1
|
Iyer M, Ravichandran N, Karuppusamy PA, Gnanarajan R, Yadav MK, Narayanasamy A, Vellingiri B. Molecular insights and promise of oncolytic virus based immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:419-492. [PMID: 38762277 DOI: 10.1016/bs.apcsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Roselin Gnanarajan
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
2
|
Holloway RW, Thaker P, Mendivil AA, Ahmad S, Al-Niaimi AN, Barter J, Beck T, Chambers SK, Coleman RL, Crafton SM, Crane E, Ramez E, Ghamande S, Graybill W, Herzog T, Indermaur MD, John VS, Landrum L, Lim PC, Lucci JA, McHale M, Monk BJ, Moore KN, Morris R, O'Malley DM, Reid TJ, Richardson D, Rose PG, Scalici JM, Silasi DA, Tewari K, Wang EW. A phase III, multicenter, randomized study of olvimulogene nanivacirepvec followed by platinum-doublet chemotherapy and bevacizumab compared with platinum-doublet chemotherapy and bevacizumab in women with platinum-resistant/refractory ovarian cancer. Int J Gynecol Cancer 2023; 33:1458-1463. [PMID: 37666539 DOI: 10.1136/ijgc-2023-004812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Treatment options for patients with platinum-resistant/refractory ovarian cancers are limited and only marginally effective. The development of novel, more effective therapies addresses a critical unmet medical need. Olvimulogene nanivacirepvec (Olvi-Vec), with its strong immune modulating effect on the tumor microenvironment, may provide re-sensitization to platinum and clinically reverse platinum resistance or refractoriness in platinum-resistant/refractory ovarian cancer. PRIMARY OBJECTIVE The primary objective is to evaluate the efficacy of intra-peritoneal Olvi-Vec followed by platinum-based chemotherapy and bevacizumab in patients with platinum-resistant/refractory ovarian cancer. STUDY HYPOTHESIS This phase III study investigates Olvi-Vec oncolytic immunotherapy followed by platinum-based chemotherapy and bevacizumab as an immunochemotherapy evaluating the hypothesis that such sequential combination therapy will prolong progression-free survival (PFS) and bring other clinical benefits compared with treatment with platinum-based chemotherapy and bevacizumab. TRIAL DESIGN This is a multicenter, prospective, randomized, and active-controlled phase III trial. Patients will be randomized 2:1 into the experimental arm treated with Olvi-Vec followed by platinum-doublet chemotherapy and bevacizumab or the control arm treated with platinum-doublet chemotherapy and bevacizumab. MAJOR INCLUSION/EXCLUSION CRITERIA Eligible patients must have recurrent, platinum-resistant/refractory, non-resectable high-grade serous, endometrioid, or clear-cell ovarian, fallopian tube, or primary peritoneal cancer. Patients must have had ≥3 lines of prior chemotherapy. PRIMARY ENDPOINT The primary endpoint is PFS in the intention-to-treat population. SAMPLE SIZE Approximately 186 patients (approximately 124 patients randomized to the experimental arm and 62 to the control arm) will be enrolled to capture 127 PFS events. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS Expected complete accrual in 2024 with presentation of primary endpoint results in 2025. TRIAL REGISTRATION NCT05281471.
Collapse
Affiliation(s)
| | - Premal Thaker
- Obstetrics and Gynecology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Orlando, Florida, USA
| | | | - James Barter
- Holy Cross Hospital, Silver Spring, Maryland, USA
| | - Tiffany Beck
- Hoag Cancer Center, Newport Beach, California, USA
| | | | | | - Sarah M Crafton
- West Penn Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Erin Crane
- Levine Cancer Institution, Atrium Health, Charlotte, North Carolina, USA
| | - Eskander Ramez
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sharad Ghamande
- Augusta University Medical College of Georgia, Augusta, Georgia, USA
| | - Whitney Graybill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Herzog
- Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Veena S John
- Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Lisa Landrum
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | | | - Joseph A Lucci
- McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Michael McHale
- Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Bradley J Monk
- University of Arizona and Creighton University School of Medicine, HonorHealth Research Institute, Phoenix, Arizona, USA
| | | | | | - David M O'Malley
- James Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Debra Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Peter G Rose
- Gynecology Oncology Desk A-81, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jennifer M Scalici
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Dan-Arin Silasi
- Mercy St Louis/Diavid C Pratt Cancer Center, St Louis, Missouri, USA
| | - Krishnansu Tewari
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | | |
Collapse
|
3
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
4
|
Truong CS, Yoo SY. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines (Basel) 2022; 10:240. [PMID: 35214699 PMCID: PMC8875327 DOI: 10.3390/vaccines10020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic cancer vaccines represent a promising therapeutic modality via the induction of long-term immune response and reduction in adverse effects by specifically targeting tumor-associated antigens. Oncolytic virus, especially vaccinia virus (VV) is a promising cancer treatment option for effective cancer immunotherapy and thus can also be utilized in cancer vaccines. Non-small cell lung cancer (NSCLC) is likely to respond to immunotherapy, such as immune checkpoint inhibitors or cancer vaccines, since it has a high tumor mutational burden. In this review, we will summarize recent applications of VV in lung cancer treatment and discuss the potential and direction of VV-based therapeutic vaccines.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
5
|
Viral Pathogenesis, Recombinant Vaccines, and Oncolytic Virotherapy: Applications of the Canine Distemper Virus Reverse Genetics System. Viruses 2020; 12:v12030339. [PMID: 32244946 PMCID: PMC7150803 DOI: 10.3390/v12030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen transmissible to a broad range of terrestrial and aquatic carnivores. Despite the availability of attenuated vaccines against CDV, the virus remains responsible for outbreaks of canine distemper (CD) with significant morbidity and mortality in domesticated and wild carnivores worldwide. CDV uses the signaling lymphocytic activation molecule (SLAM, or CD150) and nectin-4 (PVRL4) as entry receptors, well-known tumor-associated markers for several lymphadenomas and adenocarcinomas, which are also responsible for the lysis of tumor cells and apparent tumor regression. Thus, CDV vaccine strains have emerged as a promising platform of oncolytic viruses for use in animal cancer therapy. Recent advances have revealed that use of the CDV reverse genetic system (RGS) has helped increase the understanding of viral pathogenesis and explore the development of recombinant CDV vaccines. In addition, genetic engineering of CDV based on RGS approaches also has the potential of enhancing oncolytic activity and selectively targeting tumors. Here, we reviewed the host tropism and pathogenesis of CDV, and current development of recombinant CDV-based vaccines as well as their use as oncolytic viruses against cancers.
Collapse
|
6
|
Binz E, Berchtold S, Beil J, Schell M, Geisler C, Smirnow I, Lauer UM. Chemovirotherapy of Pancreatic Adenocarcinoma by Combining Oncolytic Vaccinia Virus GLV-1h68 with nab-Paclitaxel Plus Gemcitabine. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:10-21. [PMID: 28607950 PMCID: PMC5458765 DOI: 10.1016/j.omto.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
Oncolytic viruses have proven their therapeutic potential against a variety of different tumor entities both in vitro and in vivo. Their ability to selectively infect and lyse tumor cells, while sparing healthy tissues, makes them favorable agents for tumor-specific treatment approaches. Particularly, the addition of virotherapeutics to already established chemotherapy protocols (so-called chemovirotherapy) is of major interest. Here we investigated the in vitro cytotoxic effect of the oncolytic vaccinia virus GLV-1h68 combined with dual chemotherapy with nab-paclitaxel plus gemcitabine in four human pancreatic adenocarcinoma cell lines (AsPc-1, BxPc-3, MIA-PaCa-2, and Panc-1). This chemovirotherapeutic protocol resulted in enhanced tumor cell killing in two tumor cell lines compared to the respective monotherapies. We were thereby able to show that the combination of oncolytic vaccinia virus GLV-1h68 with nab-paclitaxel and gemcitabine has great potential in the chemovirotherapeutic treatment of advanced pancreatic adenocarcinoma. However, the key to a successful combinatorial chemovirotherapeutic treatment seems to be a profound viral replication, as tumor cell lines that were non-responsive to the combination therapy exhibited a reduced viral replication in the presence of the chemotherapeutics. This finding is of special significance when aiming to achieve a virus-mediated induction of a profound and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Eike Binz
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Martina Schell
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany
| | - Christine Geisler
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany
| | - Irina Smirnow
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany.,German Cancer Consortium (DKTK), DKFZ Partner Site, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Abstract
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses.
Collapse
|
8
|
Kumar A, Coquard L, Pasquereau S, Russo L, Valmary-Degano S, Borg C, Pothier P, Herbein G. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16012. [PMID: 27626063 PMCID: PMC5008266 DOI: 10.1038/mto.2016.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/14/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Although viruses can cause cancer, other studies reported the regression of human tumors upon viral infections. We investigated the cytoreductive potential of human cytomegalovirus (HCMV) in a murine model of human hepatocellular carcinoma (HCC) in severe-immunodeficient mice. Infection of HepG2 cells with HCMV resulted in the absence of tumor or in a limited tumor growth following injection of cells subcutaneously. By contrast all mice injected with uninfected HepG2 cells and with HepG2 cells infected with UV-treated HCMV did develop tumors without any significant restriction. Analysis of tumors indicated that in mice injected with HCMV-infected-HepG2 cells, but not in controls, a restricted cellular proliferation was observed parallel to a limited activation of the STAT3-cyclin D1 axis, decreased formation of colonies in soft agar, and activation of the intrinsic apoptotic pathway. We conclude that HCMV can provide antitumoral effects in a murine model of HCC which requires replicative virus at some stages that results in limitation of tumor cell proliferation and enhanced apoptosis mediated through the intrinsic caspase pathway.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Laurie Coquard
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Sébastien Pasquereau
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon , Besançon, France
| | | | - Christophe Borg
- Department of Medical Oncology, INSERM UMR1098, EFS Bourgogne Franche-Comté , Besançon, France
| | - Pierre Pothier
- Department of Virology, Pathogens & Inflammation Laboratory, UPRES EA4266, SFR FED 4234, CHU Dijon , Dijon, France
| | - Georges Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon , Besançon, France
| |
Collapse
|
9
|
Haddad D, Socci N, Chen CH, Chen NG, Zhang Q, Carpenter SG, Mittra A, Szalay AA, Fong Y. Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16008. [PMID: 27119120 PMCID: PMC4824563 DOI: 10.1038/mto.2016.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pancreatic cancer is a fatal disease associated with resistance to conventional therapies. This study aimed to determine changes in gene expression patterns associated with infection and susceptibility of pancreatic cancer cells to an oncolyticvaccinia virus, GLV-1h153, carrying the human sodium iodide symporter for deep tissue imaging of virotherapy. METHODS Replication and susceptibility of pancreatic adenocarcinoma PANC-1 cells to GLV-1h153 was confirmed with replication and cytotoxicity assays. PANC-1 cells were then infected with GLV-1h153 and near-synchronous infection confirmed via flow cytometry of viral-induced green fluorescent protein (GFP) expression. Six and 24 hours after infection, three samples of each time point were harvested, and gene expression patterns assessed using HG-U133A cDNA microarray chips as compared to uninfected control. Differentially expressed genes were identified using Bioconductor LIMMA statistical analysis package. A fold change of 2.0 or above was used as a cutoff, with a P value of 0.01. The gene list was then analyzed using Ingenuity Pathways Analysis software. RESULTS Differential gene analysis revealed a total of 12,412 up- and 11,065 downregulated genes at 6 and 24 hours postinfection with GLV-1h153 as compared to control. At 6 hours postinfection. A total of 139 genes were either up or downregulated >twofold (false discovery rate < 0.05), of which 124 were mapped by Ingenuity Pathway Analysis (IPA). By 24 hours postinfection, a total of 5,698 genes were identified and 5,563 mapped by IPA. Microarray revealed gene expression changes, with gene networks demonstrating downregulation of processes such as cell death, cell cycle, and DNA repair, and upregulation of infection mechanisms (P < 0.01). Six hours after infection, gene changes involved pathways such as HMGB-1, interleukin (IL)-2, IL-6, IL-8, janus kinase/signal tranducer and activator of transcription (JAK/STAT), interferon, and ERK 5 signaling (P < 0.01). By 24 hours, prominent pathways included P53- and Myc-induced apoptotic processes, pancreatic adenocarcinoma signaling, and phosphoinositide 3-kinase/v-akt murine thymoma vial oncogene homolog 1 (PI3/AKT) pathways. CONCLUSIONS Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.
Collapse
Affiliation(s)
- Dana Haddad
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA;; Department of Biochemistry, University of Wuerzburg, Wuerzburg, Bavaria, Germany
| | - Nicholas Socci
- Bioinformatics Core Facility, Memorial Sloan-Kettering Cancer Center , New York, New York, USA
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center , New York, New York, USA
| | - Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, California, USA;; Department of Radiation Oncology, University of California, San Diego, California, USA
| | - Qian Zhang
- Department of Radiation Oncology, University of California , San Diego, California, USA
| | - Susanne G Carpenter
- Department of Surgery, Memorial Sloan-Kettering Cancer Center , New York, New York, USA
| | - Arjun Mittra
- Department of Surgery, Memorial Sloan-Kettering Cancer Center , New York, New York, USA
| | - Aladar A Szalay
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Bavaria, Germany;; Genelux Corporation, San Diego Science Center, San Diego, California, USA;; Department of Radiation Oncology, University of California, San Diego, California, USA
| | - Yuman Fong
- Department of Surgery, City of Hope Medical Center , Los Angeles, California, USA
| |
Collapse
|
10
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Abstract
Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.
Collapse
Affiliation(s)
- Rauf Bhat
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| | - Jean Rommelaere
- Division of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
12
|
Conrad SJ, El-Aswad M, Kurban E, Jeng D, Tripp BC, Nutting C, Eversole R, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:19. [PMID: 25887490 PMCID: PMC4337313 DOI: 10.1186/s13046-015-0131-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022]
Abstract
Colorectal cancers are significant causes of morbidity and mortality and existing therapies often perform poorly for individuals afflicted with advanced disease. Oncolytic virotherapy is an emerging therapeutic modality with great promise for addressing this medical need. Herein we describe the in vivo testing of recombinant variants of the tanapoxvirus (TPV). Recombinant viruses were made ablated for either the 66R gene (encoding a thymidine kinase), the 2L gene (encoding a TNF-binding protein), or both. Some of the recombinants were armed to express mouse chemotactic protein 1 (mCCL2/mMCP-1), mouse granulocyte-monocyte colony stimulating factor (mGM-CSF), or bacterial flagellin (FliC). Tumors were induced in athymic nude mice by implantation of HCT 116 cells and subsequently treated by a single intratumoral injection of one of the recombinant TPVs. Histological examination showed a common neoplastic cell type and a range of immune cell infiltration, necrosis, and tumor cell organization. Significant regression was seen in tumors treated with virus TPV/Δ2L/Δ66R/fliC, and to a lesser extent the recombinants TPV/Δ2L and TPV/Δ66R. Our results suggest that oncolytic recombinants of the TPV armed with activators of the innate immune response may be effective virotherapeutic agents for colorectal cancers in humans and should be explored further to fully realize their potential.
Collapse
Affiliation(s)
- Steven J Conrad
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Mohamed El-Aswad
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Esaw Kurban
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - David Jeng
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Brian C Tripp
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Charles Nutting
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Robert Eversole
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Charles Mackenzie
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
13
|
Overcoming tumor resistance by heterologous adeno-poxvirus combination therapy. MOLECULAR THERAPY-ONCOLYTICS 2015; 1:14006. [PMID: 27119097 PMCID: PMC4782942 DOI: 10.1038/mto.2014.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.
Collapse
|
14
|
First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2014; 23:202-14. [PMID: 25292189 DOI: 10.1038/mt.2014.194] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viral therapy utilizes a tumor-selective replicating virus which preferentially infects and destroys cancer cells and triggers antitumor immunity. The Western Reserve strain of vaccinia virus (VV) is the most virulent strain of VV in animal models and has been engineered for tumor selectivity through two targeted gene deletions (vvDD). We performed the first-in-human phase 1, intratumoral dose escalation clinical trial of vvDD in 16 patients with advanced solid tumors. In addition to safety, we evaluated signs of vvDD replication and spread to distant tumors, pharmacokinetics and pharmacodynamics, clinical and immune responses to vvDD. Dose escalation proceeded without dose-limiting toxicities to a maximum feasible dose of 3 × 10(9) pfu. vvDD replication in tumors was reproducible. vvDD genomes and/or infectious particles were recovered from injected (n = 5 patients) and noninjected (n = 2 patients) tumors. At the two highest doses, vvDD genomes were detected acutely in blood in all patients while delayed re-emergence of vvDD genomes in blood was detected in two patients. Fifteen of 16 patients exhibited late symptoms, consistent with ongoing vvDD replication. In summary, intratumoral injection of the oncolytic vaccinia vvDD was well-tolerated in patients and resulted in selective infection of injected and noninjected tumors and antitumor activity.
Collapse
|
15
|
Hofmann E, Weibel S, Szalay AA. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J Transl Med 2014; 12:197. [PMID: 25030093 PMCID: PMC4105246 DOI: 10.1186/1479-5876-12-197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the enhanced tumor growth inhibition achieved by combining GLV-1h68 with CPA is due to an effect on the vasculature rather than an immunosuppressive action of CPA. These results provide evidence to support further preclinical studies of combining GLV-1h68 and CPA in other highly angiogenic tumor models. Moreover, data presented here demonstrate that CPA can be combined successfully with GLV-1h68 based oncolytic virus therapy and therefore might be promising as combination therapy in human clinical trials.
Collapse
Affiliation(s)
| | | | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany.
| |
Collapse
|
16
|
Donat U, Rother J, Schäfer S, Hess M, Härtl B, Kober C, Langbein-Laugwitz J, Stritzker J, Chen NG, Aguilar RJ, Weibel S, Szalay AA. Characterization of metastasis formation and virotherapy in the human C33A cervical cancer model. PLoS One 2014; 9:e98533. [PMID: 24887184 PMCID: PMC4041767 DOI: 10.1371/journal.pone.0098533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases.
Collapse
Affiliation(s)
- Ulrike Donat
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Juliane Rother
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Simon Schäfer
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Hess
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Barbara Härtl
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany; Genelux GmbH, Bernried, Germany
| | - Christina Kober
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | | | - Jochen Stritzker
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany; Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
| | - Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America; Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California, United States of America
| | - Richard J Aguilar
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
| | - Stephanie Weibel
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Aladar A Szalay
- Institute of Biochemistry, University of Wuerzburg, Wuerzburg, Germany; Genelux Corporation, San Diego Science Center, San Diego, California, United States of America; Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California, United States of America; Genelux GmbH, Bernried, Germany; Rudolph Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Gentschev I, Patil SS, Petrov I, Cappello J, Adelfinger M, Szalay AA. Oncolytic virotherapy of canine and feline cancer. Viruses 2014; 6:2122-37. [PMID: 24841386 PMCID: PMC4036544 DOI: 10.3390/v6052122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/22/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022] Open
Abstract
Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Sandeep S Patil
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Ivan Petrov
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Joseph Cappello
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA.
| | - Marion Adelfinger
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| | - Aladar A Szalay
- Department of Biochemistry, University of Wuerzburg, Wuerzburg D-97074, Germany.
| |
Collapse
|
18
|
Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 2014; 21:26-38. [PMID: 23686135 PMCID: PMC3858605 DOI: 10.1038/cdd.2013.48] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 02/08/2023] Open
Abstract
Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.
Collapse
Affiliation(s)
- A D Garg
- Cell Death Research and Therapy (CDRT) Unit, Department of Molecular and Cell Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - S Martin
- Cell Death Research and Therapy (CDRT) Unit, Department of Molecular and Cell Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - J Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Unit, Department of Molecular and Cell Biology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
19
|
Nguyen DH, Chen NG, Zhang Q, Le HT, Aguilar RJ, Yu YA, Cappello J, Szalay AA. Vaccinia virus-mediated expression of human erythropoietin in tumors enhances virotherapy and alleviates cancer-related anemia in mice. Mol Ther 2013; 21:2054-62. [PMID: 23765443 DOI: 10.1038/mt.2013.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/09/2013] [Indexed: 12/27/2022] Open
Abstract
Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia.
Collapse
Affiliation(s)
- Duong H Nguyen
- Department of Biochemistry, Rudolph Virchow Center for Experimental Biomedicine, and Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer. J Transl Med 2013; 11:106. [PMID: 23635329 PMCID: PMC3646671 DOI: 10.1186/1479-5876-11-106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 04/23/2013] [Indexed: 12/25/2022] Open
Abstract
Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.
Collapse
|
21
|
Angarita FA, Acuna SA, Ottolino-Perry K, Zerhouni S, McCart JA. Mounting a strategic offense: fighting tumor vasculature with oncolytic viruses. Trends Mol Med 2013; 19:378-92. [PMID: 23540715 DOI: 10.1016/j.molmed.2013.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Blood supply within a tumor drives progression and ultimately allows for metastasis. Many anticancer therapies target tumor vasculature, but their individual effectiveness is limited because they induce indirect cell death. Agents that disrupt nascent and/or established tumor vasculature while simultaneously killing cancer cells would certainly have a greater impact. Oncolytic virotherapy utilizes attenuated viruses that replicate specifically within a tumor. They induce cytotoxicity through a combination of direct cell lysis, antitumor immune stimulation, and recently identified antitumor vascular effects. This review summarizes the novel preclinical and clinical evidence regarding the antitumor vascular effects of oncolytic viruses, which include infection and lysis of tumor endothelial cells, natural or genetically engineered antiangiogenic properties, and combination therapy with clinically approved antivascular agents.
Collapse
Affiliation(s)
- Fernando A Angarita
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 2M1 Canada
| | | | | | | | | |
Collapse
|
22
|
Imaging of intratumoral inflammation during oncolytic virotherapy of tumors by 19F-magnetic resonance imaging (MRI). PLoS One 2013; 8:e56317. [PMID: 23441176 PMCID: PMC3575337 DOI: 10.1371/journal.pone.0056317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/08/2013] [Indexed: 11/25/2022] Open
Abstract
Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.
Collapse
|
23
|
Reinboth J, Ascierto ML, Chen NG, Zhang Q, Yu YA, Aguilar RJ, Carretero R, Worschech A, Zhao Y, Wang E, Marincola FM, Szalay AA. Correlates between host and viral transcriptional program associated with different oncolytic vaccinia virus isolates. Hum Gene Ther Methods 2012; 23:285-96. [PMID: 23131031 DOI: 10.1089/hgtb.2012.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vaccinia virus (VACV) has emerged as an attractive tool in oncolytic virotherapy. VACV replication efficiency plays a crucial role in the therapeutic outcome. However, little is known about the influence of host factors on viral replication efficiency and permissiveness of a host cell line to infection and oncolysis. In this study, replication of the attenuated VACV GLV-1h68 strain and three wild-type VACV isolates was determined in two autologous human melanoma cell lines (888-MEL and 1936-MEL). Host gene expression and viral gene expression in infected cells were evaluated via respective expression array platforms. Microarray analyses followed by sequential statistical approaches characterized human genes that change specifically due to virus infection. Viral gene transcription correlated with viral replication in a time-dependent manner. A set of human genes revealed strong correlations with the respective viral gene expression. Finally we identified a set of human genes with possible predictive value for viral replication in an independent dataset. The results demonstrate a probable correlation between viral replication, early gene expression, and the respective host response, and thus a possible involvement of human host factors in viral early replication. The characterization of human target genes that influence viral replication could help answer the question of host cell permissiveness to oncolytic virotherapy and provide important information for the development of novel recombinant vaccinia viruses with improved features to enhance replication rate and hence trigger therapeutic outcome.
Collapse
Affiliation(s)
- Jennifer Reinboth
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reinboth J, Ascierto ML, Chen NG, Zhang Q, Yu YA, Aguilar RJ, Carretero R, Worschech A, Zhao Y, Wang E, Marincola FM, Szalay AA. Correlates between host and viral transcriptional program associated with different oncolytic vaccinia virus isolates. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Preferential colonization of metastases by oncolytic vaccinia virus strain GLV-1h68 in a human PC-3 prostate cancer model in nude mice. PLoS One 2012; 7:e45942. [PMID: 23049897 PMCID: PMC3457966 DOI: 10.1371/journal.pone.0045942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII(+)/CD68(+) macrophages, MHCII(+)/CD19(+) B lymphocytes) combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.
Collapse
|
26
|
Schäfer S, Weibel S, Donat U, Zhang Q, Aguilar RJ, Chen NG, Szalay AA. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12:366. [PMID: 22917220 PMCID: PMC3495867 DOI: 10.1186/1471-2407-12-366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022] Open
Abstract
Background Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome.
Collapse
Affiliation(s)
- Simon Schäfer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10:167. [PMID: 22901246 PMCID: PMC3478222 DOI: 10.1186/1479-5876-10-167] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Background Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44+CD24+ESA+ cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44+CD24+ESA+ cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44+CD24-ESA+ cells. Conclusions Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Biochemistry, Biocenter, University of Würzburg, Am hubland, D-97074, Würzburg, Germany
| | | | | | | |
Collapse
|
28
|
Gentschev I, Adelfinger M, Josupeit R, Rudolph S, Ehrig K, Donat U, Weibel S, Chen NG, Yu YA, Zhang Q, Heisig M, Thamm D, Stritzker J, MacNeill A, Szalay AA. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma. PLoS One 2012; 7:e37239. [PMID: 22615950 PMCID: PMC3352892 DOI: 10.1371/journal.pone.0037239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 04/18/2012] [Indexed: 12/27/2022] Open
Abstract
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Marion Adelfinger
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Rafael Josupeit
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Rudolph
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Klaas Ehrig
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Donat
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Stephanie Weibel
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Nanhai G. Chen
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Yong A. Yu
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Qian Zhang
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Martin Heisig
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, Wuerzburg, Germany
| | - Douglas Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jochen Stritzker
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Amy MacNeill
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Aladar A. Szalay
- Genelux Corporation, San Diego Science Center, San Diego, California, United States of America
- Department of Biochemistry, University of Wuerzburg, Wuerzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of Radiation Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ascierto ML, Worschech A, Yu Z, Adams S, Reinboth J, Chen NG, Pos Z, Roychoudhuri R, Di Pasquale G, Bedognetti D, Uccellini L, Rossano F, Ascierto PA, Stroncek DF, Restifo NP, Wang E, Szalay AA, Marincola FM. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68. BMC Cancer 2011; 11:451. [PMID: 22011439 PMCID: PMC3213037 DOI: 10.1186/1471-2407-11-451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023] Open
Abstract
Background Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.
Collapse
Affiliation(s)
- Maria Libera Ascierto
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center and trans-NIH Center of Human Immunology, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen NG, Yu YA, Zhang Q, Szalay AA. Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice. J Transl Med 2011; 9:164. [PMID: 21951588 PMCID: PMC3192684 DOI: 10.1186/1479-5876-9-164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 01/09/2023] Open
Abstract
Background We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, β-galactosidase, and β-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV-1h68. This strain shows tumor-specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV-1h68 with short non-coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals.
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | | | | | | |
Collapse
|