1
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Santos RCM, Lucena DMS, Loponte HFBR, Alisson-Silva F, Dias WB, Lins RD, Todeschini AR. GM2/GM3 controls the organizational status of CD82/Met microdomains: further studies in GM2/GM3 complexation. Glycoconj J 2022; 39:653-661. [PMID: 35536494 DOI: 10.1007/s10719-022-10061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
At cell surface gangliosides might associate with signal transducers proteins, grown factor receptors, integrins, small G-proteins and tetraspanins establishing microdomains, which play important role in cell adhesion, cell activation, motility, and growth. Previously, we reported that GM2 and GM3 form a heterodimer that interacts with the tetraspanin CD82, controlling epithelial cell mobility by inhibiting integrin-hepatocyte growth factor-induced cMet tyrosine kinase signaling. By using molecular dynamics simulations to study the molecular basis of GM2/GM3 interaction we demonstrate, here, that intracellular levels of Ca2+ mediate GM2/GM3 complexation via electrostatic interaction with their carboxyl groups, while hydrogen bonds between the ceramide groups likely aid stabilizing the complex. The presence of GM2/GM3 complex alters localization of CD82 on cell surface and therefore downstream signalization. These data contribute for the knowledge of how glycosylation may control signal transduction and phenotypic changes.
Collapse
Affiliation(s)
- Ronan C M Santos
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela M S Lucena
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector F B R Loponte
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Wagner B Dias
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, 50740-465, Brazil
| | - Adriane R Todeschini
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Lee JW, Hur J, Kwon YW, Chae CW, Choi JI, Hwang I, Yun JY, Kang JA, Choi YE, Kim YH, Lee SE, Lee C, Jo DH, Seok H, Cho BS, Baek SH, Kim HS. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol 2021; 14:148. [PMID: 34530889 PMCID: PMC8444549 DOI: 10.1186/s13045-021-01147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. METHODS Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. RESULTS KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. CONCLUSIONS KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors.
Collapse
Affiliation(s)
- Jin-Woo Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheong-Whan Chae
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Il Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Yun
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-A Kang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Eun Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hyun Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Eun Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heeyoung Seok
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Inc, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.
| |
Collapse
|
4
|
Øverbye A, Torgersen ML, Sønstevold T, Iversen TG, Mørch Ý, Skotland T, Sandvig K. Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology 2021; 15:865-884. [PMID: 34047629 DOI: 10.1080/17435390.2021.1924888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticles composed of poly(alkyl cyanoacrylate) (PACA) have shown great promise due to their biodegradability and high drug loading capacity. Development of optimal PACA nanocarriers requires detailed analysis of the overall cellular impact exerted by PACA variants. We here perform a comprehensive comparison of cabazitaxel (CBZ)-loaded nanocarriers composed of three different PACA monomers, i.e. poly(n-butyl cyanoacrylate) (PBCA), poly(2-ethylbutyl cyanoacrylate) (PEBCA) and poly(octyl cyanoacrylate) (POCA). The cytotoxicity of drug-loaded and empty PACA nanoparticles were compared to that of free CBZ across a panel of nine cancer cell lines by assessing cellular metabolism, proliferation and protein synthesis. The analyses revealed that the cytotoxicity of all CBZ-loaded PACAs was similar to that of free CBZ for all cell lines tested, whereas the empty PACAs exerted much lower toxicity. To increase our understanding of the toxic effects of these treatments comprehensive MS-based proteomics were performed with HCT116, MDA-MB-231 and PC3 cells incubated with PACA-CBZ variants or free CBZ. Interestingly, PACA-CBZ specifically led to decreased levels of proteins involved in focal adhesion and stress fibers in all cell lines. Since we recently demonstrated that encapsulation of CBZ within PEBCA nanoparticles significantly improved the therapeutic effect of CBZ on a patient derived xenograft model in mice, we investigated the effects of this PACA variant more closely by immunoblotting. Interestingly, we detected several changes in the protein expression and degree of phosphorylation of SRC-pathway proteins that can be relevant for the therapeutic effects of these substances.
Collapse
Affiliation(s)
- Anders Øverbye
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Maria Lyngaas Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Tonje Sønstevold
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. DISEASE MARKERS 2020; 2020:8899924. [PMID: 33204367 PMCID: PMC7654213 DOI: 10.1155/2020/8899924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.
Collapse
|
6
|
An oncogenic viral interferon regulatory factor upregulates CUB domain-containing protein 1 to promote angiogenesis by hijacking transcription factor lymphoid enhancer-binding factor 1 and metastasis suppressor CD82. Cell Death Differ 2020; 27:3289-3306. [PMID: 32555380 DOI: 10.1038/s41418-020-0578-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma (KS), a highly angiogenic and invasive vascular tumor, is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) contributes to KSHV-induced cell motility (PLoS Pathog. 15:e1007578, 2019). However, the role of vIRF1 in KSHV-induced angiogenesis remains unknown. Here, using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice, we show that vIRF1 promotes angiogenesis by upregulating CUB domain (for complement C1r/C1s, Uegf, Bmp1) containing protein 1 (CDCP1). Mechanistically, vIRF1 enhances the expression of transcription factor lymphoid enhancer-binding factor 1 (Lef1) and binds to Lef1 to promote CDCP1 transcription. Meanwhile, vIRF1 degrades metastasis suppressor CD82 through an ubiquitin-proteasome pathway by recruiting E3 ubiquitin ligase AMFR to CD82, which protects CDCP1 from CD82-mediated, palmitoylation-dependent degradation. CDCP1 activates AKT signaling, which is required for vIRF1-induced cell motility but not angiogenesis. Our results illustrate that, by hijacking Lef1 and CD82, vIRF1 upregulates CDCP1 to promote angiogenesis and cell invasion. These novel findings demonstrate the vIRF1 targets multiple cellular proteins and pathways to promote the pathogenesis of KS, which could be attractive therapeutic targets for KSHV-induced malignancies.
Collapse
|
7
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
Dai Y, Siemann D. c-Src is required for hypoxia-induced metastasis-associated functions in prostate cancer cells. Onco Targets Ther 2019; 12:3519-3529. [PMID: 31190858 PMCID: PMC6512571 DOI: 10.2147/ott.s201320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Metastasis is the major cause of therapeutic failure in prostate cancer patients, and hypoxia has been shown to promote metastatic functions. However, whether Src family kinases (SFKs) can be upregulated under hypoxia is unclear. Materials and methods: In the current study, we evaluated the effects of hypoxia on cellular functions and activities of different SFK members (c-Src, Lyn, Fyn) in prostate cancer cells. Prostate cancer cell functions were determined in vitro including migration (wound-healing assay), invasion (Matrigel-based transwell assay) and clonogenic cell survival (colony formation assay). Protein expression was detected by Western blotting and gene knockdown was accomplished by siRNA transfection. Results:SRC, but not LYN and FYN, is associated with overall survival in prostate cancer patients, while all three phosphorylated proteins are highly expressed in tumors compared to normal tissues. Short-term hypoxic exposure significantly enhances cell migration, invasion, clonogenic survival, and consistently, c-Src phosphorylation in both PC-3ML and C4-2B cells. Knockdown of SRC, but not LYN or FYN, abolished hypoxia-induced functions. Finally, small molecule Src inhibitors strongly inhibited cell behaviors and c-Src activation under hypoxic conditions. Conclusion: Our data show that hypoxia is able to enhance metastatic-associated cell functions by activating c-Src in prostate cancer cells. Importantly, SFK inhibition by small molecule inhibitors was able to impair hypoxia-induced metastasis associated cell functions, suggesting a possible role of SFK inhibitors for prostate cancer treatment.
Collapse
Affiliation(s)
- Yao Dai
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
9
|
Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41:711-724. [DOI: 10.1007/s12272-018-1051-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
10
|
Miller J, Dreyer TF, Bächer AS, Sinner EK, Heinrich C, Benge A, Gross E, Preis S, Rother J, Roberts A, Nelles G, Miteva T, Reuning U. Differential tumor biological role of the tumor suppressor KAI1 and its splice variant in human breast cancer cells. Oncotarget 2018; 9:6369-6390. [PMID: 29464079 PMCID: PMC5814219 DOI: 10.18632/oncotarget.23968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/23/2017] [Indexed: 01/30/2023] Open
Abstract
The tetraspanin and tumor suppressor KAI1 is downregulated or lost in many cancers which correlates with poor prognosis. KAI1 acts via physical/functional crosstalk with other membrane receptors. Also, a splice variant of KAI1 (KAI1-SP) has been identified indicative of poor prognosis. We here characterized differential effects of the two KAI1 variants on tumor biological events involving integrin (αvß3) and/or epidermal growth factor receptor (EGF-R). In MDA-MB-231 and -435 breast cancer cells, differential effects were documented on the expression levels of the tumor biologically relevant integrin αvß3 which colocalized with KAI1-WT but not with KAI1-SP. Cellular motility was assessed by video image processing, including motion detection and vector analysis for the quantification and visualization of cell motion parameters. In MDA-MB-231 cells, KAI1-SP provoked a quicker wound gap closure and higher closure rates than KAI1-WT, also reflected by different velocities and average motion amplitudes of singular cells. KAI1-SP induced highest cell motion adjacent to the wound gap borders, whereas in MDA-MB-435 cells a comparable induction of both KAI1 variants was noticed. Moreover, while KAI1-WT reduced cell growth, KAI1-SP significantly increased it going along with a pronounced EGF-R upregulation. KAI1-SP-induced cell migration and proliferation was accompanied by the activation of the focal adhesion and Src kinase. Our findings suggest that splicing of KAI1 does not only abrogate its tumor suppressive functions, but even more, promotes tumor biological effects in favor of cancer progression and metastasis.
Collapse
Affiliation(s)
- Julia Miller
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Tobias F Dreyer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anne Sophie Bächer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva-Kathrin Sinner
- BOKU, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Christine Heinrich
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anke Benge
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva Gross
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Sarah Preis
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Jan Rother
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Anthony Roberts
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Tzenka Miteva
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Ute Reuning
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
11
|
The molecular biology of prostate cancer: current understanding and clinical implications. Prostate Cancer Prostatic Dis 2017; 21:22-36. [PMID: 29282359 DOI: 10.1038/s41391-017-0023-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND With continuous progress over the past few decades in understanding diagnosis, treatment, and genetics, much has been learned about the prostate cancer-diagnosed genome. METHODS A comprehensive MEDLINE® and Google scholar literature search was conducted using keyword variations relating to the genetics of prostate cancer such as chromosomal alterations, androgen receptor, castration-resistant, inheritance, polymorphisms, oncogenes, metastasis, biomarkers, and immunotherapy. RESULTS Traditionally, androgen receptors (AR) have been the focus of research. Recently, identification of recurrent chromosomal alterations that lead to either multiplication of regions (gain-of-function) or deletion of regions (loss-of-function) has opened the door to greater genetic accessibility. These chromosomal aberrations lead to variation in copy number and gene expression. Some of these chromosomal alterations are inherited, while others undergo somatic mutations during disease progression. Inherited gene mutations that make one susceptible to prostate cancer have been identified with familial-linked studies. Somatic genes that progress tumorigenesis have also been identified. Research on the molecular biology of prostate cancer has characterized these genes into tumor suppressor genes or oncogenes. Additionally, genome-wide assay studies have identified many high-risk single-nucleotide polymorphisms recurrent throughout the prostate cancer-diagnosed genome. Castration-resistant prostate cancer is the most aggressive form of prostate cancer, and its research has elucidated many types of mutations associated with AR itself, including enhanced expression and amplification, point mutations, and alternative splicing. Understanding the molecular biology of prostate cancer has permitted more accurate identification using advanced biomarkers and therapy for aggressive forms using immunotherapy. CONCLUSIONS An age-related disease, prostate cancer commands profound attention. With increasing life expectancy and the continuous pursuit of it, prostate cancer is a powerful obstacle best defeated using targeted therapies specifically designed for the unique molecular profile of the malignancy.
Collapse
|
12
|
Liu L, Liang Z, Guo K, Wang H. Relationship between the expression of CD133, HIF-1α, VEGF and the proliferation and apoptosis in hypoxic human prostate cancer cells. Oncol Lett 2017; 14:4065-4068. [PMID: 28943913 PMCID: PMC5592884 DOI: 10.3892/ol.2017.6726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023] Open
Abstract
This study measured the levels of expression of CD133, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in human prostate cancer cells grown under hypoxic and non-hypoxic conditions to compare the values to resulting amounts of proliferation and apoptosis in the cells. Human prostate cancer cell line LNCaP cells were routinely thawed, cultured and passaged. Actively growing cells were divided into batches. Cells in the control group were grown under 5% CO2 + 20% O2, and those in the hypoxia group were grown under 5% CO2 + 1% O2. The experiments were performed after 12, 24 and 72 h under each growth condition. The percentages of CD13+ cells were detected by flow cytometry, the expression of HIF-1α and VEGF was detected by western blot analysis, the cell proliferation rate was detected by the MTT assay, and the apoptotic rate was detected by flow cytometry. The results showed that the percentage of CD133+ cells, and the expressions of HIF-1α and VEGF for the cells in the hypoxia group increased gradually from 12 to 24, to 72 h, while there were no equivalent changes in the control group. Cell proliferation in the two groups increased gradually from 12 to 24, to 72 h, but was significantly higher at all time-points in the hypoxia group (p<0.05). There was no significant difference in terms of the amount of apoptotic cells at any of the three different time-points in either group, but the apoptotic cells in the hypoxia group were significantly less than those in the control group at each time-point, and the difference was statistically significant (p<0.05). We conclude that the expression of CD133+, HIF-1α and VEGF in human prostate cancer cells is related to conditions of hypoxia, which ultimately promotes the proliferation and reduces apoptosis in these cells.
Collapse
Affiliation(s)
- Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zuowen Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Yan H, Ji X, Li J, Zhang L, Zhao P. Overexpression of KAI1 inhibits retinoblastoma metastasis in vitro. Oncol Lett 2017; 13:827-833. [PMID: 28356965 DOI: 10.3892/ol.2016.5507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression of cluster of differentiation 82 (KAI1), a gene involved in the suppression of tumor metastasis, in human retinoblastoma (RB) tissue and to study the effect of KAI1 expression on RB cell migration and invasion. KAI1 expression was examined in 26 patients with non-invasive and invasive retinoblastoma using reverse transcription-quantitative polymerase chain reaction and western blot analysis. A lentiviral vector containing KAI1 cDNA was used to transfect the two RB cell lines, HXO-Rb44-Gl and Y79. Following successful transfection, the migratory and invasive capacity of the two RB cell lines was evaluated using a Transwell® migration assay. KAI1 expression was observed to be downregulated in invasive RB compared to non-invasive RB. The migratory and invasive capacities of KAI1 transfected cell lines were significantly decreased compared to those of the control cells. KAI1 may be involved in retinoblastoma metastasis, and increased expression of KAI1 significantly inhibits the metastatic ability of RB cells in vitro.
Collapse
Affiliation(s)
- Hui Yan
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Xunda Ji
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Lei Zhang
- Department of Ophthalmology, Tongji University Affiliated Yangpu Hospital, Shanghai 200090, P.R. China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
14
|
Chai J, Du L, Ju J, Ma C, Shen Z, Yang X, Liang L, Ni Q, Sun M. Overexpression of KAI1/CD82 suppresses in vitro cell growth, migration, invasion and xenograft growth in oral cancer. Mol Med Rep 2017; 15:1527-1532. [PMID: 28260006 PMCID: PMC5365014 DOI: 10.3892/mmr.2017.6186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
KAI1/CD82 is a metastatic suppressor gene in human prostate cancer and several other types of cancer in humans. The present study aimed to examine the role of the overexpression of KAI1 in the progression of oral cancer. Human KAI1/CD82 cDNA was transfected into OSCC-15 and 293T cell lines, and its effects on OSCC-15 cell proliferation, invasion and apoptosis were assessed by performing a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Matrigel invasion and Annexin V-FITC staining, respectively. In addition, a xenograft model was used to assess the effect of KAI1/CD82 on the in vivo growth of tumors. The overexpression of KAI1/CD82 inhibited the proliferation and invasion of OSCC-15 cells. It also enhanced the apoptotic rate of the OSCC-15 cells. Furthermore, the overexpression of KAI1/CD82 inhibited tumor growth in the xenograft model. The results demonstrated that the overexpression of KAI1/CD82 significantly inhibited the proliferation and invasion of human oral cancer cells, and inhibited tumor growth in the xenograft model. Therefore, KAI1/CD82 may be considered as a potential therapeutic target in oral cancer.
Collapse
Affiliation(s)
- Juan Chai
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Liangzhi Du
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun Ju
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Ma
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhiyuan Shen
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiangming Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Liang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qianwei Ni
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Moyi Sun
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
15
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
16
|
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X, Zhang XA. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2016; 34:619-33. [PMID: 26335499 DOI: 10.1007/s10555-015-9585-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.
Collapse
Affiliation(s)
- Jin Feng
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dao-Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhou Yan
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Jiexin Zhang
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Jung YR, Park JJ, Jin YB, Cao YJ, Park MJ, Kim EJ, Lee M. Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 2016; 37:1089-1097. [PMID: 27559112 DOI: 10.1093/carcin/bgw091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022] Open
Abstract
Aberrant sialylation has long been correlated with human cancer. Increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and consequently higher levels of cell-surface α 2, 6 sialylation has been associated with human colorectal cancer (CRC) metastasis. We have extensive circumstantial data that sialylation is connected to cancer metastasis, but we do not understand in detail how sialylation can switch on/off multiple steps in cancer metastasis. To investigate the molecular mechanism underlying the ST6Gal I-mediated metastasis of CRC, we silenced the ST6Gal I gene in a metastatic SW620 CRC cell line (SW620-shST6Gal I) and examined the metastatic behavior of the cells. We found that various hallmarks of metastatic ability were considerably enhanced in ST6Gal 1-depleted SW620 clones, as assessed both in vitro and in vivo . In particular, the metastasis suppressor, KAI1, was down-regulated in ST6Gal I-deficient SW620 clones. This reflected the increased exosome-mediated exportation of KAI1, and was associated with a decrease in the KAI1-mediated inhibition of integrin. These findings indicate that gene silencing of ST6Gal I could enhance metastasis of CRC by down-regulating KAI1 activity and rescuing its negative effects on integrin signaling.
Collapse
Affiliation(s)
| | - Jung-Jin Park
- Department of Biochemistry and Medical Research Center , College of Medicine , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center , Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116 , Republic of Korea
| | - Yuan Jie Cao
- Department of Radiation Oncology , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center for Cancer and Tianjin Key laboratory of Cancer Prevention and Therapy , Huan-Hu-Xi Road , Ti-Yuan-Bei , He Xi District , Tianjin 300060 , P.R. China and
| | - Myung-Jin Park
- Division of Radiation Cancer Research , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
18
|
Huang Y, Zhao S, Zhang Y, Zhang C, Li X. Downregulation of coding transmembrane protein 35 gene inhibits cell proliferation, migration and cell cycle arrest in osteosarcoma cells. Exp Ther Med 2016; 12:581-588. [PMID: 27446247 PMCID: PMC4950176 DOI: 10.3892/etm.2016.3381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OSA) is the most common primary tumor of the bone. Resistance to chemotherapy and the fast rapid development of metastatic lesions are major issues responsible for treatment failure and poor survival rates in OSA patients. Tetraspanins comprise a family of transmembrane receptor glycoproteins that affect tumor cell migration through tetraspanin-integrin interaction. The present study focused on a four-pass transmembrane protein gene, transmembrane protein 35 (TMEM35) gene, and examined its role in the growth, migration and cell cycle progression of OSA cells. In addition, the study discussed whether the TMEM35 gene, which encodes the TMEM35 protein, may be a potential therapeutic target for OSA. In the current study, reverse transcription-quantitative polymerase chain reaction was performed to examine TMEM35 expression in OSA and matched healthy tissues. Small interfering RNAs (siRNAs) were transfected into SaOS2 and U2OS cells to knockdown the TMEM35 expression. Soft-agar colony formation assay was performed to evaluate cell growth, and cell cycle progression was analyzed by flow cytometry. Wound-healing and Boyden chamber assays were also performed to investigate cell invasion and migration by the SaOS2 and U2OS cells. TMEM35 protein was analyzed in a functional protein interaction networks database (STRING database) to predict the functional interaction partner proteins of TMEM35. The results indicated that TMEM35 was abnormally expressed in OSA tissues. Of the 37 examined patients, TMEM35 expression was significantly increased in the OSA tissues of 24 patients (64.86%; P<0.05), when compared with the expression in normal tissues. Furthermore, TMEM35 knockdown following transfection with siRNAs inhibited the colony formation ability of SaOS2 and U2OS cells in soft agar. Flow cytometric analysis also revealed that TMEM35 knockdown by RNA interference may result in G1 phase arrest and a decreased cell population at the S phase. TMEM35 knockdown inhibited cell migration in SaOS2 and U2OS cells in wound-healing assays. In conclusion, TMEM35, a member of the tetraspanin family, serves an important role in the growth of OSA cells.
Collapse
Affiliation(s)
- Yinjun Huang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yadong Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
19
|
You J, Chang R, Liu B, Zu L, Zhou Q. Nm23-H1 was involved in regulation of KAI1 expression in high-metastatic lung cancer cells L9981. J Thorac Dis 2016; 8:1217-26. [PMID: 27293840 DOI: 10.21037/jtd.2016.04.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The tetraspanin KAI1/CD82 was identified as a tumor metastasis suppressor that down-regulated in malignant progression of lung cancer. However, the underlying mechanism of anti-metastasis role of KAI1 in lung cancer is hardly known. In this paper, we sought to study the function and regulatory mechanism of KAI1 in high metastasis lung cancer cell line. METHODS KAI1 expression was detected in high/low metastatic large lung cancer cell line L9981/NL9980 by quantitative real-time polymerase chain reaction (qRT-PCR). The tumor suppressor function of KAI1 was determined by wound healing assay after over-expression or knockdown of KAI1 in L9981 or NL9980 cells. Invasion assay was performed to detect the invasion ability of L9981 by transfection of KAI1. The effect of tumor suppressor p53 on KAI1 expression was measured by western blot and luciferase assay. Then the regulation of KAI1 due to over-expression of metastasis suppressor nm23-H1 was monitored by qRT-PCR, western blot and reporter gene assay. The progression of L9981 cells after p53 and nm23-H1 expression was detected by invasion assay. Also, methylation status of KAI1 promoter in NL9980 and L9981 cells were examined by bisulfite sequencing and methylation-specific PCR. RESULTS We found that KAI1 is down-regulated in high metastatic L9981 cells compare with NL9980 cells. The migration and invasion of L9981 cells were remarkably suppressed in vitro by KAI1 transfection. The migration ability of NL9980 was enhanced by inhibition of KAI1. Furthermore, KAI1 expression was induced after over-expression of p53 or nm23-H1, while cell invasion was inhibited in L9981 cells. The results of reporter analysis indicated that KAI1 promoter region between -922 to -846 could response to nm23-H1. In addition, we discovered only slight methylation of KAI1 promoter, which showed that loss expression of KAI1 in L9981 cells may not due to promoter methylation. CONCLUSIONS The results suggested that nm23-H1 was involved in the KAI1-regulated inhibition of metastasis in lung cancer cells. More insights into the relationship between KAI1 and other metastasis suppressors will pave the way for the elucidation of anti-metastasis mechanism in lung cancer.
Collapse
Affiliation(s)
- Jiacong You
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rui Chang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bin Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
20
|
Liu W, Yue F, Zheng M, Merlot A, Bae DH, Huang M, Lane D, Jansson P, Lui GYL, Richardson V, Sahni S, Kalinowski D, Kovacevic Z, Richardson DR. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 2016; 6:8851-74. [PMID: 25860930 PMCID: PMC4496188 DOI: 10.18632/oncotarget.3316] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Angelica Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goldie Yuan Lam Lui
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Zhou L, Yu L, Wu S, Feng Z, Song W, Gong X. Clinicopathological significance of KAI1 expression and epithelial-mesenchymal transition in non-small cell lung cancer. World J Surg Oncol 2015; 13:234. [PMID: 26231404 PMCID: PMC4522085 DOI: 10.1186/s12957-015-0657-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/20/2015] [Indexed: 01/31/2023] Open
Abstract
Background KAI1 and epithelial-mesenchymal transition (EMT) is related to both angiogenesis and lymphangiogenesis and is an important target in new cancer treatment strategies. We aimed to investigate the KAI1 and marker of EMT expression and correlation with lymph node metastasis (LNM) and explore their prognostic impact in non-small cell lung cancer (NSCLC). Methods Tumor tissue specimens from 312 resected patients with stage I–IIIA NSCLC were obtained. Immunohistochemistry was used to assess the expression of the molecular markers KAI1, E-cadherin (E-cad), vimentin, CD34, and D2-40. Results There were 153 N0 and 159 N+ patients. Tumor cell expression of KAI1and the marker of EMT, lymphatic vessel density (LVD), and microvessel density (MVD) were related to LNM. In multivariate analyses, the ages of patients, high tumor cell KAI1 expression, EMT, and the scores of MVD were independent factor of prognosis. Conclusions Tumor cell KAI1 expression, EMT, LVD, and MVD correlate with LNM. Thus, the detection of KAI1, expression of markers of EMT, and the scores of MVD may be used as a potential indicator of NSCLC prognosis.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Lan Yu
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Shiwu Wu
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Zhenzhong Feng
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Wenqing Song
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Xiaomeng Gong
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| |
Collapse
|
22
|
Sandercock AM, Rust S, Guillard S, Sachsenmeier KF, Holoweckyj N, Hay C, Flynn M, Huang Q, Yan K, Herpers B, Price LS, Soden J, Freeth J, Jermutus L, Hollingsworth R, Minter R. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling. Mol Cancer 2015; 14:147. [PMID: 26227951 PMCID: PMC4521473 DOI: 10.1186/s12943-015-0415-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Monolayer cultures of immortalised cell lines are a popular screening tool for novel anti-cancer therapeutics, but these methods can be a poor surrogate for disease states, and there is a need for drug screening platforms which are more predictive of clinical outcome. In this study, we describe a phenotypic antibody screen using three-dimensional cultures of primary cells, and image-based multi-parametric profiling in PC-3 cells, to identify anti-cancer biologics against new therapeutic targets. Methods ScFv Antibodies and designed ankyrin repeat proteins (DARPins) were isolated using phage display selections against primary non-small cell lung carcinoma cells. The selected molecules were screened for anti-proliferative and pro-apoptotic activity against primary cells grown in three-dimensional culture, and in an ultra-high content screen on a 3-D cultured cell line using multi-parametric profiling to detect treatment-induced phenotypic changes. The targets of molecules of interest were identified using a cell-surface membrane protein array. An anti-CUB domain containing protein 1 (CDCP1) antibody was tested for tumour growth inhibition in a patient-derived xenograft model, generated from a stage-IV non-small cell lung carcinoma, with and without cisplatin. Results Two primary non-small cell lung carcinoma cell models were established for antibody isolation and primary screening in anti-proliferative and apoptosis assays. These assays identified multiple antibodies demonstrating activity in specific culture formats. A subset of the DARPins was profiled in an ultra-high content multi-parametric screen, where 300 morphological features were measured per sample. Machine learning was used to select features to classify treatment responses, then antibodies were characterised based on the phenotypes that they induced. This method co-classified several DARPins that targeted CDCP1 into two sets with different phenotypes. Finally, an anti-CDCP1 antibody significantly enhanced the efficacy of cisplatin in a patient-derived NSCLC xenograft model. Conclusions Phenotypic profiling using complex 3-D cell cultures steers hit selection towards more relevant in vivo phenotypes, and may shed light on subtle mechanistic variations in drug candidates, enabling data-driven decisions for oncology target validation. CDCP1 was identified as a potential target for cisplatin combination therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0415-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Steven Rust
- MedImmune, Granta Park, Cambridge, CB21 6GH, UK.
| | | | | | | | - Carl Hay
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20287, USA.
| | - Matt Flynn
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20287, USA.
| | - Qihui Huang
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20287, USA.
| | - Kuan Yan
- OcellO, Leiden BioPartner Center, J. H Oortweg 21, 2333 CH, Leiden, The Netherlands.
| | - Bram Herpers
- OcellO, Leiden BioPartner Center, J. H Oortweg 21, 2333 CH, Leiden, The Netherlands.
| | - Leo S Price
- OcellO, Leiden BioPartner Center, J. H Oortweg 21, 2333 CH, Leiden, The Netherlands.
| | - Jo Soden
- Retrogenix, Crown House, Bingswood Estate, Whaley Bridge, High Peak, SK23 7LY, UK.
| | - Jim Freeth
- Retrogenix, Crown House, Bingswood Estate, Whaley Bridge, High Peak, SK23 7LY, UK.
| | | | | | - Ralph Minter
- MedImmune, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
23
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
24
|
Chlorogenic acid inhibits hypoxia-induced pulmonary artery smooth muscle cells proliferation via c-Src and Shc/Grb2/ERK2 signaling pathway. Eur J Pharmacol 2015; 751:81-8. [DOI: 10.1016/j.ejphar.2015.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 11/20/2022]
|
25
|
Zhang W, Zhao CG, Sun HY, Zheng WE, Chen H. Expression characteristics of KAI1 and vascular endothelial growth factor and their diagnostic value for hepatocellular carcinoma. Gut Liver 2014. [PMID: 25071074 DOI: 10.5009/gn13331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS We tried to investigate the expression characteristics of KAI1, a suppressor of wide-spectrum tumor metastasis, and vascular endothelial growth factor (VEGF), the most common angiogenesis factor, and then to analyze their diagnostic value for hepatocellular carcinoma (HCC). METHODS The protein and mRNA expression levels of KAI1 or VEGF in HCC tissues and in self-controlled para-carcinoma tissues were analyzed by Western blot and real-time polymerase chain reaction, respectively. Serum levels of KAI1 and VEGF in the patients with HCC, benign liver disease or in healthy controls were quantitatively detected by enzyme-linked immunosorbent assay. RESULTS The expression level of KAI1 was downregulated, while the expression level of VEGF was upregulated in the tissues or serum of the patients with HCC. The expression level of serum KAI1 in HCC patients was correlated with TNM staging, intrahepatic metastasis, lymph node or peritoneal metastasis, and portal vein thrombus. In addition to the factors that were correlated with KAI1 expression, VEGF expression was also closely related to the α-fetoprotein level of the patients. The area under the receiver operating characteristic curve for the diagnosis of HCC was 0.907 for KAI1 and 0.779 for VEGF. The sensitivity of serum KAI1 levels in the diagnosis of HCC was 86.96%; the accuracy was 83.06%, while the sensitivity, the accuracy and the negative predictive value were improved to 91.86%, 84.68%, and 78.79% according to the combined detection of KAI1 and VEGF, respectively. CONCLUSIONS A combined detection of KAI1 and VEGF may greatly improve the efficiency of diagnosis and form a reliable panel of diagnostic markers for HCC.
Collapse
Affiliation(s)
- Wu Zhang
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | | | - Hong Yu Sun
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Wei E Zheng
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Hua Chen
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou, China
| |
Collapse
|
26
|
Zhang W, Zhao CG, Sun HY, Zheng WE, Chen H. Expression characteristics of KAI1 and vascular endothelial growth factor and their diagnostic value for hepatocellular carcinoma. Gut Liver 2014; 8:536-42. [PMID: 25071074 PMCID: PMC4164248 DOI: 10.5009/gnl13331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS We tried to investigate the expression characteristics of KAI1, a suppressor of wide-spectrum tumor metastasis, and vascular endothelial growth factor (VEGF), the most common angiogenesis factor, and then to analyze their diagnostic value for hepatocellular carcinoma (HCC). METHODS The protein and mRNA expression levels of KAI1 or VEGF in HCC tissues and in self-controlled para-carcinoma tissues were analyzed by Western blot and real-time polymerase chain reaction, respectively. Serum levels of KAI1 and VEGF in the patients with HCC, benign liver disease or in healthy controls were quantitatively detected by enzyme-linked immunosorbent assay. RESULTS The expression level of KAI1 was downregulated, while the expression level of VEGF was upregulated in the tissues or serum of the patients with HCC. The expression level of serum KAI1 in HCC patients was correlated with TNM staging, intrahepatic metastasis, lymph node or peritoneal metastasis, and portal vein thrombus. In addition to the factors that were correlated with KAI1 expression, VEGF expression was also closely related to the α-fetoprotein level of the patients. The area under the receiver operating characteristic curve for the diagnosis of HCC was 0.907 for KAI1 and 0.779 for VEGF. The sensitivity of serum KAI1 levels in the diagnosis of HCC was 86.96%; the accuracy was 83.06%, while the sensitivity, the accuracy and the negative predictive value were improved to 91.86%, 84.68%, and 78.79% according to the combined detection of KAI1 and VEGF, respectively. CONCLUSIONS A combined detection of KAI1 and VEGF may greatly improve the efficiency of diagnosis and form a reliable panel of diagnostic markers for HCC.
Collapse
Affiliation(s)
- Wu Zhang
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | | | - Hong Yu Sun
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Wei E Zheng
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Hua Chen
- Department of Adiotherapy, The Third Affiliated Hospital, Wenzhou, China
| |
Collapse
|
27
|
Huang SQ, Liao QJ, Wang XW, Xin DQ, Chen SX, Wu QJ, Ye G. RNAi-mediated knockdown of pituitary tumor- transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells. Braz J Med Biol Res 2012; 45:995-1001. [PMID: 22872288 PMCID: PMC3854157 DOI: 10.1590/s0100-879x2012007500126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022] Open
Abstract
Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.
Collapse
Affiliation(s)
- S Q Huang
- Department of Urology and Center of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|