1
|
JOHARI BEHROOZ, PARVINZAD LEILAN MILAD, GHARBAVI MAHMOUD, MORTAZAVI YOUSEF, SHARAFI ALI, REZAEEJAM HAMED. Combinational therapy with Myc decoy oligodeoxynucleotides encapsulated in nanocarrier and X-irradiation on breast cancer cells. Oncol Res 2023; 32:309-323. [PMID: 38186581 PMCID: PMC10765119 DOI: 10.32604/or.2023.043576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
The Myc gene is the essential oncogene in triple-negative breast cancer (TNBC). This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line. Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the Bcl2 gene. The nanocarriers were synthesized by loading Myc ODNs and selenium into chitosan (Chi-Se-DEC), which was then encapsulated in niosome-nanocarriers (NISM@Chi-Se-DEC). FT-IR, DLS, FESEM, and hemolysis tests were applied to confirm its characterization and physicochemical properties. Moreover, cellular uptake, cellular toxicity, apoptosis, cell cycle, and scratch repair assays were performed to evaluate its anticancer effects on cancer cells. All anticancer assessments were repeated under X-ray irradiation conditions (fractionated 2Gy). Physicochemical characteristics of niosomes containing SeNPs and ODNs showed that it is synthesized appropriately. It revealed that the anticancer effect of NISM@Chi-Se-DEC can be significantly improved in combination with X-ray irradiation treatment. It can be concluded that NISM@Chi-Se-DEC nanocarriers have the potential as a therapeutic agent for cancer treatment, particularly in combination with radiation therapy and in-vivo experiments are necessary to confirm the efficacy of this nano-drug.
Collapse
Affiliation(s)
- BEHROOZ JOHARI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - MILAD PARVINZAD LEILAN
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - MAHMOUD GHARBAVI
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - YOUSEF MORTAZAVI
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - ALI SHARAFI
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - HAMED REZAEEJAM
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Mehta M, Griffith J, Panneerselvam J, Babu A, Mani J, Herman T, Ramesh R, Munshi A. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int J Radiat Biol 2020; 97:1109-1120. [PMID: 32052681 PMCID: PMC7882427 DOI: 10.1080/09553002.2020.1730012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most challenging and aggressive subtype of breast cancer with limited treatment options because of tumor heterogeneity, lack of druggable targets and therapy resistance. TNBCs are characterized by overexpression of growth factor receptors such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet derived growth factor receptor (PDGFR) making them promising therapeutic targets. Regorafenib is an FDA approved oral multi-kinase inhibitor that blocks the activity of multiple protein kinases including those involved in the regulation of tumor angiogenesis [VEGFR1-3, TIE2], tumor microenvironment [PDGFR-β, FGFR] and oncogenesis (KIT, RET, RAF-1, BRAF). In the current study, we examined the radiosensitizing effects of Regorafenib on TNBC cell lines and explored the mechanism by which Regorafenib enhances radiosensitivity. METHODS MDA-MB-231 and SUM159PT (human TNBC cell lines) and MCF 10a (human mammary epithelial cell line) were treated with Regorafenib, ionizing radiation or a combination of both. Following treatment with Regorafenib and radiation we conducted clonogenic assay to determine radiosensitivity, immunoblot analysis to assess the effect on key signaling targets, tube formation to evaluate effect on angiogenesis and comet assay as well as western blot for γH2AX to assess DNA damage response (DDR). RESULTS Regorafenib reduced cell proliferation and enhanced radiosensitivity of MDA-MB-231 and SUM159PT cell lines but had no effect on the MCF 10a cells. Clonogenic survival assays showed that the surviving fraction at 2 Gy for both MDA-MB-231 and SUM159PT was reduced from 66.4 ± 8.9 and 88.2 ± 1.7 in controls to 38.1 ± 4.9 and 75.1 ± 1.1 following a 24 hr pretreatment with 10 μM and 5 μM Regorafenib, respectively. A marked reduction in the expression of VEGFR, PDGFR, EGFR and the downstream target, ERK, was observed with Regorafenib treatment alone or in combination with radiation. We also observed a significant inhibition of VEGF-A production in the TNBC cell lines following treatment with Regorafenib. Further, the addition of conditioned medium from Regorafenib-treated tumor cells onto human umbilical vein endothelial cells (HUVEC) suppressed tube formation, indicating an inhibition of tumor angiogenesis. Regorafenib also decreased migration of TNBC cells and suppressed radiation-induced DNA damage repair in a time-dependent manner. CONCLUSIONS Our findings demonstrate that Regorafenib enhanced radiosensitivity of breast cancer cells by inhibiting the expression of multiple receptor tyrosine kinases, VEGF-mediated angiogenesis and DNA damage response in TNBC. Therefore, combining Regorafenib with radiation and antiangiogenic agents will be beneficial and effective in controlling TNBC.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James Griffith
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janani Panneerselvam
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anish Babu
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Mani
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Gorgisen G, Hapil FZ, Yilmaz O, Cetin Z, Pehlivanoglu S, Ozbudak IH, Erdogan A, Ozes ON. Identification of novel mutations of Insulin Receptor Substrate 1 (IRS1) in tumor samples of non-small cell lung cancer (NSCLC): Implications for aberrant insulin signaling in development of cancer. Genet Mol Biol 2019; 42:15-25. [PMID: 30807634 PMCID: PMC6428125 DOI: 10.1590/1678-4685-gmb-2017-0307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death, and NSCLC constitutes nearly 85%-90% of all cases. The IRS proteins function as adaptors and transmit signals from multiple receptors. Upon binding of insulin to the insulin receptor (IR), IRS1 is phosphorylated at several YXXM motifs creating docking sites for the binding of PI3Kp85, which activates AKT kinase. Therefore, we thought that gain of function mutantions of IRS1 could be related to development of lung cancer. In line with this, we wanted determine whether the IRS1 gene was mutated in the coding regions surrounding YXXM motifs. We sequenced the coding regions surrounding YXXM motifs of IRS1 using tumor samples of 42 NSCLC patients and 40 matching controls and found heterozygote p.S668T mutation in nine of 42 samples and four of nine also had the p.D674H mutation. We generated IRS1 expression vectors harboring p.S668T, p.D674H and double mutants. Expression of the mutants differentially affected insulin-induced phosphorylation of IRS1, AKT, ERK, and STAT3. Also, our mutants induced proliferation, glucose uptake, inhibited the migration of 293T cells and affected the responsiveness of the cells to cisplatin and radiation. Our results suggest that these novel mutations play a role in the phenotype of lung cancer.
Collapse
Affiliation(s)
| | | | - Ozlem Yilmaz
- Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Zafer Cetin
- Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | | | | | | | | |
Collapse
|
6
|
Kang C, LeRoith D, Gallagher EJ. Diabetes, Obesity, and Breast Cancer. Endocrinology 2018; 159:3801-3812. [PMID: 30215698 PMCID: PMC6202853 DOI: 10.1210/en.2018-00574] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
The rates of obesity and diabetes are increasing worldwide, whereas the age of onset for both obesity and diabetes are decreasing steadily. Obesity and diabetes are associated with multiple factors that contribute to the increased risk of a number of different cancers, including breast cancer. These factors are hyperinsulinemia, elevated IGFs, hyperglycemia, dyslipidemia, adipokines, inflammatory cytokines, and the gut microbiome. In this review, we discuss the current understanding of the complex signaling pathways underlying these multiple factors involved in the obesity/diabetes-breast cancer link, with a focus particularly on the roles of the insulin/IGF system and dyslipidemia in preclinical breast cancer models. We review some of the therapeutic strategies to target these metabolic derangements in cancer. Future research directions and potential therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Chifei Kang
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Onco-metabolism: defining the prognostic significance of obesity and diabetes in women with brain metastases from breast cancer. Breast Cancer Res Treat 2018; 172:221-230. [PMID: 30022328 DOI: 10.1007/s10549-018-4880-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabolic dysregulation has been implicated as a molecular driver of breast cancer in preclinical studies, especially with respect to metastases. We hypothesized that abnormalities in patient metabolism, such as obesity and diabetes, may drive outcomes in breast cancer patients with brain metastases. METHODS We retrospectively identified 84 consecutive patients with brain metastases from breast cancer treated with intracranial radiation therapy. Radiation was delivered as whole-brain radiation to a median dose of 3000 cGy or stereotactic radiosurgery to a median dose of 2100 cGy. Kaplan Meier curves were generated for overall survival (OS) data and Mantel-Cox regression was performed to detect differences in groups. RESULTS At analysis, 81 survival events had occurred and the median OS for the entire cohort was 21.7 months. Despite similar modified graded prognostic assessments, resection rates, and receptor status, BMI ≥ 25 kg/m2 (n = 45) was associated with decreased median OS (13.7 vs. 30.6 months; p < 0.001) and median intracranial progression-free survival (PFS) (7.4 vs. 10.9 months; p = 0.04) compared to patients with BMI < 25 kg/m2 (n = 39). Similar trends were observed among all three types of breast cancer. Patients with diabetes (n = 17) had decreased median OS (11.8 vs. 26.2 months; p < 0.001) and median intracranial PFS (4.5 vs. 10.3 months; p = 0.001) compared to non-diabetics (n = 67). On multivariate analysis, both BMI ≥ 25 kg/m2 [HR 2.35 (1.39-3.98); p = 0.002] and diabetes [HR 2.77 (1.454-5.274); p = 0.002] were associated with increased mortality. CONCLUSIONS Elevated BMI or diabetes may negatively impact both overall survival and local control in patients with brain metastases from breast cancer, highlighting the importance of the translational development of therapeutic metabolic interventions. Given its prognostic significance, BMI should be used as a stratification in future clinical trial design in this patient population.
Collapse
|
8
|
Bhattacharya P, Shetake NG, Pandey BN, Kumar A. Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. Int J Radiat Biol 2018; 94:628-644. [DOI: 10.1080/09553002.2018.1478160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poushali Bhattacharya
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Neena G. Shetake
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N. Pandey
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kumar
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
9
|
Tang Q, Ma J, Sun J, Yang L, Yang F, Zhang W, Li R, Wang L, Wang Y, Wang H. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 2018; 40:579-588. [PMID: 29901146 PMCID: PMC6072286 DOI: 10.3892/or.2018.6468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Radiosensitivity of prostate cancer (PCa) cells promotes the curative treatment for PCa. The present study was designed to investigate the synergistic effect of genistein and AG1024 on the radiosensitivity of PCa cells. The optimal X-irradiation dose (4 Gy) and genistein concentration (30 µM) were selected by using the CCK-8 assay. Before X-irradiation (4 Gy), PC3 and DU145 cells were treated with genistein (30 µM), AG1024 (10 µM) and their combination. All treatments significantly reduced cell proliferation and enhanced cell apoptosis. Using flow cytometric analysis, we found that genistein arrested the cell cycle at S phase and AG1024 arrested the cell cycle at G2/M phase. Genistein treatment suppressed the homologous recombination (HRR) and the non-homologous end joining (NHEJ) pathways by inhibiting the expression of Rad51 and Ku70, and AG1024 treatment only inhibited the NHEJ pathway via the inactivation of Ku70 as detected by western blot analysis. Moreover, the combination treatment with genistein and AG1024 more effectively radiosensitized PCa cells than single treatments by suppressing cell proliferation, enhancing cell apoptosis and inactivating the HRR and NHEJ pathways. In vivo experiments demonstrated that animals receiving the combination treatment with genistein and AG1024 displayed obviously decreased tumor volume compared with animals treated with single treatment with either genistein or AG1024. We conclude that the combination of genistein (30 µM) and AG1024 (10 µM) exhibited a synergistic effect on the radiosensitivity of PCa cells by suppressing the HRR and NHEJ pathways.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jianjun Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Longfei Yang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Ruixiao Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Lei Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| |
Collapse
|
10
|
Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget 2018; 8:1814-1844. [PMID: 27661006 PMCID: PMC5352101 DOI: 10.18632/oncotarget.12123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
11
|
The insulin-like growth factor-I receptor (IGF-IR) in breast cancer: biology and treatment strategies. Tumour Biol 2016; 37:11711-11721. [PMID: 27444280 DOI: 10.1007/s13277-016-5176-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related deaths among women worldwide. Although patients are often diagnosed in the early and curable stages, the treatment of metastatic breast cancer remains a major clinical challenge. The combination of chemotherapy with new targeting agents, such as bevacizumab, is helpful in improving patient survival; however, novel treatment strategies are required to improve clinical outcomes. The insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase cell surface receptor which is involved in the regulation of cell growth and metabolism. Previous studies have shown that activation of the IGF-IR signaling pathway promotes proliferation, survival, and metastasis of breast cancer cells. Additionally, overexpression of IGF-IR is associated with breast cancer cell resistance to anticancer therapies. Recently, IGF-IR has been introduced as a marker of stemness in breast cancer cells and there is also accumulating evidence that IGF-IR contributes to the establishment and maintenance of breast cancer epithelial-mesenchymal transition (EMT). Therefore, pharmacological or molecular targeting of IGF-IR could be a promising strategy, in the treatment of patients with breast cancer, particularly in order to circumvent the therapeutic resistance and targeting breast cancer stem/progenitors. Currently, many strategies have been developed for targeting IGF-IR, some have entered clinical trials and some are in preclinical stages for breast cancer therapy. In this review, we will first discuss on the biology of IGF-IR in an attempt to find the role of this receptor in breast cancer and then discuss about therapeutic strategies to target this receptor.
Collapse
|
12
|
Kaumaya PTP. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother 2016; 11:1368-86. [PMID: 25874884 DOI: 10.1080/21645515.2015.1026495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- a Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus , OH , USA
| |
Collapse
|
13
|
Kilic S, Cracchiolo B, Gabel M, Haffty B, Mahmoud O. The relevance of molecular biomarkers in cervical cancer patients treated with radiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:261. [PMID: 26605307 DOI: 10.3978/j.issn.2305-5839.2015.10.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiotherapy (RT) plays an integral role in the combined-modality management of cervical cancer. Various molecular mechanisms have been implicated in the adaptive cellular response to RT. Identification of these molecular processes may permit the prediction of treatment outcome and enhanced radiation-induced cancer cell killing through tailoring of the management approach, and/or the employment of selective inhibitors of these pathways. METHODS PubMed was searched for studies presenting biomarkers of cervical cancer radioresistance validated in patient studies or in laboratory experimentation. RESULTS Several biomarkers of cervical cancer radioresistance are validated by patient survival or recurrence data. These biomarkers fall into categories of biological function including hypoxia, cell proliferation, cell-cell adhesion, and evasion of apoptosis. Additional radioresistance biomarkers have been identified in exploratory experiments. CONCLUSIONS Biomarkers of radioresistance in cervical cancer may allow molecular profiling of individual tumors, leading to tailored therapies and better prognostication and prediction of outcomes.
Collapse
Affiliation(s)
- Sarah Kilic
- 1 Department of Radiation Oncology, 2 Department of Gynecology Oncology, 3 Department of Radiation Oncology, Rutgers, the State University of New Jersey, Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Bernadette Cracchiolo
- 1 Department of Radiation Oncology, 2 Department of Gynecology Oncology, 3 Department of Radiation Oncology, Rutgers, the State University of New Jersey, Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Molly Gabel
- 1 Department of Radiation Oncology, 2 Department of Gynecology Oncology, 3 Department of Radiation Oncology, Rutgers, the State University of New Jersey, Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Bruce Haffty
- 1 Department of Radiation Oncology, 2 Department of Gynecology Oncology, 3 Department of Radiation Oncology, Rutgers, the State University of New Jersey, Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Omar Mahmoud
- 1 Department of Radiation Oncology, 2 Department of Gynecology Oncology, 3 Department of Radiation Oncology, Rutgers, the State University of New Jersey, Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Yang HY, Qu RM, Lin XS, Liu TX, Sun QQ, Yang C, Li XH, Lu W, Hu XF, Dai JX, Yuan L. IGF-1 from adipose-derived mesenchymal stem cells promotes radioresistance of breast cancer cells. Asian Pac J Cancer Prev 2015; 15:10115-9. [PMID: 25556435 DOI: 10.7314/apjcp.2014.15.23.10115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. MATERIALS AND METHODS MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; γ-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. RESULTS AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. CONCLUSIONS Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.
Collapse
Affiliation(s)
- Hui-Ying Yang
- Department of Anatomy, Nanfang Hospital, Southern Medical University, Guangzhou, China E-mail : ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Overholser J, Ambegaokar KH, Eze SM, Sanabria-Figueroa E, Nahta R, Bekaii-Saab T, Kaumaya PTP. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC) and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC). Vaccines (Basel) 2015; 3:519-43. [PMID: 26350593 PMCID: PMC4586465 DOI: 10.3390/vaccines3030519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.
Collapse
Affiliation(s)
- Jay Overholser
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristen Henkins Ambegaokar
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Siobhan M Eze
- Department of Pharmacology, Emory University and Winship Cancer Institute, Atlanta, GA 30322, USA.
| | - Eduardo Sanabria-Figueroa
- Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Rita Nahta
- Department of Pharmacology, Emory University and Winship Cancer Institute, Atlanta, GA 30322, USA.
- Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Tanios Bekaii-Saab
- James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Pravin T P Kaumaya
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation. J Pediatr Surg 2015; 50:943-7. [PMID: 25818318 PMCID: PMC4439349 DOI: 10.1016/j.jpedsurg.2015.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Intestinal adaptation structurally represents increases in crypt depth and villus height in response to small bowel resection (SBR). Previously, we found that neither epidermal growth factor receptor (EGFR) nor insulin-like growth factor 1 receptor (IGF1R) function was individually required for normal adaptation. In this study, we sought to determine the effect of disrupting both EGFR and IGF1R expression on resection-induced adaptation. METHODS Intestinal-specific EGFR and IGF1R double knockout mice (EGFR/IGF1R-IKO) (n=6) and wild-type (WT) control mice (n=7) underwent 50% proximal SBR. On postoperative day (POD) 7, structural adaptation was scored by measuring crypt depth and villus height. Rates of crypt cell proliferation, apoptosis, and submucosal capillary density were also compared. RESULTS After 50% SBR, normal adaptation occurred in both WT and EGFR/IGF1R-IKO. Rates of proliferation and apoptosis were no different between the two groups. The angiogenic response was less in the EGFR/IGF1R-IKO compared to WT mice. CONCLUSION Disrupted expression of EGFR and IGF1R in the intestinal epithelial cells does not affect resection-induced structural adaptation but attenuates angiogenesis after SBR. These findings suggest that villus growth is driven by receptors and pathways that occur outside the epithelial cell component, while angiogenic responses may be influenced by epithelial-endothelial crosstalk.
Collapse
|
17
|
Foy KC, Miller MJ, Overholser J, Donnelly SM, Nahta R, Kaumaya PT. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides. Oncoimmunology 2014; 3:e956005. [PMID: 25941587 DOI: 10.4161/21624011.2014.956005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022] Open
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.
Collapse
Affiliation(s)
- Kevin Chu Foy
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | - Megan J Miller
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA
| | - Jay Overholser
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | | | - Rita Nahta
- Department of Pharmacology; Emory University ; Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA ; James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center; The Ohio State University ; Columbus, OH USA
| |
Collapse
|
18
|
LMP1 promotes expression of insulin-like growth factor 1 (IGF1) to selectively activate IGF1 receptor and drive cell proliferation. J Virol 2014; 89:2590-602. [PMID: 25520502 DOI: 10.1128/jvi.02921-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Epstein-Barr Virus (EBV) is a gammaherpesvirus that infects the majority of the human population and is linked to the development of multiple cancers, including nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is considered the primary oncoprotein of EBV, and in epithelial cells it induces the expression and activation, or phosphorylation, of the epidermal growth factor receptor kinase. To identify effects on additional kinases, an unbiased screen of receptor tyrosine kinases potentially activated by LMP1 was performed. Using a protein array, it was determined that LMP1 selectively activates insulin-like growth factor 1 receptor (IGF1R). This activation takes place in fibroblast, epithelial, and nasopharyngeal cell lines that express LMP1 stably and transiently. Of note, LMP1 altered the phosphorylation, but not the expression, of IGF1R. The use of LMP1 mutants with defective signaling domains revealed that the C-terminal activating region 2 domain of LMP1 increased the mRNA expression and the secretion of the ligand IGF1, which promoted phosphorylation of IGF1R. IGF1R phosphorylation was dependent upon activation of canonical NF-κB signaling and was suppressed by IκBα and a dominant negative form of TRAF6. Inhibition of IGF1R activation with two small-molecule inhibitors, AG1024 and picropodophyllin (PPP), or with short hairpin RNA (shRNA) directed against IGF1R selectively reduced proliferation, focus formation, and Akt activation in LMP1-positive cells but did not impair LMP1-induced cell migration. Expression of constitutively active Akt rescued cell proliferation in the presence of IGF1R inhibitors. These findings suggest that LMP1-mediated activation of IGF1R contributes to the ability of LMP1 to transform epithelial cells. IMPORTANCE EBV is linked to the development of multiple cancers in both lymphoid and epithelial cells, including nasopharyngeal carcinoma. Nasopharyngeal carcinoma is a major cancer that develops in specific populations, with nearly 80,000 new cases reported annually. LMP1 is consistently expressed in early lesions and continues to be detected within 50 to 80% of these cancers at later stages. It is therefore of paramount importance to understand the mechanisms through which LMP1 alters cell growth and contributes to tumorigenesis. This study is the first to determine that LMP1 activates the IGF1R tyrosine kinase by regulating expression of the ligand IGF1. Additionally, the data in this paper reveal that specific targeting of IGF1R selectively impacts LMP1-positive cells. These findings suggest that therapies directed against IGF1R may specifically impair the growth of EBV-infected cells.
Collapse
|
19
|
Mitran B, Altai M, Hofström C, Honarvar H, Sandström M, Orlova A, Tolmachev V, Gräslund T. Evaluation of 99mTc-Z IGF1R:4551-GGGC affibody molecule, a new probe for imaging of insulin-like growth factor type 1 receptor expression. Amino Acids 2014; 47:303-15. [PMID: 25425114 PMCID: PMC4302241 DOI: 10.1007/s00726-014-1859-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
Abstract
Overexpression of insulin-like growth factor-1 receptor (IGF-1R) in several cancers is associated with resistance to therapy. Radionuclide molecular imaging of IGF-1R expression in tumors may help in selecting the patients that will potentially respond to IGF-1R-targeted therapy. Affibody molecules are small (7 kDa) non-immunoglobulin-based scaffold proteins that are well-suited probes for radionuclide imaging. The aim of this study was the evaluation of an anti-IGF-1R affibody molecule labeled with technetium-99m using cysteine-containing peptide-based chelator GGGC at C-terminus. ZIGF1R:4551-GGGC was efficiently and stably labeled with technetium-99m (radiochemical yield 97 ± 3 %). 99mTc-ZIGF1R:4551-GGGC demonstrated specific binding to IGF-1R-expressing DU-145 (prostate cancer) and MCF-7 (breast cancer) cell lines and slow internalization in vitro. The tumor-targeting properties were studied in BALB/c nu/nu mice bearing DU-145 and MCF-7 xenografts. [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 was used for comparison. The biodistribution study demonstrated high tumor-to-blood ratios (6.2 ± 0.9 and 6.9 ± 1.0, for DU-145 and MCF-7, respectively, at 4 h after injection). Renal radioactivity concentration was 16-fold lower for 99mTc-ZIGF1R:4551-GGGC than for [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 at 4 h after injection. However, the liver uptake of 99mTc-ZIGF1R:4551-GGGC was 1.2- to 2-fold higher in comparison with [99mTc(CO)3]+-(HE)3-ZIGF1R:4551. A possible reason for the elevated hepatic uptake of 99mTc-ZIGF1R:4551-GGGC is a high lipophilicity of amino acids in the binding site of ZIGF1R:4551, which is not compensated in 99mTc-ZIGF1R:4551-GGGC. In conclusion, 99mTc-ZIGF1R:4551-GGGC can visualize the IGF-1R expression in human tumor xenografts and provides low retention of radioactivity in kidneys. Further development of this imaging agent should include molecular design aimed at reducing the hepatic uptake.
Collapse
Affiliation(s)
- Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Emond JA, Pierce JP, Natarajan L, Gapuz LR, Nguyen J, Parker BA, Varki NM, Patterson RE. Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 2014; 23:1273-9. [PMID: 24755714 DOI: 10.1158/1055-9965.epi-13-1218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The insulin-like growth factor-I (IGFI) receptor is a potential target for breast cancer treatment and may be influenced by dietary intake. METHODS Nested, case-control study of 265 postmenopausal breast cancer survivors; primary breast cancer tissue was stained to determine IGFI receptor status. Change in carbohydrate intake from baseline to year 1 of study was estimated from 24-hour dietary recalls. Breast cancer recurrence cases (91) were matched to two controls (n = 174) on disease and study characteristics and counter matched on change in carbohydrate intake. Weighted conditional logistic regression models fit the risk of recurrence on IGFI receptor status and dietary change. RESULTS Half of the tumors were IGFI receptor positive. Increased risk of recurrence was associated with IGFI receptor-positive status [HR 1.7; 95% confidence interval (CI), 1.2-2.5] and, separately, with a stable/increased intake of carbohydrates (HR 2.0; 95% CI, 1.3-5.0). There was a borderline significant interaction between those two variables (P = 0.11). Specifically, carbohydrate intake had no significant impact on risk of recurrence among women who were receptor negative, yet increased the risk of recurrence by more than 5-fold among women who were receptor positive (HR 5.5; 95% CI, 1.8-16.3). CONCLUSIONS Among women whose tumor tissue is positive for the IGFI receptor, reducing carbohydrate intake after diagnosis could reduce the risk of breast cancer recurrence. These findings need replication in a larger sample. IMPACT This is the first study to suggest that it may be possible to personalize dietary recommendations for breast cancer survivors based on molecular characteristics of their primary tumor tissue. .
Collapse
Affiliation(s)
- Jennifer A Emond
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - John P Pierce
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Loki Natarajan
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Laarni R Gapuz
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - John Nguyen
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Barbara A Parker
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Nissi M Varki
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ruth E Patterson
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| |
Collapse
|
21
|
Belardi V, Gallagher EJ, Novosyadlyy R, LeRoith D. Insulin and IGFs in obesity-related breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:277-89. [PMID: 24154546 DOI: 10.1007/s10911-013-9303-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 02/07/2023] Open
Abstract
Obesity and the Metabolic Syndrome are associated with multiple factors that may cause an increased risk for cancer and cancer-related mortality. Factors involved include hyperinsulinemia, hyperglycemia, hyperlipidemia and IGFs. Insulin resistance is also associated with alterations in the levels of proinflammatory cytokines, chemokines, adipokines (leptin, adiponectin) that may also be contributing factors. The insulin family of proteins is ubiquitously expressed and has pleiotropic effects on metabolism and growth. However insulin, IGF-1 and particularly IGF-2 have been identified as tumor promoters in multiple studies. Mouse models have focused on insulin and IGF-1 and their receptors as being involved in tumor progression and metastases. The role of the insulin receptor as either mediating the effects on tumors or as compensating for the insulin-like growth factor receptor has arisen. Its role has been supported by preclinical studies and the importance of insulin resistance and hyperinsulinemia in obesity and early diabetes. Since the focus of this review is the insulin-family we will focus on insulin, IGF-1 and IGF-2.
Collapse
Affiliation(s)
- Valentina Belardi
- Department of Endocrinology, University of Pisa, Via Paradisa 2, 50124, Pisa, Italy
| | | | | | | |
Collapse
|