1
|
Increased Sphingosine Kinase 1 Expression Is Associated with Poor Prognosis in Human Solid Tumors: A Meta-Analysis. DISEASE MARKERS 2022; 2022:8443932. [PMID: 35126792 PMCID: PMC8816543 DOI: 10.1155/2022/8443932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Methods PubMed, Web of Science, Embase, CNKI, and Wanfang databases were thoroughly searched for eligible studies, in which the relationship between SPHK1 expression and cancer prognosis was evaluated. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to estimate the impact of SPHK1 expression on cancer patients' survival. Odds ratios (ORs) and 95% CIs were combined to assess the association between SPHK1 expression and clinicopathological characteristics of cancer patients. The certainty of evidence was evaluated by Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Results Thirty studies comprising 32 cohorts with 5965 patients were included in this meta-analysis. The outcomes indicated that elevated SPHK1 expression was associated with worse overall survival (OS) (HR = 1.71, 95% CI: 1.45-2.01, P < 0.001) and disease-free survival (DFS) (HR = 1.34, 95% CI: 1.13-1.59, P = 0.001). What is more, SPHK1 overexpression was significantly correlated with certain phenotypes of tumor aggressiveness, such as clinical stage (OR = 2.07, 95% CI: 1.39-3.09, P < 0.001), tumor invasion (OR = 2.16, 95% CI: 1.47-3.18, P < 0.001), lymph node metastasis (OR = 2.04, 95% CI: 1.71-2.44, P < 0.001), and distant metastasis (OR = 3.16, 95% CI: 2.44-4.09, P < 0.001). The quality of the evidence for both OS and DFS was low. Conclusions Increased SPHK1 expression is related to poor prognosis in human cancers and may serve as a promising prognostic marker and therapeutic target for malignant patients. However, conclusions need to be treated with caution because of lack of high quality of evidence.
Collapse
|
2
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
3
|
Hou CX, Wang L, Cai M, Meng Y, Tang YT, Zhu QH, Han W, Sun NN, Ma B, Hu Y, Ye JH. Sphk1 promotes salivary adenoid cystic carcinoma progression via PI3K/Akt signaling. Pathol Res Pract 2021; 227:153620. [PMID: 34560416 DOI: 10.1016/j.prp.2021.153620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The progression of salivary adenoid cystic carcinoma (SACC) is closely related to abnormal gene expression. Herein, the role of Sphk1 in SACC was explored. Sphk1 was overexpressed in SACC tissues. In SACC cell lines, Sphk1 induced cell proliferation, inhibited apoptosis, and promoted cell migration. Moreover, Sphk1 overexpression induced up-regulation of the PI3K protein level and AKT phosphorylation level. Rescue assays further showed that activation of the Sphk1 /PI3K/Akt pathway affected various biological functions of SACC cells. Together, these findings suggested that Sphk1 promotes salivary tumorigenesis by activating the PI3K/ Akt pathway, which may provide novel intervention targets for SACC treatment.
Collapse
Affiliation(s)
- Chen-Xing Hou
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Stomatology, Wuxi Huishan District People's Hospital, Wuxi 214187, China
| | - Man Cai
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Stomatology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Ying Meng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing-Hai Zhu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Han
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Nan-Nan Sun
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ben Ma
- Department of Stomatology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Yong Hu
- Department of Stomatology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Jin-Hai Ye
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Depatment of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Truman JP, Ruiz CF, Trayssac M, Mao C, Hannun YA, Obeid LM. Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB J 2021; 35:e21284. [PMID: 33484475 DOI: 10.1096/fj.202001814rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023]
Abstract
It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christian F Ruiz
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Northport Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
5
|
Sun X, He Z, Guo L, Wang C, Lin C, Ye L, Wang X, Li Y, Yang M, Liu S, Hua X, Wen W, Lin C, Long Z, Zhang W, Li H, Jian Y, Zhu Z, Wu X, Lin H. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:149. [PMID: 33931075 PMCID: PMC8086123 DOI: 10.1186/s13046-021-01932-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Background Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. Methods In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients’ samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. Results ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. Conclusion Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01932-8.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhenyu He
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Caiqin Wang
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, People's Republic of China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liping Ye
- Department of Experimental Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Xiaoqing Wang
- Department of Radiotherapy, Nanfang Hospital, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Meisongzhu Yang
- Department of Physiology, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Sailan Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xin Hua
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wen Wen
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chao Lin
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhiqing Long
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenwen Zhang
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Han Li
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yunting Jian
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ziyuan Zhu
- Department of General surgery, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, 510150, Guangdong, People's Republic of China
| | - Xianqiu Wu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China. .,Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, Guangdong, People's Republic of China.
| | - Huanxin Lin
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Xie V, Tong D, Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Sphingosine kinase 2 supports the development of BCR/ABL-independent acute lymphoblastic leukemia in mice. Biomark Res 2018; 6:6. [PMID: 29441205 PMCID: PMC5800079 DOI: 10.1186/s40364-018-0120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Background Sphingosine kinase (SphK) 2 has been implicated in the development of a range of cancers and inhibitors of this enzyme are currently in clinical trial. We have previously demonstrated a role for SphK2 in the development of acute lymphoblastic leukemia (ALL). Methods In this and our previous study we use mouse models: in the previous study the disease was driven by the proto-oncogene BCR/ABL1, while in this study cancer risk was elevated by deletion of the tumor suppressor ARF. Results Mice lacking ARF and SphK2 had a significantly reduced incidence of ALL compared mice with wild type SphK2. Conclusions These results show that the role of SphK2 in ALL development is not limited to BCR/ABL1 driven disease extending the potential use of inhibitors of this enzyme to ALL patients whose disease have driver mutations other than BCR/ABL1.
Collapse
Affiliation(s)
- Vicki Xie
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Daochen Tong
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Craig T Wallington-Beddoe
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,4College of Medicine and Public Health, Flinders University, Adelaide, Australia.,5School of Medicine, University of Adelaide, Adelaide, Australia
| | - Ken F Bradstock
- 2Haematology Department, Westmead Hospital, Westmead, NSW Australia
| | - Linda J Bendall
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
8
|
Do SI, Kim HS, Kim K, Lee H, Do IG, Kim DH, Chae SW, Sohn JH. Predictive and prognostic value of sphingosine kinase 1 expression in patients with invasive ductal carcinoma of the breast. Am J Transl Res 2017; 9:5684-5695. [PMID: 29312521 PMCID: PMC5752919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Sphingosine kinase 1 (SPHK1) has been found to be upregulated in many different types of human malignancy and plays a crucial role in cancer development and progression. However, the potential of SPHK1 to act as a predictive and prognostic biomarker in breast cancer remains to be clarified. In the present study, SPHK1 expression was evaluated in breast cancer cell lines and 224 breast cancer tissue samples using immunohistochemical staining. Compared to the normal mammary epithelial cell line MCF-10A, SPHK1 mRNA and protein expression levels increased in the breast cancer cell lines SK-BR-3, MDA-MB-231, MDA-MB-436, and MCF-7. Immunohistochemical staining revealed SPHK1 expression to be significantly increased in breast cancer tissue compared to normal breast tissue, with 85 (37.9%) of the 224 invasive ductal carcinomas (IDC) exhibiting high SPHK1 expression. High SPHK1 expression in IDC showed a significant association with higher histological grade, distant metastasis, and triple negativity, and was shown to be an independent predictor for distant metastasis development. In addition, patients with high SPHK1 expression had significantly lower progression-free survival and overall survival rates compared to those with low SPHK1 expression. Our data suggest that SPHK1 is involved in the development and progression of breast cancer and can serve as a potential predictive biomarker of distant metastasis and patient outcome.
Collapse
Affiliation(s)
- Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Hyunjoo Lee
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Jin Hee Sohn
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| |
Collapse
|
9
|
Ochnik AM, Baxter RC. Insulin-like growth factor receptor and sphingosine kinase are prognostic and therapeutic targets in breast cancer. BMC Cancer 2017; 17:820. [PMID: 29207959 PMCID: PMC5718000 DOI: 10.1186/s12885-017-3809-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/21/2017] [Indexed: 01/26/2023] Open
Abstract
Background Targeting the type 1 insulin-like growth factor receptor (IGF1R) in breast cancer remains an ongoing clinical challenge. Oncogenic IGF1R-signaling occurs via activation of PI3K/AKT/MAPK downstream mediators which regulate cell proliferation and protein synthesis. To further understand IGF1R signaling we have investigated the involvement of the oncogenic IGF1R-related sphingosine kinase (SphK) pathway. Methods The prognostic (overall survival, OS) and therapeutic (anti-endocrine therapy) co-contribution of IGF1R and SphK1 were investigated using breast cancer patient samples (n = 236) for immunohistochemistry to measure total and phosphorylated IGF1R and SphK1. Kaplan-Meier and correlation analyses were performed to determine the contribution of high versus low IGF1R and/or SphK1 expression to OS in patients treated with anti-endocrine therapy. Cell viability and colony formation in vitro studies were completed using estrogen receptor (ER) positive and negative breast cancer cell-lines to determine the benefit of IGF1R inhibitor (OSI-906) and SphK inhibitor (SKI-II) co-therapy. Repeated measures and 1-way ANOVA were performed to compare drug treatments groups and the Chou-Talalay combination index (CI) was calculated to estimate drug synergism in vitro (CI < 1). Results High IGF1R and SphK1 protein co-expression in tumor tissue was associated with improved OS specifically in ER-positive disease and stratified for anti-endocrine therapy. A significant synergistic inhibition of cell viability and/or colony formation following OSI-906 and SKI-II co-treatment in vitro was evident (p < 0.05, CI < 1). Conclusion We conclude that high IGF1R and SphK1 co-expression act together as prognostic indicators and are potentially, dual therapeutic targets for the development of a more effective IGF1R-directed combination breast cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12885-017-3809-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia. .,Centre for Drug Discovery & Development, Sansom Institute for Health Research, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, 5001, Australia.
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
10
|
Zhu YJ, You H, Tan JX, Li F, Qiu Z, Li HZ, Huang HY, Zheng K, Ren GS. Overexpression of sphingosine kinase 1 is predictive of poor prognosis in human breast cancer. Oncol Lett 2017; 14:63-72. [PMID: 28693136 PMCID: PMC5494825 DOI: 10.3892/ol.2017.6134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1) is a bioactive lipid mediator that has been identified as a biomarker in various cancers and is considered to play an important role in tumor progression. In the present study, the expression level of SPHK1 was examined in breast cancer clinical specimens, and its association with patient survival was investigated to clarify the clinical significance of SPHK1 in breast cancer. SPHK1 mRNA expression was increased in breast cancer tissues compared with that in matched adjacent breast tissues in 19 of 32 paired tissue specimens (59.4%). Immunohistochemical analysis of 122 breast cancer cases revealed that the expression levels of SPHK1 were upregulated in 64 tumor tissues (52.5%), and increased expression levels of the protein were significantly associated with the presence of lymph node metastasis (P=0.0016), number of positive lymph nodes (P=0.0268) and presence of distant metastasis (P=0.0097). Increased SPHK1 protein expression was also associated with human epidermal growth factor receptor 2 status (P=0.0100), initial symptoms (P=0.0025) and tumor location (P=0.0457). Patients with increased SPHK1 protein expression had shorter overall survival and disease-free survival times compared with patients with lower SPHK1. Univariate and multivariate analyses indicated that high SPHK1 expression may be a poor prognostic factor. These results indicated that SPHK1 may perform an important role in breast cancer and may be a predictive factor in patients with breast cancer.
Collapse
Affiliation(s)
- Ya-Jing Zhu
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hua You
- Department of Lymphoma, Head and Neck Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Fengtai, Beijing 100071, P.R. China
| | - Jin-Xiang Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Zhu Qiu
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hong-Zhong Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hong-Yan Huang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Ke Zheng
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Guo-Sheng Ren
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
11
|
Garbowska M, Łukaszuk B, Mikłosz A, Wróblewski I, Kurek K, Ostrowska L, Chabowski A, Żendzian-Piotrowska M, Zalewska A. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes. J Cell Physiol 2017; 232:2766-2775. [PMID: 28369933 PMCID: PMC5518447 DOI: 10.1002/jcp.25939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non‐existent. This is odd given the well‐established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD‐, or STZ‐diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ‐diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ‐diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P).
Collapse
Affiliation(s)
- Marta Garbowska
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Igor Wróblewski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Kurek
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Lucyna Ostrowska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer. Oncotarget 2016; 6:26746-56. [PMID: 26311741 PMCID: PMC4694949 DOI: 10.18632/oncotarget.4818] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 01/03/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer.
Collapse
|
13
|
Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apoptosis is a cellular suicide program that plays a critical role in development and human diseases, including cancer. Cancer cells evade apoptosis, thereby enabling excessive proliferation, survival under hypoxic conditions, and acquired resistance to therapeutic agents. Among various mechanisms that contribute to the evasion of apoptosis in cancer, metabolism is emerging as one of the key factors. Cellular metabolites can regulate functions of pro- and antiapoptotic proteins. In turn, p53, a regulator of apoptosis, also controls metabolism by limiting glycolysis and facilitating mitochondrial respiration. Consequently, with dysregulated metabolism and p53 inactivation, cancer cells are well-equipped to disable the apoptotic machinery. In this article, we review how cellular apoptosis is regulated and how metabolism can influence the signaling pathways leading to apoptosis, especially focusing on how glucose and lipid metabolism are altered in cancer cells and how these alterations can impact the apoptotic pathways.
Collapse
Affiliation(s)
- K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - K Canfield
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - W Feng
- Norris Cotton Cancer Center, Lebanon, NH, United States
| | - M Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
14
|
Shida D, Inoue S, Yoshida Y, Kodaka A, Tsuji T, Tsuiji M. Sphingosine kinase 1 is upregulated with lysophosphatidic acid receptor 2 in human colorectal cancer. World J Gastroenterol 2016; 22:2503-2511. [PMID: 26937138 PMCID: PMC4768196 DOI: 10.3748/wjg.v22.i8.2503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/22/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in various cancers, in human colorectal cancer.
METHODS: Real-time reverse-transcription polymerase chain reaction was used to measure the mRNA expression of SphK1, LPAR2, and the three major S1P receptors in 27 colorectal cancer samples and corresponding normal tissue samples. We also examined the correlation between the expression of SphK1 and LPAR2.
RESULTS: Colorectal cancer tissue in 22 of 27 patients had higher levels of SphK1 mRNA than in normal tissue. In two-thirds of the samples, SphK1 mRNA expression was more than two-fold higher than in normal tissue. Consistent with previous reports, LPAR2 mRNA expression in 20 of 27 colorectal cancer tissue samples was higher compared to normal tissue samples. Expression profiles of all three major S1P receptors, S1PR1, S1PR2, and S1PR3, varied without any trend, with no significant difference in expression between cancer and normal tissues. A highly significant positive correlation was found between SphK1 and LPAR2 expression [Pearson’s correlation coefficient (r) = 0.784 and P < 0.01]. The mRNA levels of SphK1 and LPAR2 did not correlate with TNM stage.
CONCLUSION: Our findings suggest that S1P and LPA may play important roles in the development of colorectal cancer via the upregulation of SphK1 and LPAR2, both of which could serve as new therapeutic targets in the treatment of colorectal cancer.
Collapse
|
15
|
Hair Cell Loss Induced by Sphingosine and a Sphingosine Kinase Inhibitor in the Rat Cochlea. Neurotox Res 2015; 29:35-46. [DOI: 10.1007/s12640-015-9563-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022]
|
16
|
Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 as an anticancer therapeutic target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3239-45. [PMID: 26150697 PMCID: PMC4484649 DOI: 10.2147/dddt.s83288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Mei-li Tian
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dong-li Zhao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
17
|
Yagoub D, Wilkins MR, Lay AJ, Kaczorowski DC, Hatoum D, Bajan S, Hutvagner G, Lai JH, Wu W, Martiniello-Wilks R, Xia P, McGowan EM. Sphingosine kinase 1 isoform-specific interactions in breast cancer. Mol Endocrinol 2014; 28:1899-915. [PMID: 25216046 DOI: 10.1210/me.2013-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.
Collapse
Affiliation(s)
- Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences (D.Y., M.R.W.), University of New South Wales, Sydney 2052, Australia; Centenary Institute (D.Y., A.L., D.G.K., P.X., E.M.M.), Sydney 2042, Australia; Translational Cancer Research Group (D.H., R.M.-W., E.M.M.), Faculty of Science, School of Medical and Molecular Biosciences, and Faculty of Engineering and Information Technology (S.B., G.H.), University of Technology Sydney, Sydney, New South Wales 2007, Australia; Department of Biochemistry (J.H.L., W.W.), Tufts University School of Medicine, Boston, Massachusetts 02111; Shanghai Medical School (P.X.), Fudan University, 200433 Shanghai, People's Republic of China; and Sydney Medical School (E.M.M.), The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 2014; 9:e90362. [PMID: 24587339 PMCID: PMC3937388 DOI: 10.1371/journal.pone.0090362] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/29/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SK1) is a key regulator of the dynamic ceramide/sphingosine 1-phosphate rheostat balance and important in the pathological cancer genesis, progression, and metastasis processes. Many studies have demonstrated SK1 overexpressed in various cancers, but no meta-analysis has evaluated the relationship between SK1 and various cancers. METHODS We retrieved relevant articles from the PubMed, EBSCO, ISI, and OVID databases. A pooled odds ratio (OR) was used to assess the associations between SK1 expression and cancer; hazard ratios (HR) were used for 5-year and overall survival. Review Manager 5.0 was used for the meta-analysis, and publication bias was evaluated with STATA 12.0 (Egger's test). RESULTS Thirty-four eligible studies (n=4,673 patients) were identified. SK1 positivity and high expression were significantly different between cancer, non-cancer, and benign tissues. SK1 mRNA and protein expression levels were elevated in the cancer tissues, compared with the normal tissues. SK1 positivity rates differed between various cancer types (lowest [27.3%] in estrogen receptor-positive breast cancer and highest [82.2%] in tongue squamous cell carcinoma). SK1 positivity and high expression were associated with 5-year survival; the HR was 1.86 (95% confidence interval [CI], 1.18-2.94) for breast cancer, 1.58 (1.08-2.31) for gastric cancer, and 2.68 (2.10-3.44) for other cancers; the total cancer HR was 2.21 (95% CI, 1.83-2.67; P < 0.00001). The overall survival HRs were 2.09 (95% CI, 1.35-3.22), 1.56 (1.08-2.25), and 2.62 (2.05-3.35) in breast, gastric, and other cancers, respectively. The total effect HR was 2.21 (95% CI, 1.83-2.66; P < 0.00001). CONCLUSIONS SK1 positivity and high expression were significantly associated with cancer and a shorter 5-year and overall survival. SK1 positivity rates vary tremendously among the cancer types. It is necessary to further explore whether SK1 might be a predictive biomarker of outcomes in cancer patients.
Collapse
|
19
|
Plano D, Amin S, Sharma AK. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J Med Chem 2014; 57:5509-24. [PMID: 24471412 DOI: 10.1021/jm4011687] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sphingosine kinase (SphK) is an oncogenic lipid kinase that regulates the sphingolipid metabolic pathway that has been shown to play a role in numerous hyperproliferative/inflammatory diseases. The SphK isoforms (SphK1 and SphK2) catalyze the conversion of the proapoptotic substrate d-erythrosphingosine to the promitogenic/migratory product sphingosine 1-phosphate (S1P). Accumulation of S1P has been linked to the development/progression of cancer and various other diseases including, but not limited to, asthma, inflammatory bowel disease, rheumatoid arthritis, and diabetic nephropathy. SphK therefore represents a potential new target for developing novel therapeutics for cancer and other diseases. This finding has stimulated the development and evaluation of numerous SphK inhibitors over the past decade or so. In this review, we highlight the recent advancement in the field of SphK inhibitors including SphK1 and SphK2 specific inhibitors. Both sphingolipid based and nolipidic small molecule inhibitors and their importance in treatment of cancer and other diseases are discussed.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | | | | |
Collapse
|
20
|
Truman JP, García-Barros M, Obeid LM, Hannun YA. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1174-88. [PMID: 24384461 DOI: 10.1016/j.bbalip.2013.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022]
Abstract
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Mónica García-Barros
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Lina M Obeid
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA; Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| |
Collapse
|
21
|
Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q, Xiao J. Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumour Biol 2013; 35:2075-80. [PMID: 24092575 DOI: 10.1007/s13277-013-1275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 12/25/2022] Open
Abstract
Upregulation of sphingosine kinase 1 (SPHK1) protein has been reported to be associated with a poor prognosis in a variety of malignant tumors. However, the role of SPHK1 in bladder cancer (BC) has not been thoroughly elucidated. The purpose of this study was to assess SPHK1 expression and to explore its contribution to BC. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was conducted to detect SPHK1 mRNA expression in 37 pairs of fresh-frozen BC tissues and corresponding noncancerous tissues. Results showed that SPHK1 mRNA expression level in BC tissues was significantly higher than that in corresponding noncancerous tissues. To investigate the association between SPHK1 protein expression and clinicopathological characteristics of BC, immunohistochemistry (IHC) was performed in 153 archived paraffin-embedded BC samples. Interestingly, high SPHK1 expression was significantly associated with histologic grade (P = 0.045) and tumor stage (P < 0.001) of patients with BC. The Kaplan-Meier survival curve showed that patients with high SPHK1 expression had significantly reduced overall 5-year survival rates (P < 0.001). Multivariate Cox regression analysis further suggested that the increased expression of SPHK1 was an independent poor prognostic factor for this disease. In conclusion, our data offer the convincing evidence for the first time that the increased expression of SPHK1 may be involved in the pathogenesis and progression of BC. SPHK1 might be a potential marker to predict the prognosis in BC.
Collapse
Affiliation(s)
- Xiao-Dong Meng
- Department of Urology, Southwest Hospital, The Third Military Medical University, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 40038, China,
| | | | | | | | | | | |
Collapse
|
22
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
23
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts them at center stage for cancer treatment and prevention. While ceramide and sphingosine have been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth message to cells. The enzymes responsible for maintaining the balance between these "stop" or "go" signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of evidence suggests that regulation of sphingolipid levels by SK1 is an important component of carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting the importance of developing specific SK1 inhibitors to supplement current cancer therapies.
Collapse
Affiliation(s)
- Linda A Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
25
|
Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280:5317-36. [PMID: 23638983 DOI: 10.1111/febs.12314] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
The bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P) are important signalling molecules that regulate a diverse array of cellular processes. Most notably, the balance of the levels of these three sphingolipids in cells, termed the 'sphingolipid rheostat', can dictate cell fate, where ceramide and sphingosine enhance apoptosis and S1P promotes cell survival and proliferation. The sphingosine kinases (SKs) catalyse the production of S1P from sphingosine and are therefore central regulators of the sphingolipid rheostat and attractive targets for cancer therapy. Two SKs exist in humans: SK1 and SK2. SK1 has been extensively studied and there is a large body of evidence to demonstrate its role in promoting cell survival, proliferation and neoplastic transformation. SK1 is also elevated in many human cancers which appears to contribute to carcinogenesis, chemotherapeutic resistance and poor patient outcome. SK2, however, has not been as well characterized, and there are contradictions in the key physiological functions that have been proposed for this isoform. Despite this, many studies are now emerging that implicate SK2 in key roles in a variety of diseases, including the development of a range of solid tumours. Here, we review the literature examining SK2, its physiological and pathophysiological functions, the current knowledge of its regulation, and recent developments in targeting this complex enzyme.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Molecular and Biomedical Science, University of Adelaide, Australia
| | | |
Collapse
|
26
|
Post-translational regulation of sphingosine kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:147-56. [DOI: 10.1016/j.bbalip.2012.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
|
27
|
Kalari S, Moolky N, Pendyala S, Berdyshev EV, Rolle C, Kanteti R, Kanteti A, Ma W, He D, Husain AN, Kindler HL, Kanteti P, Salgia R, Natarajan V. Sphingosine kinase 1 is required for mesothelioma cell proliferation: role of histone acetylation. PLoS One 2012; 7:e45330. [PMID: 23028939 PMCID: PMC3444486 DOI: 10.1371/journal.pone.0045330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2012] [Indexed: 01/08/2023] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a devastating disease with an overall poor prognosis. Despite the recent advances in targeted molecular therapies, there is a clear and urgent need for the identification of novel mesothelioma targets for the development of highly efficacious therapeutics. Methodology/Principal Findings In this study, we report that the expression of Sphingosine Kinase 1 (SphK1) protein was preferentially elevated in MPM tumor tissues (49 epithelioid and 13 sarcomatoid) compared to normal tissue (n = 13). In addition, we also observed significantly elevated levels of SphK1 and SphK2 mRNA and SphK1 protein expression in MPM cell lines such as H2691, H513 and H2461 compared to the non-malignant mesothelial Met5 cells. The underlying mechanism appears to be mediated by SphK1 induced upregulation of select gene transcription programs such as that of CBP/p300 and PCAF, two histone acetyl transferases (HAT), and the down regulation of cell cycle dependent kinase inhibitor genes such as p27Kip1 and p21Cip1. In addition, using immunoprecipitates of anti-acetylated histone antibody from SphK inhibitor, SphK-I2 treated Met5A and H2691 cell lysates, we also showed activation of other cell proliferation related genes, such as Top2A (DNA replication), AKB (chromosome remodeling and mitotic spindle formation), and suppression of p21 CIP1 and p27KIP1. The CDK2, HAT1 and MYST2 were, however, unaffected in the above study. Using SphK inhibitor and specific siRNA targeting either SphK1 or SphK2, we also unequivocally established that SphK1, but not SphK2, promotes H2691 mesothelioma cell proliferation. Using a multi-walled carbon nanotubes induced peritoneal mesothelioma mouse model, we showed that the SphK1−/− null mice exhibited significantly less inflammation and granulamatous nodules compared to their wild type counterparts. Conclusions/Significance The lipid kinase SphK1 plays a positive and essential role in the growth and development of malignant mesothelioma and is therefore a likely therapeutic target.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Nagabhushan Moolky
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Srikanth Pendyala
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Evgeny V. Berdyshev
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Cleo Rolle
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Rajani Kanteti
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Archana Kanteti
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wenli Ma
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donghong He
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Aliya N. Husain
- Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Hedy L. Kindler
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Prasad Kanteti
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ravi Salgia
- Section of Hematology/Oncology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Yang YL, Ji C, Cheng L, He L, Lu CC, Wang R, Bi ZG. Sphingosine kinase-1 inhibition sensitizes curcumin-induced growth inhibition and apoptosis in ovarian cancer cells. Cancer Sci 2012; 103:1538-45. [PMID: 22594559 DOI: 10.1111/j.1349-7006.2012.02335.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023] Open
Abstract
Recent published studies suggest that increasing levels of ceramides enhance the chemo-sensitivity of curcumin. Using in vitro approaches, we analyzed the impact of sphingosine kinase-1 (SphK-1) inhibition on ceramide production, and evaluated SphK1 inhibitor II (SKI-II) as a potential curcumin chemo-sensitizer in ovarian cancer cells. We found that SphK1 is overexpressed in ovarian cancer patients' tumor tissues and in cultured ovarian cancer cell lines. Inhibition of SphK1 by SKI-II or by RNA interference (RNAi) knockdown dramatically enhanced curcumin-induced apoptosis and growth inhibition in ovarian cancer cells. SKI-II facilitated curcumin-induced ceramide production, p38 activation and Akt inhibition. Inhibition of p38 by the pharmacological inhibitor (SB 203580), a dominant-negative expression vector, or by RNAi diminished curcumin and SKI-II co-administration-induced ovarian cancer cell apoptosis. In addition, restoring Akt activation introducing a constitutively active Akt, or inhibiting ceramide production by fumonisin B1 also inhibited the curcumin plus SKI-II co-administration-induced in vitro anti-ovarian cancer effect, suggesting that ceramide accumulation, p38 activation and Akt inhibition are downstream effectors. Our findings suggest that low, well-tolerated doses of SKI-II may offer significant improvement to the clinical curcumin treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan-li Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Xia J, Wu Z, Yu C, He W, Zheng H, He Y, Jian W, Chen L, Zhang L, Li W. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol 2012; 227:470-80. [PMID: 22450659 DOI: 10.1002/path.4030] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 12/18/2022]
Abstract
SPHK1 expression is elevated in gastric cancer and is associated with shorter survival times for patients. However, the molecular mechanism of SPHK1 up-regulation in gastric cancer remains unclear. In the present study, we report that miR-124 down-regulated SPHK1 expression by directly targeting its 3'-untranslated region (3'-UTR) and that miR-124 expression was inversely correlated with SPHK1 expression in gastric cancer samples. Furthermore, we demonstrated that, similar to the effect of silencing SPHK1, up-regulation of miR-124 markedly inhibited proliferation and tumourigenicity of gastric cancer cells both in vitro and in vivo. This was found to be mechanistically associated with induction of cyclin-dependent kinase inhibitors p21$^{{\rm Cip1}}$ and p27$^{{\rm Kip1}}$, enhancement of the transcriptional activity of FOXO1 and suppression of AKT activity. Moreover, we showed that the re-introduction of SPHK1 (without the 3'-UTR), but not with the 3'-UTR, could abrogate the miR-124-mediated induction of p21$^{{\rm Cip1}}$ and p27$^{{\rm Kip1}}$, as well as rescue the miR-124-induced proliferation inhibition. Together, these results suggest that miR-124 has an important role in the suppression of gastric cancer and presents a novel mechanism of miRNA-mediated SPHK1 expression in cancer cells.
Collapse
Affiliation(s)
- Jintang Xia
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, Honn KV, Klinge CM, Lee MJ. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 2012; 40:1619-26. [PMID: 22344462 DOI: 10.3892/ijo.2012.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) regulates a wide array of biological functions. However, the role of S1P signaling in tumorigenesis remains to be elucidated. In this study, we show that S1P receptor subtype 3 (S1P₃) is markedly up-regulated in a subset of lung adenocarcinoma cells compared to normal lung epithelial cells. Specific knockdown of S1P₃ receptors inhibits proliferation and anchorage-independent growth of lung adenocarcinoma cells. Mechanistically, we demonstrate that S1P₃ signaling increases epidermal growth factor receptor (EGFR) expression via the Rho kinase (ROCK) pathway in lung adenocarcinoma cells. Nuclear run-off analysis indicates that S1P/S1P₃ signaling transcriptionally increases EGFR expression. Knockdown of S1P₃ receptors diminishes the S1P-stimulated EGFR expression in lung adenocarcinoma cells. Moreover, S1P treatment greatly enhances EGF-stimulated colony formation, proliferation and invasion of lung adenocarcinoma cells. Together, these results suggest that the enhanced S1P₃-EGFR signaling axis may contribute to the tumorigenesis or progression of lung adenocarcinomas.
Collapse
Affiliation(s)
- Andrew Hsu
- Bioactive Lipid Research Program, Department of Pathology, Wayne State University School of Medicine, 423 Chemistry Building, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liao WT, Guo L, Zhong Y, Wu YH, Li J, Song LB. Astrocyte elevated gene-1 (AEG-1) is a marker for aggressive salivary gland carcinoma. J Transl Med 2011; 9:205. [PMID: 22133054 PMCID: PMC3286424 DOI: 10.1186/1479-5876-9-205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Astrocyte elevated gene-1 (AEG-1) is associated with tumorigenesis and progression in diverse human cancers. The present study was aimed to investigate the clinical and prognostic significance of AEG-1 in salivary gland carcinomas (SGC). METHODS Real-time PCR and western blot analyses were employed to examine AEG-1 expression in two normal salivary gland tissues, eight SGC tissues of various clinical stages, and five pairs of primary SGC and adjacent salivary gland tissues from the same patient. Immunohistochemistry (IHC) was performed to examine AEG-1 protein expression in paraffin-embedded tissues from 141 SGC patients. Statistical analyses was applies to evaluate the diagnostic value and associations of AEG-1 expression with clinical parameters. RESULTS AEG-1 expression was evidently up-regulated in SGC tissues compared with that in the normal salivary gland tissues and in matched adjacent salivary gland tissues. AEG-1 protein level was positively correlated with clinical stage (P < 0.001), T classification (P = 0.008), N classification (P = 0.008) and M classifications (P = 0.006). Patients with higher AEG-1 expression had shorter overall survival time, whereas those with lower tumor AEG-1 expression had longer survival time. CONCLUSIONS Our results suggest that AEG-1 expression is associated with SGC progression and may represent a novel and valuable predictor for prognostic evaluation of SGC patients.
Collapse
Affiliation(s)
- Wen-Ting Liao
- State Key Laboratory of Oncology in Southern China, Guangzhou 510060, P.R. China
| | | | | | | | | | | |
Collapse
|
32
|
Gault CR, Obeid LM. Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. Crit Rev Biochem Mol Biol 2011; 46:342-51. [PMID: 21787121 DOI: 10.3109/10409238.2011.597737] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For several decades, lipid biologists have investigated how sphingolipids contribute to physiology, cell biology, and cell fate. Foremost among these discoveries is the finding that the bioactive sphingolipids ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have diverse and often opposing effects on cell fate. Interestingly, these bioactive sphingolipids can be interconverted by just a few enzymatic reactions. Therefore, much attention has been paid to the enzymes which govern these reactions with a disproportionate amount of focus on the enzyme sphingosine kinase 1 (SK1). Several studies have found that tissue expression of SK1 correlates with cancer stage, chemotherapy response, and tumor aggressiveness. In addition, overexpression of SK1 in multiple cancer cell lines increases their resistance to chemotherapy, promotes proliferation, allows for anchorage independent growth, and increases local angiogenesis. Inhibition of SK1 using either pharmacological inhibitors or by crossing SK1 null mice has shown promise in many xenograft models of cancer, as well as several genetic and chemically induced mouse models of carcinogenesis. Here, we review the majority of the evidence that suggests SK1 is a promising target for the prevention and/or treatment of various cancers. Also, we strongly advocate for further research into basic mechanisms of bioactive sphingolipid signaling, and an increased focus on the efficacy of SK inhibitors in non-xenograft models of cancer progression.
Collapse
Affiliation(s)
- Christopher R Gault
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-7790, USA
| | | |
Collapse
|
33
|
Guan H, Liu L, Cai J, Liu J, Ye C, Li M, Li Y. Sphingosine kinase 1 is overexpressed and promotes proliferation in human thyroid cancer. Mol Endocrinol 2011; 25:1858-66. [PMID: 21940753 DOI: 10.1210/me.2011-1048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SphK1), an oncogenic kinase, has been previously found to be elevated in various types of human cancer and play a role in tumor development and progression. Nevertheless, the biological and clinical significance of SphK1 in thyroid cancer is largely unknown. Here, we demonstrate that the expression of SphK1 is generally up-regulated in thyroid cancer and that its expression level is correlated with the degree of thyroid malignancy. Silencing SphK1 by specific RNA interference is able to suppress the proliferation of thyroid cancer cells, and SphK1 expression level is strongly associated with the expression of proliferation cell nuclear antigen in thyroid cancer tissues. Of particular note is that depletion of SphK1 results in dephosphorylation of protein kinase B and glycogen synthase kinase-3β and subsequent inactivation of β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity. Hence, taken together, our study has identified SphK1 as a proproliferative oncogenic kinase, an Akt/glycogen synthase kinase-3β/β-catenin activator, and probably a biomarker for thyroid cancer as well.
Collapse
Affiliation(s)
- Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Flowers M, Fabriás G, Delgado A, Casas J, Abad JL, Cabot MC. C6-ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Treat 2011; 133:447-58. [PMID: 21935601 DOI: 10.1007/s10549-011-1768-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/02/2011] [Indexed: 01/12/2023]
Abstract
The sphingolipid ceramide is known to play a central role in chemo- and radiation-induced cell death. Acid ceramidase (AC) hydrolyzes ceramide, and thus reduces intracellular levels of this proapoptotic lipid. The role of AC as a putative anticancer target is supported by reports of upregulation in prostate cancer and in some breast tumors. In this study, we determined whether the introduction of an AC inhibitor would enhance the apoptosis-inducing effects of C6-ceramide (C6-cer) in breast cancer cells. Cultured breast cancer cells were treated with DM102 [(2R,3Z)-N-(1-hydroxyoctadec-3-en-2-yl)pivalamide, C6-cer, or the combination. Cell viability and cytotoxic synergy were assessed. Activation of apoptotic pathways, generation of reactive oxygen species, and mitochondrial transmembrane potential were determined. DM102 was a more effective AC inhibitor than N-oleoylethanolamine (NOE) and (1R,2R)-2-N-(tetradecanoylamino)-1-(4'-nitrophenyl)-1,3-propandiol (B-13) in MDA-MB-231, MCF-7, and BT-474 cells. As single agents, C6-cer (IC(50) 5-10 μM) and DM102 (IC(50) 20 μM) were only moderately cytotoxic in MDA-MB-231, MCF-7, and SK-BR-3 cells. Co-administration, however, produced synergistic decreases in viability (combination index <0.5) in all cell lines. Apoptosis was confirmed in MDA-MB-231 cells by detection of caspase 3 cleavage and a >3-fold increase in caspase 3/7 activation, PARP cleavage, and a >70% increase in Annexin-V positive cells. C6-cer/DM102 increased ROS levels 4-fold in MDA-MB-231 cells, shifted the ratio of Bax:Bcl-2 to >9-fold that of control cells, and resulted in mitochondrial membrane depolarization. DM102 also increased the synthesis of (3)H-palmitate-labeled long-chain ceramides by 2-fold when C6-cer was present. These data support the effectiveness of targeting AC in combination with exogenous short-chain ceramide as an anticancer strategy, and warrant continued investigation into the utility of the C6-cer/DM102 drug duo in human breast cancer.
Collapse
Affiliation(s)
- Margaret Flowers
- Department of Experimental Therapeutics, John Wayne Cancer Institute, Santa Monica, CA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.
Collapse
|