1
|
Lian H, Xiong Y, Zhao G, Yi M, Wang J, Liu H, Zhou Y. Network Pharmacology and Bioinformatics Analysis to Identify the Molecular Targets and its Biological Mechanisms of Sciadopitysin against Glioblastoma. J Cancer 2024; 15:3675-3683. [PMID: 38911393 PMCID: PMC11190769 DOI: 10.7150/jca.94202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/30/2024] [Indexed: 06/25/2024] Open
Abstract
Glioblastoma multiform (GBM) is categorized as the most malignant subtype of gliomas, which comprise nearly 75% of malignant brain tumors in adults. Increasing evidence suggests that network pharmacology will be a novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The present study aimed to use a network pharmacology approach to establish the predictive targets of sciadopitysin against GBM and elucidate its biological mechanisms. Firstly, targets of sciadopitysin were obtained from the SwissTargetPrediction database, and genes associated with the pathogenesis of GBM were identified from the DiGeNET database. Sixty-four correlative hits were identified as anti-glioblastoma targets of sciadopitysin. Functional enrichment and pathway analysis revealed significant biological mechanisms of the targets. Interaction of protein network and cluster analysis using STRING resulted in two crucial interacting hub genes, namely, HSP90 and AKT1. Additionally, the in vitro cytotoxic potential of sciadopitysin was assessed on GBM U87 cells. The findings indicate that the pharmacological action of sciadopitysin against GBM might be associated with the regulation of two core targets: HSP90 and AKT1. Thus, the network pharmacology undertaken in the current study established the core active targets of sciadopitysin, which may be extensively applied with further validations for treatment in GBM.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Yajie Xiong
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 651701, P.R. China
| | - Guojie Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Meng Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jingchao Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518055, P.R. China
| | - Huimin Liu
- Department of pediatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430077, P.R. China
| | - Yun Zhou
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| |
Collapse
|
2
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
3
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
4
|
Kang X, Chen J, Hou JF. HSP90 facilitates stemness and enhances glycolysis in glioma cells. BMC Neurol 2022; 22:420. [DOI: 10.1186/s12883-022-02924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Glioma is one of the most commonly occurring malignant brain cancers with high recurrence and mortality. Glioma stem cells (SCs) are a rare sub-group of glioma cells that play a critical role in tumor progression. Heat shock protein 90 (HSP90) is known to promote the stemness of glioma SCs. Here, we investigated the role of HSP90 in glioma SC metabolism, to reveal its potential as a novel therapeutic target.
Methods
Self-renewal assays were used to assess stemness. Cell migration, invasion and viability were measured using Transwell and CCK-8 assays, respectively. Tumor growth was evaluated in xenograft nude mouse models. The expression of known markers of stemness including CD44, A2B5, Oct4, Nestin, Lgr5, Sox2, CD24 were assessed by western blotting. HSP90 expression was assessed by western blotting and immunohistochemistry (IHC). Glucose consumption, lactic acid production and ATP levels were measured using commercially available kits. Extracellular acidification rates (ECAR) were measured using the Seahorse XFe/XF analyzer.
Results
HSP90 was upregulated in spheroid cells compared to parental cells. HSP90 facilitated the characteristics of SCs through enhancing self-renewal capacity, glucose consumption, lactic acid production, total ATP, ECAR and glycolysis. 2-DG, an inhibitor of glycolysis, reduced HSP90 expression and inhibited the stemness of glioma cells.
Conclusions
We show that HSP90 accelerates stemness and enhances glycolysis in glioma cells. Inhibition of glycolysis with 2DG prevented stemness. This reveals new roles for HSP90 during glioma progression and highlights this protein as a potential target for much-needed anti-glioma therapeutics.
Collapse
|
5
|
Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci 2022; 23:ijms23147792. [PMID: 35887137 PMCID: PMC9324353 DOI: 10.3390/ijms23147792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| |
Collapse
|
6
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
7
|
Wang R, Alvarez DA, Crouch BT, Pilani A, Lam C, Zhu C, Hughes P, Katz D, Haystead T, Ramanujam N. Understanding the sources of errors in ex vivo Hsp90 molecular imaging for rapid-on-site breast cancer diagnosis. BIOMEDICAL OPTICS EXPRESS 2021; 12:2299-2311. [PMID: 33996230 PMCID: PMC8086448 DOI: 10.1364/boe.418818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 05/12/2023]
Abstract
Overexpression of heat shock protein 90 (Hsp90) on the surface of breast cancer cells makes it an attractive molecular biomarker for breast cancer diagnosis. Before a ubiquitous diagnostic method can be established, an understanding of the systematic errors in Hsp90-based imaging is essential. In this study, we investigated three factors that may influence the sensitivity of ex vivo Hsp90 molecular imaging: time-dependent tissue viability, nonspecific diffusion of an Hsp90 specific probe (HS-27), and contact-based imaging. These three factors will be important considerations when designing any diagnostic imaging strategy based on fluorescence imaging of a molecular target on tissue samples.
Collapse
Affiliation(s)
- Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Daniel A. Alvarez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Aditi Pilani
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Christopher Lam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Currently at Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - David Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
8
|
PNSA, a Novel C-Terminal Inhibitor of HSP90, Reverses Epithelial-Mesenchymal Transition and Suppresses Metastasis of Breast Cancer Cells In Vitro. Mar Drugs 2021; 19:md19020117. [PMID: 33672529 PMCID: PMC7923764 DOI: 10.3390/md19020117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of deaths in breast cancer, and novel and effective treatments to inhibit cancer metastasis remain urgently developed. The expression level of heat shock protein 90 (HSP90) in invasive breast cancer tissue is higher than in adjacent non-cancerous tissue. In the present study, we investigated the inhibitory effect of penisuloxazin A (PNSA), a novel C- terminal inhibitor of HSP90, on metastasis of breast cancer cells and related mechanism in vitro. We found that PNSA obviously affected adhesion, migration, and invasion of triple-negative breast cancer (TNBC) MDA-MB-231 cells and Trastuzumab-resistant JIMT-1 cells. Furthermore, PNSA was capable of reversing epithelial-mesenchymal transformation (EMT) of MDA-MB-231 cells with change of cell morphology. PNSA increases E-cadherin expression followed by decreasing amounts of N-cadherin, vimentin, and matrix metalloproteinases9 (MMP9) and proteolytic activity of matrix metalloproteinases2 (MMP2) and MMP9. Comparatively, the N-terminal inhibitor of HSP90 17-allyl-17-demethoxygeldanamycin (17-AAG) had no effect on EMT of MDA-MB-231 cells. PNSA was uncovered to reduce the stability of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) proteins and thereby inhibiting their downstream signaling transductions by inhibition of HSP90. In addition, PNSA reduced the expression of programmed cell death-ligand 1 (PD-L1) to promote natural killer (NK) cells to kill breast cancer cells with a dose far less than that of cytotoxicity to NK cell itself, implying the potential of PNSA to enhance immune surveillance against metastasis in vivo. All these results indicate that PNSA is a promising anti-metastasis agent worthy of being studied in the future.
Collapse
|
9
|
Zhang T, Wu B, Akakuru OU, Yao C, Sun S, Chen L, Ren W, Wu A, Huang P. Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. Cancer Lett 2020; 500:41-50. [PMID: 33359275 DOI: 10.1016/j.canlet.2020.12.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria-targeted mild-temperature photothermal therapy (MT-PTT) is a promising strategy that can maximize anticancer effects and reduce adverse reactions. Here, a novel photosensitizer with mitochondrial targeting based on IR780 iodide and heat shock protein 90 inhibitor (BIIB021), which can passively accumulate in MCF-7 cells and achieve effective MT-PTT effect is synthesized. The prepared PEG-IR780-BIIB021 nano-micelles possess considerable biocompatibility and biological stability, with an encapsulation efficiency of about 84% for BIIB021. They can selectively enrich in mitochondria, and release BIIB021 after NIR irradiation to reduce cell tolerance to heat, thereby reducing the mitochondrial membrane potential and rapidly affecting key intrinsic apoptotic factors (Cyt-C, Caspase-9, Bcl-2 and Bax) to achieve the effect of MT-PTT. It is believed that mitochondria-targeted MT-PTT generated by the PEG-IR780-BIIB021 nano-micelles is a promising therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Bihan Wu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Shan Sun
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Libin Chen
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo, 315010, PR China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
10
|
Gamboa AC, Ethun CG, Postlewait LM, Lopez-Aguiar AG, Zhelnin K, Krasinskas A, El-Rayes BF, Russell MC, Kooby DA, Staley CA, Cardona K, Maithel SK. HSP90 expression and early recurrence in gastroenteropancreatic neuroendocrine tumors: Potential for a novel therapeutic target. Surg Oncol 2020; 35:460-465. [PMID: 33080545 DOI: 10.1016/j.suronc.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Heat shock protein (HSP)-90 promotes tumor growth and is overexpressed in many malignancies. HSP90 expression profile and its potential as a therapeutic target in primary and metastatic neuroendocrine tumors (NETs) are not known. METHODS HSP90 cytoplasmic expression and Ki-67 index were re-reviewed and scored by a pathologist blinded to all other clinicopathologic variables for patients who underwent resection of primary and metastatic gastroenteropancreatic (GEP) neuroendocrine tumors at a single institution (2000-2013). Primary outcome was recurrence-free survival (RFS). RESULTS Of 263 tumors reviewed, 73% (n = 191) were primary GEP NETs, and 12% (n = 31) were NET liver metastases. Of the primary GEP-NETs, mean age was 56 years, 42% were male; 53% (n = 103) were pancreatic and 23% (n = 44) were small bowel. HSP90 expression was high in 34% (n = 64) and low in 66% (n = 127). Compared to low expression, high HSP90 was associated with advanced T-stage (T3/T4) (47 vs 27%; p = 0.02). Among patients who underwent curative-intent resections for primary, non-metastatic NETs (n = 145), high HSP90 was independently associated with worse RFS (HR 5.09, 95% CI 1.65-15.74; p = 0.005), after accounting for positive margin, LN involvement, increased tumor size, site of primary tumor, and Ki-67. When assessing NET liver metastases, 13% (n = 4) had high HSP90 expression and 87% (n = 26) had low expression. Patients with liver metastases with high HSP90 tended to have worse 1- and 3-year progression-free survival (25%, 25%) compared to those with low HSP90 (69%, 49%; p = 0.059). CONCLUSION HSP90 exhibits differential expression in resected GEP-NETs and liver metastases. High cytoplasmic expression is associated with early disease recurrence, even after accounting for other adverse pathologic factors. HSP90 inhibition may be a potential therapeutic target for neuroendocrine tumors.
Collapse
Affiliation(s)
- Adriana C Gamboa
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Cecilia G Ethun
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Alexandra G Lopez-Aguiar
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Kristen Zhelnin
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Alyssa Krasinskas
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria C Russell
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - David A Kooby
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Charles A Staley
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Kenneth Cardona
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Autenschlyus AI, Bernado AV, Davletova KI, Arkhipov SA, Zhurakovsky IP, Mikhailova ES, Proskura AV, Bogachuk AP, Lipkin VM, Lyakhovich VV. [Proteins and immunohistochemical markers of breast diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:167-173. [PMID: 32420899 DOI: 10.18097/pbmc20206602167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, we have compared malignant and non-malignant diseases of the mammary gland using 8 proteins: HRG, MUC1, PAI-1, HSP90αA1, CDH1, ERα, PGR and IL-12. Their concentrations in the supernatants of blood cells and breast biopsies were compared in terms of spontaneous production, induced by a polyclonal activator and after exposure to biopsy samples of the HLDF differentiation factor, as well as the indices of the effect of the polyclonal activator and HLDF on the protein production. In addition, the correlation relationships of the above indicators with the expression of markers of the epithelial-mesenchymal transition: collagen type II (CII), β-1 integrin (CD29) and cadherin-E (CDH1) were studied. The study revealed statistically significant differences in the concentration of HRG in the supernatant of blood cells, IL-12 during spontaneous production by biopsy specimens, PGR production of biopsy specimens induced by the polyclonal activator, CDH1 and IL-12 production biopsy specimens exposed to HLDF. According to the influence index of the polyclonal activator and HLDF, statistically significant differences were found for CDH1production. Comparison of non-specific invasive carcinoma biopsy specimens and non-malignant breast diseases by means of the markers of the epithelial-mesenchymal transition revealed statistically significant differences in CD29 expression and the lack of differences in the expression of CDH1 and CII. This indicates the presence of cell atypia in samples of non-malignant breast diseases; it is confirmed by the recognized correlation between the production of certain proteins and the expression of the epithelial-mesenchymal transition markers.
Collapse
Affiliation(s)
- A I Autenschlyus
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Bernado
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - K I Davletova
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - S A Arkhipov
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - I P Zhurakovsky
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E S Mikhailova
- Novosibirsk State Medical University, Novosibirsk, Russia; Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A V Proskura
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - A P Bogachuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V M Lipkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V V Lyakhovich
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
12
|
Xu D, Dong P, Xiong Y, Yue J, Konno Y, Ihira K, Kobayashi N, Todo Y, Watari H. MicroRNA-361-Mediated Inhibition of HSP90 Expression and EMT in Cervical Cancer Is Counteracted by Oncogenic lncRNA NEAT1. Cells 2020; 9:cells9030632. [PMID: 32151082 PMCID: PMC7140536 DOI: 10.3390/cells9030632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process contributing to cervical cancer (CC) metastasis, and microRNAs (miRNAs) modulate the expression of genes implicated in EMT. However, the accurate role of miR-361 in CC-associated EMT and the mechanisms underlying its function in CC remains largely unknown. The functional roles of miR-361 in CC cells were explored by a series of cell functional assays. Luciferase reporter assays were used to demonstrate the potential interaction between miR-361, HSP90, and long non-coding RNA (lncRNA) NEAT1. We detected a reduction of miR-361 expression in CC tissues compared with normal tissues, and miR-361 overexpression inhibited invasion and EMT phenotypes of CC cells by directly targeting a key EMT activator HSP90. Additionally, we detected significantly higher levels of HSP90 in CC tissues compared with normal tissues, and high expression of HSP90 predicted a poorer prognosis. We further identified NEAT1 as a significantly upregulated lncRNA in CC tissues and high expression of NEAT1 was associated with worse survival in CC patients. NEAT1 directly repressed miR-361 expression and played an oncogenic role in CC cell invasion and sphere formation. Conclusions: These results demonstrated that miR-361 directly targets HSP90 to inhibit the invasion and EMT features, and NEAT1 functions as an oncogenic lncRNA that suppresses miR-361 expression and induces EMT and sphere formation in CC cells, thus providing critical insights into the molecular pathways operating in this malignancy.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510275, China;
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 060-0042, Japan;
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| |
Collapse
|
13
|
Crouch BT, Gallagher J, Wang R, Duer J, Hall A, Soo MS, Hughes P, Haystead T, Ramanujam N. Exploiting heat shock protein expression to develop a non-invasive diagnostic tool for breast cancer. Sci Rep 2019; 9:3461. [PMID: 30837677 PMCID: PMC6400939 DOI: 10.1038/s41598-019-40252-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
Leveraging the unique surface expression of heat shock protein 90 (Hsp90) in breast cancer provides an exciting opportunity to develop rapid diagnostic tests at the point-of-care setting. Hsp90 has previously been shown to have elevated expression levels across all breast cancer receptor subtypes. We have developed a non-destructive strategy using HS-27, a fluorescently-tethered Hsp90 inhibitor, to assay surface Hsp90 expression on intact tissue specimens and validated our approach in clinical samples from breast cancer patients across estrogen receptor positive, Her2-overexpressing, and triple negative receptor subtypes. Utilizing a pre-clinical biopsy model, we optimized three imaging parameters that may affect the specificity of HS-27 based diagnostics – time between tissue excision and staining, agent incubation time, and agent dose, and translated our strategy to clinical breast cancer samples. Findings indicated that HS-27 florescence was highest in tumor tissue, followed by benign tissue, and finally followed by mammoplasty negative control samples. Interestingly, fluorescence in tumor samples was highest in Her2+ and triple negative subtypes, and inversely correlated with the presence of tumor infiltrating lymphocytes indicating that HS-27 fluorescence increases in aggressive breast cancer phenotypes. Development of a Gaussian support vector machine classifier based on HS-27 fluorescence features resulted in a sensitivity and specificity of 82% and 100% respectively when classifying tumor and benign conditions, setting the stage for rapid and automated tissue diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Roujia Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joy Duer
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Allison Hall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Mary Scott Soo
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Yousuf Z, Iman K, Iftikhar N, Mirza MU. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:447-459. [PMID: 28652811 PMCID: PMC5476443 DOI: 10.2147/bctt.s132074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast cancer is characterized by an uncontrolled growth of cells in breast tissue. Genes that foster cell growth in breast cells are overexpressed, giving rise to breast tumors. The identification of effective inhibitors represents a rational chemopreventive strategy. The current in silico study provides a pharmacoinformatic approach for the identification of active compounds against a co-chaperone HSP90 and the human epidermal growth factor receptors EGFR and HER2/neu receptor. The elevated levels of expression of these target proteins have been documented in breast cancer. The utilization of drug-likeness filters helped to evaluate the pharmacological activity of potential lead compounds. Those fulfilling this criterion were subjected to energy minimization for 1000 steepest descent steps at a root means square gradient of 0.02 with an Amber ff12SB force field. Based on molecular docking results and binding interaction analysis, this study represents five chemical compounds (S-258282355, S-258012947, S-259417539, S-258002927, and S-259411474) that indicate high binding energies that range between -8.7 to -10.3 kcal/mol. With high cytochrome P inhibitory promiscuity activity, these multi-targeted potential hits portray not only good physiochemical interactions but also an excellent profile of absorption, distribution, metabolism, excretion, and toxicity, which hypothesizes that these compounds can be developed as anticancer drugs in the near future.
Collapse
Affiliation(s)
- Zeeshan Yousuf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore
| | - Kanzal Iman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore
| | - Nauman Iftikhar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad
| | - Muhammad Usman Mirza
- Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan.,Medicinal Chemistry, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Prabhu S, Ananthanarayanan P, Aziz SK, Rai S, Mutalik S, Sadashiva SRB. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity. Toxicol Appl Pharmacol 2017; 320:60-72. [DOI: 10.1016/j.taap.2017.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/15/2022]
|
16
|
Polat AK, Soran A, Kanbour-Shakir A, Menekse E, Levent Balci F, Johnson R. The role of molecular biomarkers for predicting adjacent breast cancer of Atypical Ductal Hyperplasia diagnosed on core biopsy. Cancer Biomark 2016; 17:293-300. [DOI: 10.3233/cbm-160641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ayfer Kamali Polat
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA
- Department of General Surgery, University of Ondokuz Mayıs Faculty of Medicine, Samsun, Turkey
| | - Atilla Soran
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA
| | - Amal Kanbour-Shakir
- Department of Pathology - Magee-Womens Hospital of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ebru Menekse
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA
| | - Fatih Levent Balci
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA
| | - Ronald Johnson
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Davies AE, Kortright K, Kaplan KB. Adenomatous polyposis coli mutants dominantly activate Hsf1-dependent cell stress pathways through inhibition of microtubule dynamics. Oncotarget 2016; 6:25202-16. [PMID: 26320184 PMCID: PMC4694825 DOI: 10.18632/oncotarget.4513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023] Open
Abstract
Cancer cells up-regulate cell stress pathways, including the protein chaperone Hsp90. Increases in Hsp90 are believed “buffer” mutant protein activities necessary for cancer phenotypes. Activation of the cell stress pathway also alters the transcriptional landscape of cells in ways that are critical for cancer progression. However, it is unclear when and how the cell stress pathway is de-regulated during cancer progression. Here we report that mutations in adenomatous polyposis coli (APC) found in colorectal cancer activate cell stress pathways in mouse intestinal crypt cells, prior to loss of heterozygosity at APC or to the appearance of canonical intestinal cancer markers. Hsp90 levels are elevated in normal APC heterozygote crypt cells and further elevated in non-cancer cells adjacent to dysplasias, suggesting that the Hsp90 stress pathway marks the “cancer-field” effect. Expression of mutant APC in normal human epithelial cells is sufficient to activate a cell stress pathway via perturbations in microtubule dynamics. Inhibition of microtubule dynamics is sufficient to activate an Hsf1-dependent increase in gene transcription and protein levels. We suggest that the early activation of this Hsf1 dependent cell stress pathway by mono-allelic mutations in APC can affect cell programming in a way that contributes to cancer onset.
Collapse
Affiliation(s)
- Alexander E Davies
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| | - Kaitlyn Kortright
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| | - Kenneth B Kaplan
- Department of Cell and Molecular Biology, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Pennisi R, Ascenzi P, di Masi A. Hsp90: A New Player in DNA Repair? Biomolecules 2015; 5:2589-618. [PMID: 26501335 PMCID: PMC4693249 DOI: 10.3390/biom5042589] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis), transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR) pathways that include: (i) cell cycle arrest; (ii) transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii) triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy.
- Istituto Nazionale di Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, Roma I-00136, Italy.
| |
Collapse
|
19
|
Petters E, Sokolowska-Wedzina A, Otlewski J. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule. Int J Mol Sci 2015; 16:19920-35. [PMID: 26307975 PMCID: PMC4581332 DOI: 10.3390/ijms160819920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 11/23/2022] Open
Abstract
Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.
Collapse
Affiliation(s)
- Edyta Petters
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Sokolowska-Wedzina
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| |
Collapse
|
20
|
Romaniuk A, Lуndіn M. Immune microenvironment as a factor of breast cancer progression. Diagn Pathol 2015; 10:79. [PMID: 26112049 PMCID: PMC4480440 DOI: 10.1186/s13000-015-0316-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
Background The rate of progression of the disease depends on various factors and the tumor microenvironment takes not the last place among them. One part of researchers argues that the presence of tumor-infiltrating leukocytes serves as a favorable marker of the disease. There exists a completely different point of view on the matter. The investigation of the effects of the inflammatory infiltration on the course of breast cancer process. Methods We found a pronounced inflammatory infiltration in the tumor microenvironment in 24 cases. Nineteen cases of IDC without inflammatory infiltration were used as a control group. Immunohistochemical reaction showed expression of ERα, PR, HER2/neu, E-cadherin, Hsp90α, Bcl-2, CD3, CD79α, S100 and Myeloperoxidase receptors. Mathematical calculations were done using Microsoft Excel 2010 with 12.0.5 Attestat option. Results We have determined five variants of immune microenvironment: interstitial, trabecular, nodular, diffuse and mixed. We have established a direct correlation between the expression of ERα and PR and indirect correlation between the receptors of steroid hormones and HER2/neo in both groups of breast cancer. HER2/neo positive tumors in 100% of cases were accompanied by the presence of heat shock proteins. There was a combination of Bcl-2 presence with the steroid receptors expression in 90 % of cases. There was found the indirect correlation between the presence of B lymphocytes and expression of steroid receptors. Conclusions The presence of B lymphocytes in an inflammatory infiltrate leads to the disappearance of estrogen receptors and progesterone receptors. It provokes the accumulation of Hsp90 in a cell. It contributes to the stabilization of HER2/neu receptors and most proteins that promote tumor progression. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1362330168161694
Collapse
Affiliation(s)
- Anatolii Romaniuk
- Department of Pathology, Sumy State University, m. Sumy, st. SKD 22-94, Sumy, Ukraine.
| | - Mykola Lуndіn
- Department of Pathology, Sumy State University, m. Sumy, st. SKD 22-94, Sumy, Ukraine.
| |
Collapse
|
21
|
Palmieri C, Mancini M, Benazzi C, Della Salda L. Heat shock protein 90 is associated with hyperplasia and neoplastic transformation of canine prostatic epithelial cells. J Comp Pathol 2014; 150:393-8. [PMID: 24679854 DOI: 10.1016/j.jcpa.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/02/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that regulates critical signalling proteins of cancer development and progression. Abnormal levels of HSP90 have been observed in human prostatic carcinoma (PC), with prognostic and therapeutic implications. Since spontaneously arising canine PC is a valuable model for the human disease, the aim of this study was to evaluate the immunohistochemical expression of HSP90 in two normal canine prostates, 17 canine prostates with benign prostatic hyperplasia (BPH) and five canine prostates with PC. HSP90 was expressed in the cytoplasm of epithelial cells in all samples, with a significant increase in labelled cells in PCs. Nuclear labelling was observed occasionally in normal tissue, but was increased in BPH and PC. HSP90 immunoreactivity in preneoplastic lesions (proliferative inflammatory atrophy and prostatic intraepithelial neoplasia) was similar to that in PCs. Increased HSP90 expression in canine PCs suggests the involvement of this molecule in carcinogenesis and tumour progression, supporting HSP90 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- C Palmieri
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, Queensland, Australia
| | - M Mancini
- Faculty of Veterinary Medicine, Teramo University, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - C Benazzi
- DIMEVET, Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, Italy
| | - L Della Salda
- Faculty of Veterinary Medicine, Teramo University, Piazza Aldo Moro 45, 64100 Teramo, Italy.
| |
Collapse
|
22
|
Barrott JJ, Haystead TAJ. Hsp90, an unlikely ally in the war on cancer. FEBS J 2013; 280:1381-96. [PMID: 23356585 PMCID: PMC3815692 DOI: 10.1111/febs.12147] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 12/25/2022]
Abstract
On the surface heat shock protein 90 (Hsp90) is an unlikely drug target for the treatment of any disease, let alone cancer. Hsp90 is highly conserved and ubiquitously expressed in all cells. There are two major isoforms α and β encoded by distinct genes and together they may constitute 1%-3% of the cellular protein. Deletion of the protein is embryonic lethal and there are no recognized polymorphisms suggesting an association or causal relationship with any human disease. With respect to cancer, the proteins absence from two recent high profile articles, 'Hallmarks of cancer: the next generation' [Hanahan & Weinberg (2011) Cell 144, 646-674] and 'Comprehensive molecular portraits of human breast tumours' [Koboldt et al. (2012) Nature] underlines the perception that it is an unlikely bona fide target to treat this disease. Yet, to date, there are 17 distinct Hsp90 inhibitors in clinical trials for multiple indications in cancer. The protein has been championed for over 20 years by the National Cancer Institute (Bethesda, MD, USA) as a cancer target since the discovery of the antitumor activity of the natural product geldanamycin. This review aims to look at the conundrum of why Hsp90 can even be considered a druggable target for the treatment of cancer. We propose that in contrast to the majority of chemotherapeutics our growing armamentarium of investigational Hsp90 drugs represents an elegant choice that offers real hope in the long-term treatment of certain cancers.
Collapse
Affiliation(s)
- Jared J Barrott
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
23
|
Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA. Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 2012; 5:1008-20. [PMID: 24280702 PMCID: PMC3816649 DOI: 10.3390/ph5091008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc.) are currently under evaluation.
Collapse
Affiliation(s)
- Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, University of Athens, 80 Vas. Sofias Ave, 11528 Athens, Greece.
| | | | | | | |
Collapse
|
24
|
Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, Lyerly HK. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 2012; 14:R62. [PMID: 22510516 PMCID: PMC3446397 DOI: 10.1186/bcr3168] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/28/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022] Open
Abstract
Introduction Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. Methods We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Results Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. Conclusions Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Surgery, Duke University Medical Center, Box 2606, 203 Research Drive, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Qin XJ, Ling BX. Proteomic studies in breast cancer (Review). Oncol Lett 2012; 3:735-743. [PMID: 22740985 PMCID: PMC3362396 DOI: 10.3892/ol.2012.573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common types of invasive cancer in females worldwide. Despite major advances in early cancer detection and emerging therapeutic strategies, further improvement has to be achieved for precise diagnosis to reduce the chance of metastasis and relapses. Recent proteomic technologies have offered a promising opportunity for the identification of new breast cancer biomarkers. Matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) and the derived surface-enhanced laser desorption/ionization mass spectrometry (SELDI-TOF MS) enable the development of high-throughput proteome analysis based on comprehensive reliable biomarkers. In this review, we examined proteomic technologies and their applications, and provided focus on the proteomics-based profiling analyses of tumor tissues/cells in order to identify and confirm novel biomarkers of breast cancer.
Collapse
Affiliation(s)
- Xian-Ju Qin
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Bruce X. Ling
- Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|