)
- Shou-Hua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Wen-Jie Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xiao-Cai Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Ming-Di Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Ming-Zhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Jian-Dong Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| |
Collapse
|
17
|
Cavalloni G, Peraldo-Neia C, Varamo C, Chiorino G, Sassi F, Aglietta M, Leone F. Preclinical activity of EGFR and MEK1/2 inhibitors in the treatment of biliary tract carcinoma. Oncotarget 2018; 7:52354-52363. [PMID: 27429047 PMCID: PMC5239557 DOI: 10.18632/oncotarget.10587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
Biliary tract carcinomas (BTC) are malignant tumors with limited therapeutic options. Clinical experiences with anti-EGFR therapies have produced unsatisfactory results. The strategies of combined inhibition of EGFR and MEK1/2 could be a promising therapeutic option in BTC treatment. Preclinical activity of Panitumumab and Trametinib was tested in in vitro (EGI-1, MT-CHC01 and WITT cells) and in in vivo (xenograft) BTC models with different K-RAS mutational status. Trametinib reduced MAPK phosphorylation in wild type (WT) WITT cells and in both K-RAS mutated cells; in EGI-1 was also able to switch off EGFR activation. Panitumumab reduced the activation of its target only in EGI-1 cells, and of MAPK only in WITT cells. While Trametinib inhibited cell growth in K-RAS mutated cell lines, Panitumumab had no effect on proliferation independently by K-RAS status. The addition of Panitumumab to Trametinib did not significantly potentiate its anti-proliferative effect also in mutated cells. In vivo, Trametinib was able to significantly slow the tumor growth in K-RAS mutated xenograft models, but did not have effect on K-RAS WT cells; the addition of Panitumumab potentiated the Trametinib efficacy in MT-CHC01 and overcame the resistance to the anti-EGFR in WITT cells, in which the monotherapy was ineffective. Only in K-RAS mutated xenografts Trametinib alone or in combination with Panitumumab significantly decreased Ki67 positive cell fraction and CD31 angiogenesis markers. In conclusion, this preclinical study provides a rational to plan clinical trials assessing the efficacy of Trametinib in K-RAS mutated BTC patients and the combination with anti-EGFR in WT BTC patients.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Caterina Peraldo-Neia
- Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Chiara Varamo
- Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Francesco Sassi
- Unit of Molecular Pharmacology, University of Turin Medical School, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Massimo Aglietta
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Francesco Leone
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| |
Collapse
|
18
|
Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, Grazi GL, Carpino G, Alvaro D. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 2017; 12:e0183932. [PMID: 28873435 PMCID: PMC5584931 DOI: 10.1371/journal.pone.0183932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. Results: at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.
Collapse
Affiliation(s)
- Anna Maria Lustri
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Sabina Di Matteo
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alice Fraveto
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Daniele Costantini
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alfredo Cantafora
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, Roma, Italy
| | | | - Felice Giuliante
- Catholic University of the Sacred Heart School of Medicine, Roma, Italy
| | | | - Pasquale B. Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Roma, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute, the Gastroenterology Unit, Roma, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome Foro Italico, Roma, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, RM, ROMA, Italy
- * E-mail:
| |
Collapse
|
19
|
Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1319-1325. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Bile salts represent signalling molecules with a variety of endocrine functions. Bile salt effects are mediated by different receptor molecules, comprising ligand-activated nuclear transcription factors as well as G protein-coupled membrane-bound receptors. The farnesoid X receptor (FXR) and the plasma membrane-bound G protein-coupled receptor TGR5 (Gpbar-1) are prototypic bile salt receptors of both classes and are highly expressed in the liver including the biliary tree as well as in the intestine. In liver, TGR5 is localized in different non-parenchymal cells such as sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells and small and large cholangiocytes. Through TGR5 bile salts can mediate choleretic, cell-protective as well as proliferative effects in cholangiocytes. A disturbance of these signalling mechanisms can contribute to the development of biliary diseases. In line with the important role of TGR5 for bile salt signalling, TGR5 knockout mice are more susceptible to cholestatic liver damage. Furthermore, in absence of TGR5 cholangiocyte proliferation in response to cholestasis is attenuated and intrahepatic and extrahepatic bile ducts show increased cell damage, underscoring the role of the receptor for biliary physiology. Decreased TGR5 expression may also contribute to the development or progression of cholangiopathies like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) since reduced TGR5-dependent cell-protective mechanisms such as bicarbonate secretion renders cholangiocytes more vulnerable towards bile salt toxicity. Nevertheless, TGR5 overexpression or constant stimulation of the receptor can promote cholangiocyte proliferation leading to cyst growth in polycystic liver disease or even progression of cholangiocarcinoma. Not only the stimulation of TGR5-mediated pathways by suitable TGR5 agonists but also the inhibition of TGR5 signalling by the use of antagonists represent potential therapeutic approaches for different types of biliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Carola Dröge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Kim H, Hwang H, Lee H, Hong HJ. L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation. Mol Cells 2017; 40:363-370. [PMID: 28535665 PMCID: PMC5463045 DOI: 10.14348/molcells.2017.2282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.
Collapse
Affiliation(s)
- Haejung Kim
- Department of Biology, College of National Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Haein Hwang
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hansoo Lee
- Department of Biology, College of National Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hyo Jeong Hong
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
21
|
Ahn DH, Bekaii-Saab T. Biliary cancer: intrahepatic cholangiocarcinoma vs. extrahepatic cholangiocarcinoma vs. gallbladder cancers: classification and therapeutic implications. J Gastrointest Oncol 2017; 8:293-301. [PMID: 28480068 DOI: 10.21037/jgo.2016.10.01] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biliary cancers (BCs) are a diverse group of tumors that arise from the bile duct epithelium and are divided into cholangiocarcinomas of the intrahepatic and extrahepatic cholangiocarcinoma (EHCC) and cancer of the gallbladder. Despite improvements in treatment and diagnosis, BCs are often diagnosed at an advanced stage and associated with poor prognosis and limited treatment options. Recent discoveries have allowed us to have a better understanding of the genomic diversity in BC, and identify genes that are likely contributing to its pathogenesis, proliferation and treatment resistance. Additionally, these advances have allowed us to reason that each anatomic group within BC behave as distinct diseases, with differences in prognosis and outcomes. Based on this knowledge, recent advances have allowed us to identify actionable mutations that form rational therapeutic targets with novel agents, where their relevance will be better understood through the completion of prospective clinical trials.
Collapse
Affiliation(s)
- Daniel H Ahn
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | |
Collapse
|
22
|
Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, Knoefel WT, Herebian D, Mayatepek E, Häussinger D, Keitel V. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 2016; 65:487-501. [PMID: 26420419 DOI: 10.1136/gutjnl-2015-309458] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cholestatic liver diseases in humans as well as bile acid (BA)-feeding and common bile duct ligation (CBDL) in rodents trigger hyperplasia of cholangiocytes within the portal fields. Furthermore, elevation of BA levels enhances proliferation and invasiveness of cholangiocarcinoma (CCA) cells in animal models, thus promoting tumour progression. TGR5 is a G-protein coupled BA receptor, which is highly expressed in cholangiocytes and postulated to mediate the proliferative effects of BA. DESIGN BA-dependent cholangiocyte proliferation was examined in TGR5-knockout and wild type mice following cholic acid (CA)-feeding and CBDL. TGR5-dependent proliferation and protection from apoptosis was studied in isolated cholangiocytes and CCA cell lines following stimulation with TGR5 ligands and kinase inhibitors. TGR5 expression was analysed in human CCA tissue. RESULTS Cholangiocyte proliferation was significantly reduced in TGR5-knockout mice in response to CA-feeding and CBDL. Taurolithocholic acid and TGR5-selective agonists induced cholangiocyte proliferation through elevation of reactive oxygen species and cSrc mediated epidermal growth factor receptor transactivation and subsequent Erk1/2 phosphorylation only in wild type but not in TGR5-knockout-derived cells. In human CCA tissue TGR5 was overexpressed and the pathway of TGR5-dependent proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase (ERK)1/2 activation also translated to CCA cell lines. Furthermore, apoptosis was inhibited by TGR5-dependent CD95 receptor serine phosphorylation. CONCLUSIONS TGR5 is an important mediator of BA-induced cholangiocyte proliferation in vivo and in vitro. Furthermore, TGR5 protects cholangiocytes from death receptor-mediated apoptosis. These mechanisms may protect cholangiocytes from BA toxicity under cholestatic conditions, however, they may trigger proliferation and apoptosis resistance in malignantly transformed cholangiocytes, thus promoting CCA progression.
Collapse
Affiliation(s)
- Maria Reich
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kathleen Deutschmann
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annika Sommerfeld
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Caroline Klindt
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Kluge
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralf Kubitz
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wolfram T Knoefel
- Department of General, Visceral, and Pediatric Surgery, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatalogy and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatalogy and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
23
|
Komposch K, Sibilia M. EGFR Signaling in Liver Diseases. Int J Mol Sci 2015; 17:E30. [PMID: 26729094 PMCID: PMC4730276 DOI: 10.3390/ijms17010030] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC) highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs).
Collapse
Affiliation(s)
- Karin Komposch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
24
|
Zhang F, Li L, Yang X, Wang B, Zhao J, Lu S, Yu X. Expression and activation of EGFR and STAT3 during the multistage carcinogenesis of intrahepatic cholangiocarcinoma induced by 3'-methyl-4 dimethylaminoazobenzene in rats. J Toxicol Pathol 2015; 28:79-87. [PMID: 26028817 PMCID: PMC4444506 DOI: 10.1293/tox.2014-0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/09/2015] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate whether the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription-3 (STAT3) signal pathway contributes to the carcinogenesis of intrahepatic cholangiocarcinoma (ICC) induced by 3’-methyl-4 dimethylaminoazobenzene (3’Me-DAB) in rats. EGFR, TGFα, STAT3 and p-STAT3 in different stages of carcinogenesis were detected by immunohistochemistry (IHC). In situ hybridization (ISH) was applied to investigate the expression of STAT3 mRNA. Oval cells were verified by the immunohistochemical staining of alpha-fetoprotein (AFP), CD133 and epithelial cell adhesion molecules (EpCAM). Sequential development of necrosis, oval cell proliferation, cholangiofibrosis (CF) and ICC was observed in the liver of rats administered 3’Me-DAB. Oval cells showed positive expression of AFP, CD133 and EpCAM. The expression of EGFR was significantly higher in the ICC than in oval cells, CF or normal bile ducts (p<0.05), but there was no difference in EGFR expression between the other groups. The highest expression of p-STAT3 and TGFα was observed in CF. The expression of these two molecules in the ICC and oval cells was significantly higher than in normal bile ducts (p<0.05). Elevation of STAT3 mRNA was detected during carcinogenesis as shown by ISH, strong intensity was observed in the ICC and moderate intensity was observed in oval cells and CF. These observations suggest that the EGFR and STAT3 signal pathway contributes to the carcinogenesis of ICC. High activity of STAT3 during the carcinogenesis of ICC may be the result of high activity of EGFR triggered by TGFα.
Collapse
Affiliation(s)
- Fan Zhang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Xingwu Yang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Jinyao Zhao
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, PR China
| | - Shilun Lu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Xiaotang Yu
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| |
Collapse
|
25
|
Gu M. CA9 overexpression is an independent favorable prognostic marker in intrahepatic cholangiocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:862-866. [PMID: 25755787 PMCID: PMC4348930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study is to evaluate the expression of carbonic anhydrase IX (CA9) and to identify its prognostic significance in intrahepatic cholangiocarcinoma (IHCC). We performed immunohistochemistry (IHC) for CA9 in a total of 85 IHCCs. CA9 overexpression was observed in 38 of 85 (44.7%) IHCCs. CA9 overexpression was related to tumors with intraductal growth than mass forming or periductal infiltrative type. CA9 overexpression was more observed in tumors with well/moderate differentiation than poor differentiation and without lymph node metastasis. No significant correlation was observed in CA9 overexpression with tumor size, pT, stage and lymphovascular invasion. Intrahepatic cholangiocarcinomas with CA9 overexpression showed better overall survival than that without expression (P = 0.001). In multivariate analysis, lymph node metastasis (95% CI: 2.103 (1.167-3.791), P = 0.013) was an independent poor prognostic factor. IHCC with CA9 overexpression showed a 0.5-fold (95% confidence interval, 0.328-0.944) lower risk of death compared with those of no or weak expression. CA9 overexpression was related to histologic differentiation and an independent good prognostic factor.
Collapse
Affiliation(s)
- Mijin Gu
- Department of Pathology, Yeungnam University College of Medicine Daegu, Rep of Korea
| |
Collapse
|
26
|
Li J, Lin B, Li X, Tang X, He Z, Zhou K. Biomarkers for predicting response to tyrosine kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells. Oncol Rep 2014; 33:951-7. [PMID: 25482142 DOI: 10.3892/or.2014.3639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/02/2014] [Indexed: 11/05/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family is reportedly overexpressed in bladder cancer, and tyrosine kinase inhibitors (TKIs) have been suggested as treatment. Gefitinib (Iressa®) is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor). Both compounds compete with the binding of ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical issue. The purpose of the present study was to use protein array analysis to compare the signaling pathway(s) induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive) and UM-UC-14 (drug-resistant) bladder cancer cells and to identify molecular markers that may be useful predictors of their efficacy. The results revealed that phosphorylation of EGFR, HER3, Met and ERK1/2 was markedly overexpressed in the sensitive cell line (UM-UC-5) and was strongly inhibited by the TKIs. Other notable differences included decreased phosphorylation of RSK, GSK3, AMPK, Akt and c-Jun by TKIs in the sensitive cells. In contrast, phosphorylated p53 was highly expressed in the resistant cell line (UM-UC-14) and TKIs had no effect in the resistant cells. Overall results suggest that phosphorylated HER3, ERK1/2 and p53 may be used as biomarkers to determine the sensitivity of bladder cancers to TKIs. In particular, a combination of these markers may be more likely to predict the sensitivity to TKIs.
Collapse
Affiliation(s)
- Jixia Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Bihua Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Xiangyong Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Xudong Tang
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Zhiwei He
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Keyuan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
27
|
Hezel AF, Noel MS, Allen JN, Abrams TA, Yurgelun M, Faris JE, Goyal L, Clark JW, Blaszkowsky LS, Murphy JE, Zheng H, Khorana AA, Connolly GC, Hyrien O, Baran A, Herr M, Ng K, Sheehan S, Harris DJ, Regan E, Borger DR, Iafrate AJ, Fuchs C, Ryan DP, Zhu AX. Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer. Br J Cancer 2014; 111:430-6. [PMID: 24960403 PMCID: PMC4119993 DOI: 10.1038/bjc.2014.343] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Current data suggest that platinum-based combination therapy is the standard first-line treatment for biliary tract cancer. EGFR inhibition has proven beneficial across a number of gastrointestinal malignancies; and has shown specific advantages among KRAS wild-type genetic subtypes of colon cancer. We report the combination of panitumumab with gemcitabine (GEM) and oxaliplatin (OX) as first-line therapy for KRAS wild-type biliary tract cancer. METHODS Patients with histologically confirmed, previously untreated, unresectable or metastatic KRAS wild-type biliary tract or gallbladder adenocarcinoma with ECOG performance status 0-2 were treated with panitumumab 6 mg kg(-1), GEM 1000 mg m(-2) (10 mg m(-2) min(-1)) and OX 85 mg m(-2) on days 1 and 15 of each 28-day cycle. The primary objective was to determine the objective response rate by RECIST criteria v.1.1. Secondary objectives were to evaluate toxicity, progression-free survival (PFS), and overall survival. RESULTS Thirty-one patients received at least one cycle of treatment across three institutions, 28 had measurable disease. Response rate was 45% and disease control rate was 90%. Median PFS was 10.6 months (95% CI 5-24 months) and median overall survival 20.3 months (95% CI 9-25 months). The most common grade 3/4 adverse events were anaemia 26%, leukopenia 23%, fatigue 23%, neuropathy 16% and rash 10%. CONCLUSIONS The combination of gemcitabine, oxaliplatin and panitumumab in KRAS wild type metastatic biliary tract cancer showed encouraging efficacy, additional efforts of genetic stratification and targeted therapy is warranted in biliary tract cancer.
Collapse
Affiliation(s)
- A F Hezel
- Division of Hematology/Oncology, James P. Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - M S Noel
- Division of Hematology/Oncology, James P. Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - J N Allen
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - T A Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - M Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J E Faris
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - L Goyal
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - J W Clark
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - L S Blaszkowsky
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - J E Murphy
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - H Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - A A Khorana
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - G C Connolly
- Division of Hematology/Oncology, James P. Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| | - O Hyrien
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - A Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - M Herr
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - K Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S Sheehan
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - D J Harris
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - E Regan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - D R Borger
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - C Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - D P Ryan
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - A X Zhu
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Ou JM, Lian WS, Qiu MK, Dai YX, Dong Q, Shen J, Dong P, Wang XF, Liu YB, Quan ZW, Fei ZW. Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol 2014; 45:1241-9. [PMID: 24968760 DOI: 10.3892/ijo.2014.2512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/26/2014] [Indexed: 01/18/2023] Open
Abstract
Insulin-like growth factor-II (IGF-II)/IGF2R signaling plays a pivotal role in cell growth, migration and differentiation in many malignancies. An individual with high IGF-II expression levels has a high risk of developing cancer, but IGF2R is often considered to be a tumor suppressor. To date, little has been reported about the role of IGF-II/IGF2R signaling in hemangiomas (HAs). Thus, uncovering the mechanisms of IGF-II/IGF2R signaling is very important to understanding the development of HAs. In the present study, the expression of IGF-II and IGF2R was investigated in 27 cases of HAs of different phases by immunohistochemistry. Through lentivirus-mediated IGF2R siRNA (Lv-siIGF2R) in HA-derived endothelial cells (HDECs), we observed the effects of IGF2R knockdown on the biological behavior of HA cells. We found that the expression of IGF-II and IGF2R was significantly increased in proliferating phase HAs, but decreased in involuting phase HAs. Furthermore, knockdown of IGF2R in vitro significantly diminished the proliferative activity and induced apoptosis and cycle arrest with decreased expression of PCNA, Ki-67, Bcl-2, Cyclin D1 and E and increased the expression of Bax in the proliferative phase HAs (HDEC and CRL-2586 EOMA cells). In addition, the tumor volumes in a subcutaneous HDEC nude mouse model treated with Lv-siIGF2R were significantly smaller than those of the control group. Taken together, our findings indicate that the expression of IGF-II and IGF2R is increased in proliferating phase HAs, and knockdown of IGF2R suppresses proliferation and induces apoptosis in HA cells in vitro and in vivo, suggesting that IGF2R may represent a novel therapeutic target for the treatment of human HAs.
Collapse
Affiliation(s)
- J-M Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - W-S Lian
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - M-K Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Y-X Dai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Q Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - J Shen
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - P Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - X-F Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Y-B Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Z-W Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Z-W Fei
- Department of General Surgery, Xinhua Hospital (Chong Ming) Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 202150, P.R. China
| |
Collapse
|
29
|
Sohal DPS, Mykulowycz K, Uehara T, Teitelbaum UR, Damjanov N, Giantonio BJ, Carberry M, Wissel P, Jacobs-Small M, O'Dwyer PJ, Sepulveda A, Sun W. A phase II trial of gemcitabine, irinotecan and panitumumab in advanced cholangiocarcinoma. Ann Oncol 2013; 24:3061-5. [PMID: 24146220 DOI: 10.1093/annonc/mdt416] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Current data suggest that chemotherapy combinations may be superior to single agents in biliary tract cancer. The epidermal growth factor receptor (EGFR) pathway appears to be associated with tumor stage, prognosis and response to therapy. This trial was designed to evaluate the tolerability and efficacy of the combination of panitumumab, a monoclonal anti-EGFR antibody, with gemcitabine and irinotecan. PATIENTS AND METHODS Patients with advanced (unresectable or metastatic) cholangiocarcinoma, ECOG PS 0-2, and adequate organ function were treated with panitumumab (9 mg/kg) on day 1, and gemcitabine (1000 mg/m(2)) and irinotecan (100 mg/m(2)) on days 1 and 8 of a 21-day cycle. The primary objective was to evaluate the 5-month progression-free survival (PFS). Secondary objectives included overall response rate (ORR) and overall survival (OS). Mutational analyses of EGFR, KRAS and BRAF were carried out when feasible. RESULTS Thirty-five patients received a median of 7 (0-30) cycles. The most common grade 3/4 toxic effects were neutropenia (10 patients, 29%), thrombocytopenia (10 patients, 29%), skin rash (13 patients, 37%) and dehydration (9 patients, 26%). Two patients had CR, 9 had partial response (PR), and 15 had SD for a disease-control rate of 74% (by RECIST) in 28 assessable patients. Two patients went on to have surgical resection. The 5-month PFS was 69%. The median PFS was 9.7 months and the median OS was 12.9 months. In 17 testable samples, no EGFR or BRAF mutations were identified; there were 7 KRAS mutations, with no difference in OS by KRAS status. CONCLUSIONS This study showed encouraging efficacy of this regimen with good tolerability. Further study in this area is warranted. Clinical Trials Number: The trial was registered with the National Cancer Institute (www.clinicaltrials.gov identifier NCT00948935).
Collapse
Affiliation(s)
- D P S Sohal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gu MJ, Choi JH. Epithelial-mesenchymal transition phenotypes are associated with patient survival in intrahepatic cholangiocarcinoma. J Clin Pathol 2013; 67:229-34. [PMID: 24062361 DOI: 10.1136/jclinpath-2013-201806] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the epithelial-mesenchymal transition (EMT) and to assess its prognostic significance in intrahepatic cholangiocarcinoma. METHODS We performed immunohistochemical stainings for E-cadherin, β-catenin, vimentin and fibronectin in a total of 85 cases. RESULTS Expression of vimentin and reduced expression of E-cadherin were found to show correlation with poor differentiation (p=0.017, p=0.010). Reduced expression of β-catenin showed significant association with poor differentiation (p=0.023), tumour size (p=0.028) and lymph node metastasis (p=0.011). According to the expression pattern of E-cadherin, β-catenin, vimentin and fibronectin we categorised four phenotypes: complete type, hybrid type, null type and wild type. The complete type of β-catenin with vimentin or fibronectin was found to show an association with lymph node metastasis (p=0.048, p=0.012). Significantly worse overall survival (OS) and disease-free survival (DFS) was observed for the complete type, and the best OS and DFS were observed for the wild type. CONCLUSIONS EMT phenotypes can be useful markers for prediction of patient outcomes.
Collapse
Affiliation(s)
- Mi Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, , Daegu, Republic of Korea
| | | |
Collapse
|
31
|
The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:546318. [PMID: 23986907 PMCID: PMC3748428 DOI: 10.1155/2013/546318] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Despite significant improvements in diagnosis, surgical techniques, and advancements in general patient care, the majority of deaths from cancer are caused by the metastases. There is an urgent need for an improved understanding of the cellular and molecular factors that promote cancer metastasis. The process of cancer metastasis depends on multiple interactions between cancer cells and host cells. Studies investigating the TGF α-EGFR signaling pathways that promote the growth and spread of cancer cells. Moreover, the signaling activates not only tumor cells, but also tumor-associated endothelial cells. TGF α-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGF α-positive cancers. In this review, we describe the recent advances in our understanding of the molecular basis of cancer metastasis.
Collapse
|
32
|
Hoffmann AC, Goekkurt E, Danenberg PV, Lehmann S, Ehninger G, Aust DE, Stoehlmacher-Williams J. EGFR, FLT1 and heparanase as markers identifying patients at risk of short survival in cholangiocarcinoma. PLoS One 2013; 8:e64186. [PMID: 23704979 PMCID: PMC3660514 DOI: 10.1371/journal.pone.0064186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
Background Cholangiocarcinoma remains to be a tumor with very few treatment choices and limited prognosis. In this study, we sought to determine the prognostic role of fms-related tyrosine kinase 1/vascular endothelial growth factor receptor 1 (FLT1/VEGFR1), heparanase (HPSE) and epidermal growth factor receptor (EGFR) gene expression in patients with resected CCC. Methods 47 formalin-fixed paraffin embedded FFPE tumor samples from patients with resected CCC were analyzed. FFPE tissues were dissected using laser-captured microdissection and analyzed for FLT1, FLT4, HPSE, Hif1a, VEGFA/C, HB-EGF, PDGFA, PDGF-RA and EGFR mRNA expression using a quantitative real-time RT-PCR method. Gene expression values (relative mRNA levels) are expressed as ratios between the target gene and internal reference genes (beta-actin, b2mg, rplp2, sdha). Results EGFR, FLT1 and HPSE expression levels were significantly associated with overall survival (OS). FLT1 showed the strongest significant independent association with overall survival in a multivariate cox regression analysis when compared to the other genes and clinicopathological factors with a nearly 5 times higher relative risk (4.74) of dying earlier when expressed in low levels (p = 0.04). ROC Curve Analysis revealed that measuring EGFR potentially identifies patients at risk of a worsened outcome with a sensitivity of 80% and a specificity of 75% (p = 0.01). Conclusions EGFR and FLT1 seem to be potential markers to identify those patients at high risk of dying from cholangiocarcinoma. Therefore these markers may help to identify patient subgroups in need for a more aggressive approach in a disease that is in desperate need for new approaches.
Collapse
Affiliation(s)
- Andreas-Claudius Hoffmann
- Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lautem A, Heise M, Gräsel A, Hoppe-Lotichius M, Weiler N, Foltys D, Knapstein J, Schattenberg JM, Schad A, Zimmermann A, Otto G, Lang H, Galle PR, Schuchmann M, Zimmermann T. Downregulation of organic cation transporter 1 (SLC22A1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int J Oncol 2013; 42:1297-304. [PMID: 23440379 DOI: 10.3892/ijo.2013.1840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/11/2013] [Indexed: 01/07/2023] Open
Abstract
Cholangiocellular carcinoma (CCA) is a primary hepatic malignancy derived from cholangiocytes. The prognosis for CCA patients is very poor and conventional chemotherapy has been proven ineffective in improving long‑term patient survival rates. Organic cation transporters (OCTs) mediate the transport of a broad spectrum of endogenous substrates and the detoxification of xenobiotics. Moreover, OCTs are considered responsible for the responsiveness towards platinum‑based chemotherapies. Currently, there are no data available regarding the role of OCTs in CCA. Therefore, the aim of this study was to investigate the expression of OCT1 and OCT3 in CCA and the corresponding non-neoplastic tumor‑surrounding tissue (TST). OCT1 (SLC22A1) and OCT3 (SLC22A3) mRNA expression was measured in primary human CCA by real-time PCR (n=27). Protein expression was determined by western blot analysis and immunohistochemistry. Data were correlated with the clinicopathological parameters of CCA. Real-time PCR demonstrated a downregulation of the expression of SLC22A1 and SLC22A3 in CCA, compared to that in TST (p<0.001). A low SLC22A1 expression was associated with a worse patient survival (p<0.05). The downregulation of SLC22A1 was significantly associated with advanced CCA stages, since tumors with a low SLC22A1 mRNA expression presented with larger tumor diameters (p=0.02). There were no significant differences in tumor characteristics or patient survival in relation to the level of SLC22A3 expression. Western blot analysis and immunohistochemistry confirmed the downregulation of OCT1 and OCT3 protein levels in cancerous tissue compared to those in TST. In conclusion, the downregulation of OCT1 is associated with tumor progression and worse overall patient survival rates.
Collapse
Affiliation(s)
- Anja Lautem
- Department of Hepatobiliary and Transplantation Surgery, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang ZQ, Fan LF. EGFR signaling pathway and targeted therapy for cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:514-520. [DOI: 10.11569/wcjd.v21.i6.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma has a poor prognosis and is difficult to detect in early stage. Overexpression of epidermal growth factor receptor (EGFR) plays an important role in the evolution of malignant tumors, and EGFR-targeted therapy has become a hotspot in cancer treatment. Various monoclonal antibodies and small molecule tyrosine kinase inhibitors targeting EGFR have been developed. Currently, there have been only very few reported clinical trials that assessed the efficacy of EGFR-targeted drugs in the management of cholangiocarcinoma. A comprehensive description of the EGFR signaling pathway and EGFR-targeted treatment for cholangiocarcinoma has great significance for the treatment of this malignancy.
Collapse
|
35
|
Vasilieva LE, Papadhimitriou SI, Dourakis SP. Modern diagnostic approaches to cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 2012; 11:349-59. [PMID: 22893461 DOI: 10.1016/s1499-3872(12)60192-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cholangiocarcinoma is a very aggressive tumor with poor survival. Therefore, early diagnosis and surgical resection are of paramount importance. Its diagnosis is difficult because access to the tumor is not easy. Biopsy is possible only for intrahepatic cholangiocarcinoma, which accounts for 10% of cases. Routine brush cytology from endoscopic retrograde cholangiopancreatography (ERCP) has a high specificity of 100% but unfortunately a low sensitivity of 30%. In this review we briefly describe new diagnostic techniques applicable to ERCP brush cytology specimens and targeting the genetic background of the disease, in particular fluorescence in situ hybridization (FISH) and digital image analysis (DIA). DATA SOURCES The PubMed database up to 2011 was used for the retrieval of relevant articles. The search terms FISH, fluorescence in situ hybridization, DIA, digital image analysis and cholangiocarcinoma were used. Both original and review articles were used. RESULTS FISH identifies cells with chromosomal abnormalities, mainly numerical aberrations, using a mixture of fluorescence-labeled probes. FISH offers a higher sensitivity than routine cytology, retaining a high level of specificity. The DIA criterion for malignancy is demonstration of aneuploidy. This technique increases the sensitivity to 40%, but the specificity remains low. Preliminary data from application to other tumors suggest that combination of FISH and DIA may be of further benefit. CONCLUSIONS The new techniques offer a significantly enhanced diagnostic efficacy in the evaluation of ERCP brush specimens. Apart from contributing to a more timely diagnosis, their wider application to cholangiocarcinoma may also facilitate the genetic study of the disease and add to our understanding of oncogenesis at the molecular level, with the prospect of identifying targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Larisa E Vasilieva
- Second Department of Internal Medicine, University of Athens Medical School, Hippokration General Hospital, 114 Vas Sofias Avenue, Athens 11527, Greece.
| | | | | |
Collapse
|
36
|
Sasaki T, Kuniyasu H, Luo Y, Kato D, Shinya S, Fujii K, Ohmori H, Yamashita Y. Significance of epithelial growth factor in the epithelial-mesenchymal transition of human gallbladder cancer cells. Cancer Sci 2012; 103:1165-71. [PMID: 22404757 DOI: 10.1111/j.1349-7006.2012.02264.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/28/2012] [Accepted: 03/03/2012] [Indexed: 12/14/2022] Open
Abstract
Five gallbladder cancer (GBC) cell lines were examined for morphological changes in collagen gel culture. GBh3 and HUCCT-1 cells formed tubules in response to treatment with epithelial growth factor (EGF) and hepatocyte growth factor (HGF), and showed high levels of expression of E-cadherin (ECD), and low levels of SNAIL, vimentin, transforming growth factor (TGF)-β, and nucleostemin (NS). In contrast, the GBd15 and FU-GBC-1 cell lines treated with EGF and HGF showed a scattering phenotype, and expressed low levels of ECD and high levels of SNAIL, vimentin, TGF-β, and NS. All cell lines expressed the EGF receptor, c-Met, EGF, and TGF-α, but not HGF. Transforming growth factor-β was upregulated by EGF. Knockdown of the EGF receptor abrogated both tubule formation and scattering, whereas KD of TGF-β abrogated only scattering. Knockdown of EGF induced nuclear translocation of β-catenin and Wnt-related NS induction in the scattering cell lines, but not in the tubule-forming cell lines, whereas KD of glycogen synthase kinase-3β in the tubule-forming cell lines resulted in the nuclear translocation of β-catenin and Wnt-related NS induction in response to EGF treatment. These results suggest that EGF enhances epithelial-mesenchymal transformation and acquisition of stemness in GBC cells with a scattering phenotype through the activity of β-catenin. Repression of ECD in scattering GBC cells induced the release of β-catenin from the cell adhesion complexes along the plasma membrane and its translocation to the nucleus to activate Wnt signaling, which upregulated NS.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Gastroenterolgical Surgery, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nam HJ, Kim HP, Yoon YK, Song SH, Min AR, Han SW, Im SA, Kim TY, Oh DY, Bang YJ. The irreversible pan-HER inhibitor PF00299804 alone or combined with gemcitabine has an antitumor effect in biliary tract cancer cell lines. Invest New Drugs 2011; 30:2148-60. [PMID: 22197904 DOI: 10.1007/s10637-011-9782-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
|
38
|
Ohashi H, Adachi Y, Yamamoto H, Taniguchi H, Nosho K, Suzuki H, Arimura Y, Imai K, Carbone DP, Shinomura Y. Insulin-like growth factor receptor expression is associated with aggressive phenotypes and has therapeutic activity in biliary tract cancers. Cancer Sci 2011; 103:252-61. [PMID: 22044563 DOI: 10.1111/j.1349-7006.2011.02138.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor (IGF)-I receptor (IGF-IR) signaling is required for carcinogenicity and progression of several cancers but the function of this pathway and its utility as a therapeutic target have not been studied comprehensively in biliary tract carcinomas (BTC). We investigated the immunohistochemical expression of elements of the IGF axis, matrilysin, overexpression of p53 and the methylation status of the IGFBP-3 promoter in 80 surgically resected BTC. We also assessed the effect of IGF-IR blockade on signal transduction, proliferation and survival in three BTC cell lines using a new tyrosine kinase inhibitor, BMS-536924, and dominant negative IGF-IR (IGF-IR/dn). The effects of IGF-IR blockade was also studied in nude mouse xenograft models. IGF-I was expressed in 60% and IGF-II in 50% of tumors. High expression was associated with tumor size. IGF-IR was expressed in 69% of the cases and was associated with advanced stage and matrilysin expression. Hypermethylation of the IGFBP-3 promoter was detected in 41% of BTC and was inversely correlated with p53 expression. BMS-536924 blocked autophosphorylation of IGF-IR and both Akt and ERK activation by both IGF-I and insulin. BMS-536924 suppressed proliferation and tumorigenicity in vitro in a dose-dependent fashion. This inhibitor upregulated chemotherapy-induced apoptosis in a dose-dependent fashion. Moreover, IGF-IR blockade was effective against tumors in mice. IGF-IR might identify a subset of BTC with a particularly aggressive phenotype and is a candidate therapeutic target in this disease. BMS-536924 might have significant therapeutic utility.
Collapse
Affiliation(s)
- Hirokazu Ohashi
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yeh CN, Lin KJ, Chen TW, Wu RC, Tsao LC, Chen YT, Weng WH, Chen MF. Characterization of a novel rat cholangiocarcinoma cell culture model-CGCCA. World J Gastroenterol 2011; 17:2924-32. [PMID: 21734803 PMCID: PMC3129506 DOI: 10.3748/wjg.v17.i24.2924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize a culture model of rat CCA cells, which were derived from a transplantable TTA-induced CCA and designated as Chang Gung CCA (CGCCA).
METHODS: The CGCCA cells were cultured at in vitro passage 12 times on a culture dish in DMEM medium. To measure the doubling time, 103 cells were plated in a 96-well plate containing the growth medium. The cells were harvested 4 to 10 d after seeding, and a standard MTT assay was used to measure the growth. The phenotype of CACCA cell and xenograft was determined by immunohistochemical study. We also determine the chromosomal alterations of CGCCA, G-banding and spectral karyotyping studies were performed. The CGCCA cell line was transplanted into the nude mice for examining its tumorigenicity. 2-Deoxy-2-(18F)fluoro-D-glucose (FDG) autoradiography was also performed to evaluate the FDG uptake of the tumor xenograft.
RESULTS: The doubling time for the CGCCA cell line was 32 h. After transplantation into nude mice, FDG autoradiography showed that the tumors formed at the cell transplantation site had a latency period of 4-6 wk with high FDG uptake excluding necrosis tissue. Moreover, immunohistochemical staining revealed prominent cytoplasmic expression of c-erb-B2, CK19, c-Met, COX-II, EGFR, MUC4, and a negative expression of K-ras. All data confirmed the phenotypic features of the CGCCA cell line coincide with the xenograft mice tumors, indicating cells containing the tumorigenicity of CCA originated from CCA. In addition, karyotypic banding analysis showed that the diploid (2n) cell status combines with ring and giant rod marker chromosomes in these clones; either both types simultaneously appeared or only one type of marker chromosome in a pair appeared in a cell. The major materials contained in the marker chromosome were primarily identified from chromosome 4.
CONCLUSION: The current CGCCA cell line may be used as a non-K-ras effect CCA model and to obtain information and reveal novel pathways for CCA. Further applications regarding tumor markers or therapeutic targeting of CCA should be addressed accordingly.
Collapse
|
40
|
Zhu AX, Hezel AF. Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology 2011; 53:695-704. [PMID: 21274890 DOI: 10.1002/hep.24145] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biliary tract cancers (BTCs), which encompass intra- and extrahepatic cholangiocarcinomas as well as gallbladder carcinomas, are a genetically diverse collection of cancers. Most patients with BTC will present with unresectable or metastatic disease. Although the standard systemic chemotherapy approaches are emerging, the prognosis remains poor. Development of molecularly targeted therapies in advanced BTC remains challenging. Recent early-stage clinical trials with targeted therapies appear promising, although the relationships between subsets of patients with positive responses to therapy and tumor genetics remain unexplored. Here we summarize the relevant molecular pathogenesis, recent and ongoing clinical trials with targeted agents, and the key issues in clinical trial design in BTC.
Collapse
Affiliation(s)
- Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
41
|
Pignochino Y, Sarotto I, Peraldo-Neia C, Penachioni JY, Cavalloni G, Migliardi G, Casorzo L, Chiorino G, Risio M, Bardelli A, Aglietta M, Leone F. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer 2010; 10:631. [PMID: 21087480 PMCID: PMC3000850 DOI: 10.1186/1471-2407-10-631] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/18/2010] [Indexed: 12/16/2022] Open
Abstract
Background Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC. Methods Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs. Results EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are sensitive to lapatinib as a single agent. Molecular mechanisms were confirmed by western blot analysis. Conclusion These data demonstrate that EGFR and HER2 pathways are suitable therapeutic targets for BTCs. The combination of gemcitabine with drugs targeting these pathways gives encouraging results and further clinical studies could be warranted.
Collapse
Affiliation(s)
- Ymera Pignochino
- Department of Medical Oncology, University of Torino Medical School, Institute for Cancer Research and Treatment, Candiolo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|