1
|
Chang C, Tang X, Woodley DT, Chen M, Li W. The Distinct Assignments for Hsp90α and Hsp90β: More Than Skin Deep. Cells 2023; 12:277. [PMID: 36672211 PMCID: PMC9857327 DOI: 10.3390/cells12020277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
For decades, the undisputable definition of the cytosolic Hsp90α and hsp90β proteins being evolutionarily conserved, ATP-driven chaperones has ruled basic research and clinical trials. The results of recent studies, however, have fundamentally challenged this paradigm, not to mention the spectacular failures of the paradigm-based clinical trials in cancer and beyond. We now know that Hsp90α and Hsp90β are both ubiquitously expressed in all cell types but assigned for distinct and irreplaceable functions. Hsp90β is essential during mouse development and Hsp90α only maintains male reproductivity in adult mice. Neither Hsp90β nor Hsp90α could substitute each other under these biological processes. Hsp90β alone maintains cell survival in culture and Hsp90α cannot substitute it. Hsp90α also has extracellular functions under stress and Hsp90β does not. The dramatic difference in the steady-state expression of Hsp90 in different mouse organs is due to the variable expressions of Hsp90α. The lowest expression of Hsp90 is less than 2% and the highest expression of Hsp90 is 9% among non-transformed cell lines. The two linker regions only take up less than 5% of the Hsp90 proteins, but harbor 21% of the total amino acid substitutions, i.e., 40% in comparison to the 86% overall amino acid homology. A full understanding of the distinctions between Hsp90α and Hsp90β could lead to new, safe and effective therapeutics targeting Hsp90 in human disorders such as cancer. This is the first comprehensive review of a comparison between the two cytosolic Hsp90 isoforms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Li JJ, Wang S, Guan ZN, Zhang JX, Zhan RX, Zhu JL. Anterior Gradient 2 is a Significant Prognostic Biomarker in Bone Metastasis of Breast Cancer. Pathol Oncol Res 2022; 28:1610538. [PMID: 36405393 PMCID: PMC9668893 DOI: 10.3389/pore.2022.1610538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Background: The study aimed to detect DEGs associated with BRCA bone metastasis, filter prognosis biomarkers, and explore possible pathways. Methods: GSE175692 dataset was used to detect DEGs between BRCA bone metastatic cases and non-bone metastatic cases, followed by the construction of a PPI network among DEGs. The main module among the PPI network was then determined and pathway analysis on genes within the module was performed. Through performing Cox regression, Kaplan-Meier, nomogram, and ROC curve analyses using GSE175692 and GSE124647 datasets at the same time, the most significant prognostic biomarker was gradually filtered. Finally, important pathways associated with prognostic biomarkers were explored by GSEA analysis. Results: The 74 DEGs were detected between bone metastasis and non-bone metastasis groups. A total of 15 nodes were included in the main module among the whole PPI network and they mainly correlated with the IL-17 signaling pathway. We then performed Cox analysis on 15 genes using two datasets and only enrolled the genes with p < 0.05 in Cox analysis into the further analyses. Kaplan-Meier analyses using two datasets showed that the common biomarker AGR2 expression was related to the survival time of BRCA metastatic cases. Further, the nomogram determined the greatest contribution of AGR2 on the survival probability and the ROC curve revealed its optimal prognostic performance. More importantly, high expression of AGR2 prolonged the survival time of BRCA bone metastatic patients. These results all suggested the importance of AGR2 in metastatic BRCA. Finally, we performed the GSEA analysis and found that AGR2 was negatively related to IL-17 and NF-kβ signaling pathways. Conclusion: AGR2 was finally determined as the most important prognostic biomarker in BRCA bone metastasis, and it may play a vital role in cancer progression by regulating IL-17 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Shuai Wang
- Department of Pathology, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Zhong-Ning Guan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jin-Xi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ri-Xin Zhan
- Department of Medical Record Management, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jian-Long Zhu
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Jian-Long Zhu,
| |
Collapse
|
3
|
Jaén M, Martín-Regalado Á, Bartolomé RA, Robles J, Casal JI. Interleukin 13 receptor alpha 2 (IL13Rα2): Expression, signaling pathways and therapeutic applications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188802. [PMID: 36152905 DOI: 10.1016/j.bbcan.2022.188802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is increasingly recognized as a relevant player in cancer invasion and metastasis. Despite being initially considered a decoy receptor for dampening the levels of interleukin 13 (IL-13) in diverse inflammatory conditions, accumulating evidences in the last decades indicate the capacity of IL13Rα2 for mediating IL-13 signaling in cancer cells. The biological reasons behind the expression of this receptor with such extremely high affinity for IL-13 in cancer cells remain unclear. Elevated expression of IL13Rα2 is commonly associated with invasion, late stage and cancer metastasis that results in poor prognosis for glioblastoma, colorectal or breast cancer, among others. The discovery of new mediators and effectors of IL13Rα2 signaling has been critical for deciphering its underlying molecular mechanisms in cancer progression. Still, many questions about the effects of inflammation, the cancer type and the tumor degree in the expression of IL13Rα2 remain largely uncharacterized. Here, we review and discuss the current status of the IL13Rα2 biology in cancer, with particular emphasis in the role of inflammation-driven expression and the regulation of different signaling pathways. As IL13Rα2 implications in cancer continue to grow exponentially, we highlight new targeted therapies recently developed for glioblastoma, colorectal cancer and other IL13Rα2-positive tumors.
Collapse
Affiliation(s)
- Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
5
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Pre-metastatic Niche Formation by Neutrophils in Different Organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:93-108. [PMID: 34664235 DOI: 10.1007/978-3-030-73119-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Metastasis is a multistep process requiring tumor cell detachment from the primary tumor and migration to secondary target organs through the lymphatic or blood circulatory systems. In certain cancers, specific organs are predisposed to metastases. Metastatic homing to distant organs is orchestrated by the formation of supportive metastatic microenvironment in such organs, called pre-metastatic niche. Formation of pre-metastatic niche depends on the primary tumor-mediated recruitment of bone marrow-derived myeloid cells, including neutrophils. The contribution of neutrophils to the formation of the pre-metastatic niche is recently getting growing attention. Of note, these cells can either stimulate or inhibit metastatic seeding, depending on the activation of these cells. Here, we concentrate on pro-metastatic functions of neutrophils and the mechanisms involved in this process. Pro-tumor neutrophils support the formation of pre-metastatic niche, attract tumor cells, and directly stimulate proliferation of these cells. Moreover, immunosuppressive neutrophils, also called granulocytic MDSC, promote metastatic progression by the inhibition of antitumor T-cells. Altogether, neutrophil pro-tumor properties significantly affect metastatic spread in the host. Here, we provide an up-to-date overview of roles neutrophils play in the regulation of metastatic processes in different organs.
Collapse
|
7
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
8
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Song X, Wei C, Li X. The potential role and status of IL-17 family cytokines in breast cancer. Int Immunopharmacol 2021; 95:107544. [PMID: 33740640 DOI: 10.1016/j.intimp.2021.107544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) is currently the most common malignant tumor of women in the world. At present, the development of BC is accelerating and showing a younger trend, which may be due to the known and/or unknown risk factors (RFs) for BC are increasing. It has been reported that inflammatory factors promote the occurrence and development of BC. No doubt chronic inflammation could trigger a series of molecular events, which will lead to the malignant transformation of differentiated cells, inhibition of anti-tumor immunity, and finally, lead to the occurrence and metastasis of tumors. With the deepening of research, it has been found that pro-inflammatory cytokine-interleukin-17 (IL-17) is closely related to BC. It not only plays an important role in promoting tumor proliferation, invasion and metastasis, but also has a significant correlation with poor prognosis. Recently, it was reported that IL-17 is closely related to programmed death ligand 1 (PD-L1) in BC. Therefore, starting with the role of IL-17 family cytokines in BC, this paper briefly discusses the potential role and status of IL-17 and seeks to contribute to the development of targeted drugs for BC-related treatments and to the identification of prediction factors for the early detection and prognosis prediction of BC for laying a solid theoretical foundation.
Collapse
Affiliation(s)
- Xuelian Song
- Department of The Graduate Student, Shandong First Medical University, Tai'an, Shandong 271000, PR China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, PR China.
| |
Collapse
|
10
|
Wang L, Wang W, Zeng S, Zheng H, Lu Q. Construction and validation of a 6-gene nomogram discriminating lung metastasis risk of breast cancer patients. PLoS One 2020; 15:e0244693. [PMID: 33378415 PMCID: PMC7773205 DOI: 10.1371/journal.pone.0244693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignant disease in women. Metastasis is the foremost cause of death. Breast tumor cells have a proclivity to metastasize to specific organs. The lung is one of the most common sites of breast cancer metastasis. Therefore, we aimed to build a useful and convenient prediction tool based on several genes that may affect lung metastasis-free survival (LMFS). We preliminarily identified 319 genes associated with lung metastasis in the training set GSE5327 (n = 58). Enrichment analysis of GO functions and KEGG pathways was conducted based on these genes. The best genes for modeling were selected using a robust likelihood-based survival modeling approach: GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31. A prognostic nomogram for predicting lung metastasis in breast cancer was developed based on these six genes. The effectiveness of the nomogram was evaluated in the training set GSE5327 and the validation set GSE2603. Both the internal validation and the external validation manifested the effectiveness of our 6-gene prognostic nomogram in predicting the lung metastasis risk of breast cancer patients. On the other hand, in the validation set GSE2603, we found that neither the six genes in the nomogram nor the risk predicted by the nomogram were associated with bone metastasis of breast cancer, preliminarily suggesting that these genes and nomogram were specifically associated with lung metastasis of breast cancer. What's more, five genes in the nomogram were significantly differentially expressed between breast cancer and normal breast tissues in the TIMER database. In conclusion, we constructed a new and convenient prediction model based on 6 genes that showed practical value in predicting the lung metastasis risk for clinical breast cancer patients. In addition, some of these genes could be treated as potential metastasis biomarkers for antimetastatic therapy in breast cancer. The evolution of this nomogram will provide a good reference for the prediction of tumor metastasis to other specific organs.
Collapse
Affiliation(s)
- Lingchen Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wenhua Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huilie Zheng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
11
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 2019; 14:e0224309. [PMID: 31693710 PMCID: PMC6834267 DOI: 10.1371/journal.pone.0224309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/10/2019] [Indexed: 01/27/2023] Open
Abstract
In recent years, vaccines against tumor antigens have shown potential for combating invasive cancers, including primary tumors and metastatic lesions. This is particularly pertinent for breast cancer, which is the second-leading cause of cancer-related death in women. MUC1 is a glycoprotein that is normally expressed on glandular epithelium, but is overexpressed and under-glycosylated in most human cancers, including the majority of breast cancers. This under-glycosylation exposes the MUC1 protein core on the tumor-associated form of the protein. We have previously shown that a vaccine consisting of MUC1 core peptides stimulates a tumor-specific immune response. However, this immune response is dampened by the immunosuppressive microenvironment within breast tumors. Thus, in the present study, we investigated the effectiveness of MUC1 vaccination in combination with four different drugs that inhibit different components of the COX pathway: indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inhibitor), and AH6809 (prostaglandin E2 receptor antagonist). These treatment regimens were explored for the treatment of orthotopic MUC1-expressing breast tumors in mice transgenic for human MUC1. We found that the combination of vaccine and indomethacin resulted in a significant reduction in tumor burden. Indomethacin did not increase tumor-specific immune responses over vaccine alone, but rather appeared to reduce the proliferation and increase apoptosis of tumor cells, thus rendering them susceptible to immune cell killing.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Dahlia M. Besmer
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Timothy K. Erick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Nury Steuerwald
- Molecular Biology and Genomics Laboratory, Carolinas Medical Center, Charlotte, NC, United States of America
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Shanti Rao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Jacob W. Ferrier
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- OncoTAb, Inc., Charlotte, NC, United States of America
- * E-mail:
| |
Collapse
|
13
|
de Almeida JR, Yao CM, Ziai H, Staibano P, Huang SH, Hosni A, Hope A, Bratman SV, Monteiro E, Gilbert RW, Brown DH, Gullane PJ, Irish JC, Su J, Xu W, Goldstein DP. Postoperative wound infections, neutrophil-to-lymphocyte ratio, and cancer recurrence in patients with oral cavity cancer undergoing surgical resection. Oral Oncol 2019; 97:23-30. [DOI: 10.1016/j.oraloncology.2019.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
|
14
|
Alečković M, McAllister SS, Polyak K. Metastasis as a systemic disease: molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer 2019; 1872:89-102. [PMID: 31202687 PMCID: PMC6692219 DOI: 10.1016/j.bbcan.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is a complex systemic disease that develops as a result of interactions between tumor cells and their local and distant microenvironments. Local and systemic immune-related changes play especially critical roles in limiting or enabling the development of metastatic disease. Although anti-tumor immune responses likely eliminate most early primary and metastatic lesions, factors secreted by cancer or stromal cells in the primary tumor can mobilize and activate cells in distant organs in a way that promotes the outgrowth of disseminated cancer cells into macrometastatic lesions. Therefore, the prevention, detection, and effective treatment of metastatic disease require a deeper understanding of the systemic effects of primary tumors as well as predisposing hereditary and acquired host factors including chronic inflammatory conditions. The success of immunotherapy in a subset of cancer patients is an example of how modulating the microenvironment and tumor-immune cell interactions can be exploited for the effective eradiation of even advanced-stage tumors. Here, we highlight emerging insights and clinical implications of cancer as a systemic disease.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Sandra S McAllister
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America; Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
15
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
The Interleukin-17 Family of Cytokines in Breast Cancer. Int J Mol Sci 2018; 19:ijms19123880. [PMID: 30518157 PMCID: PMC6321268 DOI: 10.3390/ijms19123880] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide and remains a major cause of mortality with an expected 137,000 death this year in Europe. Standard management of metastatic BC comprises hormonotherapy, chemotherapy, and targeted therapies. Cyclin dependent kinase (CDK) and mammalian target of rapamycin (mTOR) inhibitors have recently proved their efficiency in hormonal receptor expressing BC. Checkpoint proteins inhibition is being evaluated in phase 3 studies. Since inflammation is constantly present in cancers, research teams have focused their attention on the interleukin-17 (IL-17) family of proinflammatory cytokines. Preclinical experiments have reported both pro and antitumor effects depending on the conditions. In the present article, we review the accumulating evidences about the roles of IL-17 in BC and discuss whether this family of cytokines could be a new target in anticancer treatments.
Collapse
|
17
|
Roato I, Massè A, Piana R, Ferracini R. Bone Metastasis from Solid Tumors: Biologic and Clinical State of the Art. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Shen ZT, Sigalov AB. Rationally designed ligand-independent peptide inhibitors of TREM-1 ameliorate collagen-induced arthritis. J Cell Mol Med 2017; 21:2524-2534. [PMID: 28382703 PMCID: PMC5618672 DOI: 10.1111/jcmm.13173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 12/24/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM‐1) is critically involved in the pathogenesis of rheumatoid arthritis (RA). In contrast to cytokine blockers, therapeutic blockade of TREM‐1 can blunt excessive inflammation while preserving the capacity for microbial control. However, the nature of the TREM‐1 ligand(s) and mechanisms of TREM‐1 signalling are still not yet well understood, impeding the development of clinically relevant inhibitors of TREM‐1. The aim of this study was to evaluate the anti‐arthritic activity of a novel, ligand‐independent TREM‐1 inhibitory nonapeptide GF9 that was rationally designed using the signalling chain homo oligomerization (SCHOOL) model of cell signalling. Free GF9 and GF9 bound to macrophage‐targeted nanoparticles that mimic human high‐density lipoproteins (GF9‐HDL) were used to treat collagen‐induced arthritis (CIA). We also tested if 31‐mer peptides with sequences from GF9 and helices 4 (GE31) and 6 (GA31) of the major HDL protein, apolipoprotein A‐I, are able to perform three functions: assist in the self‐assembly of GA/E31‐HDL, target these particles to macrophages and block TREM‐1 signalling. We showed that GF9, but not control peptide, ameliorated CIA and protected against bone and cartilage damage. The therapeutic effect of GF9 was accompanied by a reduction in the plasma levels of macrophage colony‐stimulating factor and pro‐inflammatory cytokines such as tumour necrosis factor‐α, interleukin (IL)‐1 and IL‐6. Incorporation of GF9 alone or as a part of GE31 and GA31 peptides into HDL significantly increased its therapeutic efficacy. Collectively, our findings suggest that TREM‐1 inhibitory SCHOOL sequences may be promising alternatives for the treatment of RA.
Collapse
|
19
|
Abstract
The spread of cancer from a primary tumor to distant organ sites is the most devastating aspect of malignancy. Dissemination to specific organs depends upon blood flow patterns and characteristics of the distant organ environment, such as the vascular architecture, stromal cell content, and the biochemical milieu of growth factors, signaling molecules, and metabolic substrates, which can be permissive or antagonistic to metastatic colonization. Metastatic tumor cells possess intrinsic cellular properties selected for adaptation to specific organ environments, where they co-opt growth and survival signals, undergo metabolic reprogramming, and subvert resident stromal cell activities to promote extravasation, immune evasion, angiogenesis, and overt metastatic growth. Recent work and new experimental models of metastatic organotropism are uncovering crucial details of how malignant cells metastasize to specific tissues, revealing key mediators that prepare metastatic niches in specific organs and identifying new targets that offer attractive options for therapeutic intervention.
Collapse
Affiliation(s)
- Heath A. Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
20
|
Nicholas DA, Andrieu G, Strissel KJ, Nikolajczyk BS, Denis GV. BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 2017; 74:231-243. [PMID: 27491296 PMCID: PMC5222701 DOI: 10.1007/s00018-016-2320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Guillaume Andrieu
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Katherine J Strissel
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Gerald V Denis
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA.
- Section of Hematology/Oncology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, K520, Boston, MA, 02118, USA.
| |
Collapse
|
21
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
22
|
Explanation of Metastasis by Homeostatic Inflammation. INFLAMMATION AND METASTASIS 2016. [PMCID: PMC7153410 DOI: 10.1007/978-4-431-56024-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
If inflammation caused by either non-self or self molecules can disseminate throughout the body and inflammatory sites actively allow entry of circulating tumor cells and assist regrowth, then circulating tumor cells metastasize to the sites of inflammation. However, disrupted sites of homeostatic inflammation do not necessarily guarantee metastatic spread and subsequent regrowth.
Collapse
|
23
|
Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators Inflamm 2015; 2015:804347. [PMID: 26783383 PMCID: PMC4691460 DOI: 10.1155/2015/804347] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Metastatic disease accounts for more than 90% of deaths from breast cancer. Yet the factors that trigger metastasis, often years after primary tumor removal, are not understood well. Recently the proinflammatory cytokine interleukin- (IL-) 17 family has been associated with poor prognosis in breast cancer. Here we review current literature on the pathogenic mechanisms driven by IL-17 during breast cancer progression and connect these findings to metastasis. These include (1) direct effects of IL-17 on tumor cells promoting tumor cell survival and invasiveness, (2) regulation of tumor angiogenesis, and (3) interaction with myeloid derived suppressor cells (MDSCs) to inhibit antitumor immune response and collaborate at the distant metastatic site. Furthermore, IL-17 might also be a culprit in bone destruction caused by late stage bone metastasis. Interestingly, in addition to these potential prometastasis functions, there is also evidence for an opposite, antitumor role of IL-17 during cancer therapies. We hypothesize that these contradictory roles may be due to chronic, imbalanced versus acute transient nature of the immune reactions, as well as differences in the cells that interact with IL-17+ cells under different circumstances.
Collapse
|
24
|
Tumor-Induced Local and Systemic Impact on Blood Vessel Function. Mediators Inflamm 2015; 2015:418290. [PMID: 26770016 PMCID: PMC4685129 DOI: 10.1155/2015/418290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction plays a role in several processes that contribute to cancer-associated mortality. The vessel wall serves as a barrier for metastatic tumor cells, and the integrity and activation status of the endothelium serves as an important defense mechanism against metastasis. In addition, leukocytes, such as cytotoxic T-cells, have to travel across the vessel wall to enter the tumor tissue where they contribute to killing of cancer cells. Tumor cells can alter the characteristics of the endothelium by recruitment of leukocytes such as neutrophils and macrophages, which further stimulate inflammation and promote tumorigenesis. Recent findings also suggest that leukocyte-mediated effects on vascular function are not limited to the primary tumor or tissues that represent metastatic sites. Peripheral organs, such as kidney and heart, also display impaired vascular function in tumor-bearing individuals, potentially contributing to organ failure. Here, we discuss how vascular function is altered in malignant tissue and distant organs in individuals with cancer and how leukocytes function as potent mediators of these tumor-induced effects.
Collapse
|
25
|
|
26
|
The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 2014; 16:717-27. [PMID: 25082194 DOI: 10.1038/ncb3015] [Citation(s) in RCA: 665] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent pre-clinical and clinical research has provided evidence that cancer progression is driven not only by a tumour's underlying genetic alterations and paracrine interactions within the tumour microenvironment, but also by complex systemic processes. We review these emerging paradigms of cancer pathophysiology and discuss how a clearer understanding of systemic regulation of cancer progression could guide development of new therapeutic modalities and efforts to prevent disease relapse following initial diagnosis and treatment.
Collapse
|
27
|
Capietto AH, Faccio R. Immune regulation of bone metastasis. BONEKEY REPORTS 2014; 3:600. [PMID: 25512853 DOI: 10.1038/bonekey.2014.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/18/2014] [Indexed: 12/17/2022]
Abstract
Metastases to bone occur in about 70% of patients with metastatic prostate and breast cancers. Unfortunately, bone metastases result in significant morbidity and mortality and treatment options are limited. Thus, significant effort has focused on understanding the mechanisms that drive tumor dissemination to bone. Bone metastases are typically characterized by a self-perpetuating 'vicious' cycle wherein tumor cells and bone-resorbing cells (osteoclasts) are locked in a cycle that leads to osteoclast-driven bone destruction and the release of bone-stored factors that in turn stimulate tumor cell proliferation and survival. To break this 'vicious' cycle, potent antiresorptive agents such as zoledronic acid (ZOL) have been used. However, in the clinical setting, ZOL failed to improve the overall survival of cancer patients even though it inhibited osteoclast resorptive activity. Thus, other cells in addition to osteoclasts are likely involved in modulating tumor growth in the bone. The immune system has the ability to eliminate tumor cells. Nevertheless, tumor cells can acquire the ability to escape immune control. Our recent observations indicated that a decline in the ability of the immune cells to recognize and kill the tumor drives tumor dissemination to bone even when osteoclasts are inhibited by potent antiresorptive agents. This review focuses on the antitumor and protumor effects of various immune cell populations involved in the bone metastatic process. We also discuss strategies to enhance antitumor immune responses and bypass cancer immune resistance.
Collapse
Affiliation(s)
- Aude-Hélène Capietto
- Department of Orthopedics, Washington University School of Medicine , St Louis, MO, USA
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine , St Louis, MO, USA
| |
Collapse
|
28
|
Chronic disease burden among cancer survivors in the California Behavioral Risk Factor Surveillance System, 2009-2010. J Cancer Surviv 2014; 8:448-59. [PMID: 24715532 DOI: 10.1007/s11764-014-0350-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE The California Behavioral Risk Factor Surveillance System estimates that 56.6 % of cancer survivors report ever being diagnosed with a chronic disease. Few studies have assessed potential variability in comorbidity by cancer type. METHODS We used data collected from a representative sample of adult participants in the 2009 and 2010 California Behavioral Risk Factor Surveillance System (n = 18,807). Chronic diseases were examined with cancer survivorship in case/non-case and case/case analyses. Prevalence ratios (PR) and corresponding 95 % confidence intervals (95 % CI) were estimated using Cox proportional hazards models, with adjustment on race, sex, age, education, smoking, and drinking. RESULTS Obesity was associated with gynecological cancers (PR 1.74; 95 % CI 1.26-2.41), and being overweight was associated with gynecological (PR 1.40; 95 % CI 1.05-1.86) and urinary (PR 2.19; 95 % CI 1.21-3.95) cancers. Arthritis was associated with infection-related (PR 1.78; 95 % CI 1.12-2.83) and hormone-related (PR 1.20; 95 % CI 1.01-1.42) cancers. Asthma was associated with infection- (PR 2.26; 95 % CI 1.49-3.43), hormone- (PR 1.46; 95 % CI 1.21-1.77), and tobacco- (PR 1.86; 95 % CI 1.25-2.77) related cancers. Chronic obstructive pulmonary disease (COPD) was associated with infection- (PR 2.16; 95 % CI 1.22-3.83) and tobacco-related (PR 2.24; 95 % CI 1.37-3.66) cancers and with gynecological cancers (PR 1.60; 95 % 1.00-2.56). CONCLUSIONS This is the first study to examine chronic disease burden among cancer survivors in California. Our findings suggest that the chronic disease burden varies by cancer etiology. IMPLICATIONS FOR CANCER SURVIVORS A clear need has emerged for future biological and epidemiological studies of the interaction between chronic disease and cancer etiology in survivors.
Collapse
|
29
|
Bastid J, Bonnefoy N, Eliaou JF, Bensussan A. Lymphocyte-derived interleukin-17A adds another brick in the wall of inflammation-induced breast carcinogenesis. Oncoimmunology 2014; 3:e28273. [PMID: 25050201 PMCID: PMC4063083 DOI: 10.4161/onci.28273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that a subset of breast tumors are infiltrated with IL-17A-producing tumor-associated lymphocytes and that IL-17A cytokine is principally associated with estrogen receptor negative (ER−) and triple negative, basal-like tumors. We established that IL-17A producing lymphocytes induced cancer cell proliferation, chemoresistance, and invasion, indicating that IL-17A is a potential therapeutic target for breast malignancies.
Collapse
Affiliation(s)
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U896; Université Montpellier 1; CRLC Val d'Aurelle Paul Lamarque; Montpellier, France
| | - Jean-François Eliaou
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U896; Université Montpellier 1; CRLC Val d'Aurelle Paul Lamarque; Montpellier, France ; Département d'Immunologie; Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine Université Montpellier 1; Montpellier, France
| | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976; Paris, France ; Université Paris Diderot; Sorbonne Paris Cité; Laboratoire Immunologie Dermatologie & Oncologie; Paris, France
| |
Collapse
|
30
|
Roy LD, Sahraei M, Schettini JL, Gruber HE, Besmer DM, Mukherjee P. Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer 2014; 14:225. [PMID: 24674692 PMCID: PMC3986611 DOI: 10.1186/1471-2407-14-225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Background IL-17A is a pro-inflammatory cytokine that is normally associated with autoimmune arthritis and other pro-inflammatory conditions. Recently, IL-17A has emerged as a critical factor in enhancing breast cancer (BC)-associated metastases. We generated immune competent arthritic mouse models that develop spontaneous BC-associated bone and lung metastasis. Using these models, we have previously shown that neutralization of IL-17A resulted in significant reduction in metastasis. However, the underlying mechanism/s remains unknown. Methods We have utilized two previously published mouse models for this study: 1) the pro-arthritic mouse model (designated SKG) injected with metastatic BC cell line (4T1) in the mammary fat pad, and 2) the PyV MT mice that develop spontaneous mammary gland tumors injected with type II collagen to induce autoimmune arthritis. Mice were treated with anti-IL-17A neutralizing antibody and monitored for metastasis and assessed for pro-inflammatory cytokines and chemokines associated with BC-associated metastasis. Results We first corroborate our previous finding that in vivo neutralization of IL-17A significantly reduced metastasis to the bones and lungs in both models. Next, we report that treatment with anti-IL17A antibody significantly reduced the expression of a key chemokine, CXCL12 (also known as stromal derived factor-1 (SDF - 1)) in the bones and lungs of treated mice. CXCL12 is a ligand for CXCR4 (expressed on BC cells) and their interaction is known to be critical for metastasis. Interestingly, levels of CXCR4 in the tumor remained unchanged with treatment. Consequently, protein lysates derived from the bones and lungs of treated mice were significantly less chemotactic for the BC cells than lysates from untreated mice; and addition of exogenous SDF-1 to the lysates from treated mice completely restored BC cell migration. In addition, cytokines such as IL-6 and M-CSF were significantly reduced in the lung and bone lysates following treatment. The data presented suggests that systemic neutralization of IL-17A can block the CXCR4/SDF-1 signaling pathway by reducing the expression of SDF-1 in the metastatic niches and significantly reducing metastasis in both mouse models. Conclusion In our model, neutralization of IL-17A regulates SDF-1 expression in the metastatic niches either directly or indirectly via reducing levels of IL-6 and M-CSF.
Collapse
Affiliation(s)
| | | | | | | | | | - Pinku Mukherjee
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| |
Collapse
|
31
|
Gao D, Li S. Stimuli-induced organ-specific injury enhancement of organotropic metastasis in a spatiotemporal regulation. Pathol Oncol Res 2013; 20:27-42. [PMID: 24357158 DOI: 10.1007/s12253-013-9734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
The relationship between inflammation and tumorigenesis has been established. Recently, inflammation is also reported to be a drive force for cancer metastasis. Further evidences show that various stimuli directly induced-injury in a specific organ can also promote metastasis in this organ, which include epidemiological reports, clinical series and experimental studies. Each type of cancer has preferential sites for metastasis, which is also due to inflammatory factors that are released by primary cancer to act on these sites and indirectly induce injuries on them. Host factors such as stress,fever can also influence distant metastasis in a specific site through stimulation of immune and inflammatory effects. The five aspects support an idea that specific-organ injury directly induced by various stimuli or indirectly induced by primary tumor or host factors activation of proinflammatory modulators can promote metastasis in this organ through a spatiotemporal regulation, which has important implications for personalized prediction, prevention and management of cancer metastasis.
Collapse
Affiliation(s)
- Dongwei Gao
- , 536 Hospital of PLA, 29# Xiadu street, Xining, 810007, Qinghai Province, People's Republic of China,
| | | |
Collapse
|
32
|
Monteiro AC, Leal AC, Gonçalves-Silva T, Mercadante ACT, Kestelman F, Chaves SB, Azevedo RB, Monteiro JP, Bonomo A. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One 2013; 8:e68171. [PMID: 23935856 PMCID: PMC3730734 DOI: 10.1371/journal.pone.0068171] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/26/2013] [Indexed: 12/18/2022] Open
Abstract
Bone metastases, present in 70% of patients with metastatic breast cancer, lead
to skeletal disease, fractures and intense pain, which are all believed to be
mediated by tumor cells. Engraftment of tumor cells is supposed to be preceded
by changes in the target tissue to create a permissive microenvironment, the
pre-metastatic niche, for the establishment of the metastatic foci. In bone
metastatic niche, metastatic cells stimulate bone consumption resulting in the
release of growth factors that feed the tumor, establishing a vicious cycle
between the bone remodeling system and the tumor itself. Yet, how the
pre-metastatic niches arise in the bone tissue remains unclear. Here we show
that tumor-specific T cells induce osteolytic bone disease before bone
colonization. T cells pro-metastatic activity correlate with a
pro-osteoclastogenic cytokine profile, including RANKL, a master regulator of
osteoclastogenesis. In vivo inhibition of RANKL from tumor-specific T cells
completely blocks bone loss and metastasis. Our results unveil an unexpected
role for RANKL-derived from T cells in setting the pre-metastatic niche and
promoting tumor spread. We believe this information can bring new possibilities
for the development of prognostic and therapeutic tools based on modulation of T
cell activity for prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Experimental Medicine Program, Brazilian National Cancer Institute, Rio
de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de
Janeiro, Brazil
| | - Ana Carolina Leal
- Experimental Medicine Program, Brazilian National Cancer Institute, Rio
de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- Experimental Medicine Program, Brazilian National Cancer Institute, Rio
de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de
Janeiro, Brazil
- Immunology Department, Microbiology Institute Prof. Paulo de Góes,
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina T. Mercadante
- Experimental Medicine Program, Brazilian National Cancer Institute, Rio
de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de
Janeiro, Brazil
| | | | | | | | - João P. Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology/NIAID/NIH,
Bethesda, Maryland, United States of America
| | - Adriana Bonomo
- Experimental Medicine Program, Brazilian National Cancer Institute, Rio
de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de
Janeiro, Brazil
- Immunology Department, Microbiology Institute Prof. Paulo de Góes,
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
33
|
Acute inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis. Breast Cancer Res Treat 2013; 139:391-401. [PMID: 23715631 DOI: 10.1007/s10549-013-2575-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/19/2013] [Indexed: 12/19/2022]
Abstract
Development of metastasis in peripheral tissues is a major problem in the fight to cure breast cancer. Although it is becoming evident that chronic inflammation can contribute to tumor progression and metastasis, the effect of acute inflammation in primary tumor is less known. Using mouse models for breast cancer here we show that biopsy of mammary tumors increases the frequency of lung metastases. This effect is associated with the recruitment of inflammatory cells to the lung and elevated levels of certain cytokines such as IL-6 in the lung airways. Antiinflammatory treatment prior to and after the biopsy reduces the development of metastases triggered by the biopsy. In addition, while lack of IL-6 does not affect primary tumor development, it protects from increasing number of metastases upon biopsy. Thus, our studies show that in addition to chronic inflammation, acute immune response caused by invasive procedures in the primary tumor may cause an increased risk on peripheral metastases, but the risk could be decreased by anti-inflammatory treatments.
Collapse
|
34
|
Das Roy L, Curry JM, Sahraei M, Besmer DM, Kidiyoor A, Gruber HE, Mukherjee P. Arthritis augments breast cancer metastasis: role of mast cells and SCF/c-Kit signaling. Breast Cancer Res 2013; 15:R32. [PMID: 23577751 PMCID: PMC3672823 DOI: 10.1186/bcr3412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/11/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Breast cancer remains the second leading cause of cancer-related deaths for women in the United States. Metastasis is regulated not only by intrinsic genetic changes in malignant cells, but also by the microenvironment, especially those associated with chronic inflammation. We recently reported that mice with autoimmune arthritis have significantly increased incidence of bone and lung metastasis and decreased survival associated with breast cancer. In this study, we evaluated the mechanism underlying the increased metastasis. Methods We used two mouse models; one that develops spontaneous autoimmune arthritis (SKG mice) injected with metastatic breast cancer cells (4T1), and another that develops spontaneous breast cancer (MMTV-PyV MT mice) injected with type II collagen to induce autoimmune arthritis. Mast cell levels and metastasis were monitored. Results First, we confirmed that breast tumor-bearing arthritic mice have a significantly higher incidence of bone and lung metastasis than do their nonarthritic counterparts. Next, we showed increased recruitment of mast cells within the primary tumor of arthritic mice, which facilitates metastasis. Next, we report that arthritic mice without any tumors have higher numbers of mast cells in the bones and lungs, which may be the underlying cause for the enhanced lung and bone metastases observed in the arthritic mice. Next, we showed that once the tumor cells populate the metastatic niches (bones and lungs), they further increase the mast cell population within the niche and assist in enhancing metastasis. This may primarily be due to the interaction of c-Kit receptor present on mast cells and stem cell factor (SCF, the ligand for ckit) expressed on tumor cells. Finally, we showed that targeting the SCF/cKit interaction with an anti-ckit antibody reduces the differentiation of mast cells and consequently reduces metastasis. Conclusion This is the first report to show that mast cells may play a critical role in remodeling not only the tumor microenvironment but also the metastatic niche to facilitate efficient metastasis through SCF/cKit interaction in breast cancer with arthritis.
Collapse
|