1
|
Dnyanmote AS, M P H, Kumar S, Vasava K. Double Trouble: A Rare Case of Synchronous Breast and Thyroid Carcinomas. Cureus 2024; 16:e65256. [PMID: 39184812 PMCID: PMC11342579 DOI: 10.7759/cureus.65256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Breast carcinoma and thyroid carcinoma are among the most common cancers affecting women. Although it is rare to encounter synchronous primary tumors of the thyroid and breast in clinical practice, the incidence of both differentiated thyroid and breast cancers has significantly risen over the last 20 years. Despite having a lower mortality risk compared to other types of cancer, managing a dual diagnosis of these malignancies poses unique challenges and requires a thorough evaluation and strategic treatment plan. Here, we report a rare case of double primary malignancy of the breast and thyroid in a 59-year-old female who presented with complaints of a lump in the left breast, along with an incidental finding of thyroid swelling, which had conflicting findings in various preliminary evaluations. In this reported case, the patient underwent a total thyroidectomy based on a frozen section report suggestive of papillary carcinoma along with a modified radical mastectomy because of mucinous carcinoma of the left breast, which by itself is a rarity. This constituted a great challenge in managing both malignancies simultaneously. In conclusion, synchronous breast and thyroid carcinomas constitute an atypical clinical scenario that requires detailed evaluation and a multidisciplinary management approach. Further research is needed to understand this condition's underlying pathophysiology and genetic background to improve therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
- Anuradha S Dnyanmote
- Department of General Surgery, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Himashree M P
- Department of General Surgery, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Sandeep Kumar
- Department of General Surgery, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Kinjal Vasava
- Department of General Surgery, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
2
|
Vieira LS, Zhang Y, López Quiñones AJ, Hu T, Singh DK, Stevens J, Prasad B, Park JR, Wang J. The Plasma Membrane Monoamine Transporter is Highly Expressed in Neuroblastoma and Functions as an mIBG Transporter. J Pharmacol Exp Ther 2023; 387:239-248. [PMID: 37541765 PMCID: PMC10658915 DOI: 10.1124/jpet.123.001672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer with low survival rates in high-risk patients. 131I-mIBG has emerged as a promising therapy for high-risk NB and kills tumor cells by radiation. Consequently, 131I-mIBG tumor uptake and retention are major determinants for its therapeutic efficacy. mIBG enters NB cells through the norepinephrine transporter (NET), and accumulates in mitochondria through unknown mechanisms. Here we evaluated the expression of monoamine and organic cation transporters in high-risk NB tumors and explored their relationship with MYCN amplification and patient survival. We found that NB mainly expresses NET, the plasma membrane monoamine transporter (PMAT), and the vesicular membrane monoamine transporter 1/2 (VMAT1/2), and that the expression of these transporters is significantly reduced in MYCN-amplified tumor samples. PMAT expression is the highest and correlates with overall survival in high-risk NB patients without MYCN amplification. Immunostaining showed that PMAT resides intracellularly in NB cells and co-localizes with mitochondria. Using cells expressing PMAT, mIBG was identified as a PMAT substrate. In mitochondria isolated from NB cell lines, mIBG uptake was reduced by ∼50% by a PMAT inhibitor. Together, our data suggest that PMAT is a previously unrecognized transporter highly expressed in NB and could impact intracellular transport and therapeutic response to 131I-mIBG. SIGNIFICANCE STATEMENT: This study identified that plasma membrane monoamine transporter (PMAT) is a novel transporter highly expressed in neuroblastoma and its expression level is associated with overall survival rate in high-risk patients without MYCN amplification. PMAT is expressed intracellularly in neuroblastoma cells, transports meta-iodobenzylguanidine (mIBG) and thus could impact tumor retention and response to 131I-mIBG therapy. These findings have important clinical implications as PMAT could represent a novel molecular marker to help inform disease prognosis and predict response to 131I-mIBG therapy.
Collapse
Affiliation(s)
- Letícia Salvador Vieira
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Yuchen Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Antonio J López Quiñones
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Dilip Kumar Singh
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Jeffrey Stevens
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Julie R Park
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.S.V., Y.Z., A.J.L.Q., T.H., J.W.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.K.S., B.P.); and Seattle Children's Hospital, Seattle, Washington (J.S., J.R.P.)
| |
Collapse
|
3
|
Dzien P, Mackintosh A, Malviya G, Johnson E, Soloviev D, Brown G, Uribe AH, Nixon C, Lyons SK, Maddocks O, Blyth K, Lewis DY. Positron emission tomography imaging of the sodium iodide symporter senses real-time energy stress in vivo. Cancer Metab 2023; 11:14. [PMID: 37679822 PMCID: PMC10486058 DOI: 10.1186/s40170-023-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Tissue environment is critical in determining tumour metabolic vulnerability. However, in vivo drug testing is slow and waiting for tumour growth delay may not be the most appropriate endpoint for metabolic treatments. An in vivo method for measuring energy stress would rapidly determine tumour targeting in a physiologically relevant environment. The sodium-iodide symporter (NIS) is an imaging reporter gene whose protein product co-transports sodium and iodide, and positron emission tomography (PET) radiolabelled anions into the cell. Here, we show that PET imaging of NIS-mediated radiotracer uptake can rapidly visualise tumour energy stress within minutes following in vivo treatment. METHODS We modified HEK293T human embryonic kidney cells, and A549 and H358 lung cancer cells to express transgenic NIS. Next, we subjected these cells and implanted tumours to drugs known to induce metabolic stress to observe the impact on NIS activity and energy charge. We used [18F]tetrafluoroborate positron emission tomography (PET) imaging to non-invasively image NIS activity in vivo. RESULTS NIS activity was ablated by treating HEK293T cells in vitro, with the Na+/K+ ATPase inhibitor digoxin, confirming that radiotracer uptake was dependent on the sodium-potassium concentration gradient. NIS-mediated radiotracer uptake was significantly reduced (- 58.2%) following disruptions to ATP re-synthesis by combined glycolysis and oxidative phosphorylation inhibition in HEK293T cells and by oxidative phosphorylation inhibition (- 16.6%) in A549 cells in vitro. PET signal was significantly decreased (- 56.5%) within 90 min from the onset of treatment with IACS-010759, an oxidative phosphorylation inhibitor, in subcutaneous transgenic A549 tumours in vivo, showing that NIS could rapidly and sensitively detect energy stress non-invasively, before more widespread changes to phosphorylated AMP-activated protein kinase, phosphorylated pyruvate dehydrogenase, and GLUT1 were detectable. CONCLUSIONS NIS acts as a rapid metabolic sensor for drugs that lead to ATP depletion. PET imaging of NIS could facilitate in vivo testing of treatments targeting energetic pathways, determine drug potency, and expedite metabolic drug development.
Collapse
Affiliation(s)
- Piotr Dzien
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Agata Mackintosh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Emma Johnson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Dmitry Soloviev
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gavin Brown
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Oliver Maddocks
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
4
|
Fu M, Wu W, Guo W, Jin Q, Meng Q, Gao Y, Yang R, Yang Y, Wang Z, Zhang W. Effects of maternal iodine nutritional status on neurodevelopmental and cognitive function of rat offspring. Front Nutr 2022; 9:996092. [DOI: 10.3389/fnut.2022.996092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThis study aimed to explore the effect of maternal iodine status on the brain development of offspring in rats. Since in human studies, the interference of environmental factors and other nutrients cannot be removed.Materials and methodsA total of 48 female Wistar rats were randomly divided into four groups: low iodine (LI), normal iodine (NI), 10-fold high iodine (10HI), and 50-fold high iodine (50HI). The rats were killed on the 15th day of pregnancy and lactation after collecting 24-h urine. The iodine concentration in 24-h urine, blood, and placenta of pregnant rats, and 24-h urine, milk, blood, and mammary glands of lactating rats was determined by inductively coupled plasma mass spectrometry. The thyroid hormone of pregnant and lactating rats was detected by chemiluminescence. The offspring were subjected to the Morris water maze on the 10th day after birth. Serum was collected to detect the thyroid hormone of offspring. The protein expression of neuroendocrine-specific protein (NSP)-A and brain-derived neurotrophic factor (BDNF) in the offspring brain were studied.ResultsIodine storage in the placenta during pregnancy and mammary glands during lactation was positively correlated with iodine intake, and iodine storage in the placenta and mammary glands in the 50HI group was significantly higher than that in the NI group (P = 0.045 and P = 0.040). Compared with the NI group, the offspring thyroid-stimulating hormone (TSH) level was significantly higher in the 10HI group (P = 0.046), and the FT4 level was significantly lower in the 50HI group (P = 0.032). The Morris water maze showed that LI and 50HI groups required longer time and distance to find the platform than the NI group (P < 0.001). The platform crossing numbers in the LI and 50HI groups decreased significantly (P < 0.001). The expression of NSP-A in offspring brain was lower in the 10HI and 50HI groups than in the NI group (P = 0.026 and P = 0,008). BDNF expression levels were significantly lower in the LI, 10HI, and 50HI groups than in the NI group (P < 0.001).ConclusionMaternal iodine intake affects iodine storage in the placenta and lactating mammary gland, which in turn affects thyroid function and BDNF and NSP-A expression in the offspring.
Collapse
|
5
|
Mechanisms of Sodium/Iodide Symporter-Mediated Mammary Gland Iodine Compensation during Lactation. Nutrients 2022; 14:nu14173592. [PMID: 36079849 PMCID: PMC9460413 DOI: 10.3390/nu14173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
This research aimed to investigate the compensation mechanism of iodine deficiency and excess in the mammary gland during lactation. Female rats were divided into the low iodine group (LI), the normal iodine group (NI), the 10-fold high iodine group (10HI) and the 50-fold high iodine group (50HI). We measured the iodine levels in the urine, blood, milk, and mammary gland. The protein expression of sodium/iodide symporter (NIS), DPAGT1, and valosin-containing protein (VCP) in the mammary gland was also studied. The 24-hour urinary iodine concentration, serum total iodine concentration, serum non-protein-bound iodine concentration, breast milk iodine concentration, and mammary gland iodine content in the 50HI group were significantly higher than those in the NI group (p < 0.05). Compared with the NI group, NIS expression in the 50HI group significantly decreased (p < 0.05). DAPGT1 expression was significantly higher in the LI group than in the NI group (p < 0.05). The expression level of VCP was significantly increased in the 10HI and 50HI groups. In conclusion, milk iodine concentration is positively correlated with iodine intake, and the lactating mammary gland regulates the glycosylation and degradation of NIS by regulating DPAGT1 and VCP, thus regulating milk iodine level. However, the mammary gland has a limited role in compensating for iodine deficiency and excess.
Collapse
|
6
|
García Torres E, Pérez Morales R, González Zamora A, Ríos Sánchez E, Olivas Calderón EH, Alba Romero JDJ, Calleros Rincón EY. Consumption of water contaminated by nitrate and its deleterious effects on the human thyroid gland: a review and update. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:984-1001. [PMID: 32866080 DOI: 10.1080/09603123.2020.1815664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the nitrates have been established as carcinogenic components due to the endogenous formation of N-nitroso compounds, however, the consumption of water contaminated with nitrates has only been strongly related to the presence of methemoglobinemia in infants, as an acute effect, leaving out other side effects that demand attention. The thyroid gland takes relevance because it can be altered by many pollutants known as endocrine disruptors, which are agents capable of interfering with the synthesis of hormones, thus far, it is known that nitrates may disrupt the amount of iodine uptake causing most of the time hypothyroidism and affecting the metabolic functions of the organism in all development stages, resulting in an important health burden for the exposed population. Here, this review and update highlighted the impact of consumption of water contaminated with nitrates and effects on the thyroid gland in humans, concluding that nitrates could act as true endocrine disruptor.
Collapse
Affiliation(s)
- Edgar García Torres
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Rebeca Pérez Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Alberto González Zamora
- Laboratorio de Biología Evolutiva, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | - Efraín Ríos Sánchez
- Doctorado en Ciencias Biomédicas. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | | - José de Jesús Alba Romero
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México
| | | |
Collapse
|
7
|
Arczewska KD, Godlewska M, Krasuska W, Łyczkowska A, Kiedrowski M, Czarnocka B. Expression of pendrin and NIS iodide transporters in human breast tumor and peri-tumoral tissue. Arch Med Sci 2022; 18:1041-1050. [PMID: 35832691 PMCID: PMC9266960 DOI: 10.5114/aoms.2019.89980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Thyroid iodide transporters, Na+/I- symporter (NIS) and pendrin (PDS), are responsible for supplying this vital micronutrient for thyroid hormone synthesis by thyroid peroxidase (TPO). Both proteins were shown to be expressed, apart from the thyroid, also in other human tissues, including lactating mammary gland. NIS expression in human breast cancers has been widely studied. On the other hand, until now PDS mRNA levels in breast tumor tissue have been estimated only in high throughput analyses. Previously, we have observed that TPO is expressed in normal and cancerous human breast tissues and shows enzymatic activity. However, biochemical activity of TPO in human breast cancer cells requires iodide transport by NIS and PDS. Therefore, to extend our previous study on TPO expression and function in human breast tumors we performed analysis of NIS and PDS levels in the same group of patients. MATERIAL AND METHODS The study involved detection of NIS and PDS protein levels by immunohistochemistry and Western blotting, as well as mRNA levels by real-time quantitative polymerase chain reaction. RESULTS Here we provide direct evidence that NIS and PDS are expressed in human breast cancer tissue, with NIS levels being increased and PDS levels decreased in tumor tissue. Interestingly, PDS mRNA levels in breast cancer tissue seem to be influenced by the estrogen receptor status and age of the patients, while NIS mRNA levels were dependent on histological type of the tumor. CONCLUSIONS This study provides valuable information important for consideration in diagnostic or therapeutic application of radioiodine in breast cancer management.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Wanda Krasuska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Łyczkowska
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mirosław Kiedrowski
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
8
|
Schnoell J, Kotowski U, Jank BJ, Stoiber S, Gurnhofer E, Schlederer M, Heiduschka G, Kenner L, Kadletz-Wanke L. Prognostic Relevance of Thyroid-Hormone-Associated Proteins in Adenoid Cystic Carcinoma of the Head and Neck. J Pers Med 2021; 11:jpm11121352. [PMID: 34945824 PMCID: PMC8703850 DOI: 10.3390/jpm11121352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The proteins sodium iodide symporter (NIS), μ-crystallin (CRYM), and thyroid hormone receptor beta (THRB) have been associated with prognosis in various cancer entities. While NIS and THRB may serve as possible therapeutic targets, the role of CRYM in cancer is still unclear. Protein levels of 44 patients with adenoid cystic carcinoma of the head and neck were analyzed using immunohistochemistry and correlated with clinicopathological data and outcome. NIS was positive in 72%, CRYM was positive in 55%, and THRB was positive in 39% of the patients. CRYM-positive adenoid cystic carcinomas were associated with a better cause-specific survival. Thus, our data indicate that CRYM might be a suitable positive prognostic marker in adenoid cystic carcinoma of the head and neck. Furthermore, expression of NIS was present in most patients and therefore evaluation of the use of radioiodine treatment is recommended.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Bernhard J. Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| | - Stefan Stoiber
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
| | - Elisabeth Gurnhofer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
| | - Michaela Schlederer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
- Correspondence: (G.H.); (L.K.)
| | - Lukas Kenner
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (S.S.); (E.G.); (M.S.)
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, 8010 Graz, Austria
- Correspondence: (G.H.); (L.K.)
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (U.K.); (B.J.J.); (L.K.-W.)
| |
Collapse
|
9
|
Rathod M, Kelkar M, Valvi S, Salve G, De A. FOXA1 Regulation Turns Benzamide HDACi Treatment Effect-Specific in BC, Promoting NIS Gene-Mediated Targeted Radioiodine Therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:93-104. [PMID: 33102692 PMCID: PMC7554325 DOI: 10.1016/j.omto.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 11/03/2022]
Abstract
Human sodium iodide symporter (NIS) gene mediated radio-ablation is a successful procedure in thyroid cancer clinics. In recent years, natural expression of NIS is reported in breast cancer (BC) cases but is yet to make its mark as a therapeutic procedure in BC clinics. A pre-exposure to histone deacetylase (HDAC) inhibitors to amplify endogenous NIS expression was attempted, but achieving cancer tissue-specific enhancement of NIS in patients is an important challenge to win. Here, for the first time, we show that a benzamide class of HDACi (bHDACi) can significantly induce NIS gene expression and function (p < 0.05) in BC cells with minimal off-target effects. Transcription factor (TF) profiler and promoter binding array reveals 22 TFs differentially activated by CI-994, of which FOXA1 is identified as a unique and positive regulator of NIS. Clonogenic assay shows reduced survival with bHDACi + 131I combination treatment. Further, AR-42 and MS-275 treatment shows enhanced NIS expression in an orthotopic breast tumor model. Combining bHDACi with 1 mCi 131I shows 40% drop in signal (p < 0.05), indicating enhanced radio-ablation effect. Cerenkov imaging revealed higher accumulation of 131I in MS-275-treated tumors. Thus, bHDACi-mediated selective enhancement ensuring minimal off-target effect is a step further toward using NIS as a therapeutic target for BC.
Collapse
Affiliation(s)
- Maitreyi Rathod
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Madhura Kelkar
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Snehal Valvi
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Girish Salve
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
10
|
Brito AF, Abrantes AM, Teixo R, Pires AS, Ribeiro AC, Ferreira RF, Mascarenhas A, Puga T, Laranjo M, Caramelo F, Boin I, Jefferson DM, Gonçalves C, Martins R, Tavares I, Ribeiro IP, Sarmento-Ribeiro AB, Carreira IM, Souza D, Tralhão JG, Botelho MF. Iodine‑131 metabolic radiotherapy leads to cell death and genomic alterations through NIS overexpression on cholangiocarcinoma. Int J Oncol 2020; 56:709-727. [PMID: 31922240 PMCID: PMC7010220 DOI: 10.3892/ijo.2020.4957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CC) is an aggressive liver tumor with limited therapeutic options. Natrium-iodide symporter (NIS) mediates the uptake of iodine by the thyroid, representing a key component in metabolic radiotherapy using iodine-131 (131I) for the treatment of thyroid cancer. NIS expression is increased in CC, providing the opportunity for a novel therapeutic approach for this type of tumor. Thus, in this study, we aimed to evaluate therapeutic efficacy of 131I in two human CC cell lines. Uptake experiments analyzed the 131I uptake profiles of the tumor cell lines under study. The cells were irradiated with various doses of 131I to evaluate and characterize the effects of metabolic radiotherapy. NIS protein expression was assessed by immunofluorescence methods. Cell survival was evaluated by clonogenic assay and flow cytometry was used to assess cell viability, and the type of death and alterations in the cell cycle. The genomic and epigenetic characterization of both CC cells was performed before and after irradiation. NIS gene expression was evaluated in the CC cells by RT-qPCR. The results revealed that CC cells had a higher expression of NIS. 131I induced a decrease in cell survival in a dose-dependent manner. With the increasing irradiation dose, a decrease in cell viability was observed, with a consequent increase in cell death by initial apoptosis. Karyotype and array comparative genomic hybridization (aCGH) analyses revealed that both CC cell lines were near-triploid with several numerical and structural chromosomal rearrangements. NIS gene expression was increased in the TFK-1 and HuCCT1 cells in a time-dependent manner. On the whole, the findings of this study demonstrate that the presence of NIS in cholangiocarcinoma cell lines is crucial for the decreased cell viability and survival observed following the exposure of cholangiocarcinoma cells to 131I.
Collapse
Affiliation(s)
- Ana Filipa Brito
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ana Salomé Pires
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ana Cláudia Ribeiro
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | | | - Alexandra Mascarenhas
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Tiago Puga
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Francisco Caramelo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ilka Boin
- Department of Surgery, Faculty of Medical Sciences of University of Campinas (FCM/UNICAMP), Campinas, SP 13083‑887, Brazil
| | - Douglas M Jefferson
- Tufts University School of Medicine, Department of Integrative Physiology and Pathobiology, Medford, MA 02155, USA
| | - Cristina Gonçalves
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ricardo Martins
- Faculty of Medicine of University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Inês Tavares
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Isabel Marques Carreira
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Doroteia Souza
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090‑000, Brazil
| | | | - Maria Filomena Botelho
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| |
Collapse
|
11
|
Elliyanti A, Rusnita D, Afriani N, Susanto YDB, Susilo VY, Setiyowati S, Harahap WA. Analysis Natrium Iodide Symporter Expression in Breast Cancer Subtypes for Radioiodine Therapy Response. Nucl Med Mol Imaging 2020; 54:35-42. [PMID: 32206129 DOI: 10.1007/s13139-019-00632-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/21/2019] [Accepted: 12/15/2019] [Indexed: 11/26/2022] Open
Abstract
Purpose This study investigates natrium iodide symporter (NIS) expression in three breast cancer subtypes to predict radioiodine response. Materials and Methods Frozen breast tissues from triple negative (TN), human epidermal receptor 2 (HER2+), and luminal A cancers were used in this research. NIS protein expression in each subtype was analyzed using immunohistochemistry (IHC) and western blot (WB). Secondary data such as age, subtypes, and Ki 67 index were drawn from the surgical oncologist database. Breast cancer cell lines were used to investigate the effect of radioiodine by measuring cell proliferation. Results The forty-one breast cancer samples were analyzed consisted of the following subtypes: TN, HER2+, and luminal A were 58%, 22%, and 20% respectively. The stages of disease were 2A to 4A. Most of samples were at 3B. Ki 67 index of TN, HER2+, and luminal A were 21 ± 12, 19 ± 5, and 7 ± 3 respectively. The NIS expression was detected in 95% of samples in cytoplasm and/or cell membrane; 93% of samples were invasive breast carcinomas. Only 20% of the samples showed NIS expression at cell membrane; four samples were HER2+, and other four were TN subtypes. NIS membrane score was significantly positively correlated with Ki67 index, p = 0.04. NIS protein expression was detected at sizes 88 kDa, 50 kDa, and 27 kDa. Cell proliferation rate means of MDA-MB 231, SKBR3, and MCF7 cells were 81.6 ± 4, 10.6 ± 5, and 15.4 ± 13 respectively (p = 0.009). Conclusion NIS protein expression is detectable in breast cancer cells to varying degrees. HER2+ is the most likely to express NIS in the cell membrane followed by TN subtypes. This indicates that radioiodine could be used as a novel adjuvant treatment in breast cancer.
Collapse
Affiliation(s)
- Aisyah Elliyanti
- 1Medical Physics and Radiology Departments, Faculty of Medicine, Universitas Andalas, Kampus Limau Manis, Padang, West Sumatera 25163 Indonesia
| | - Dewi Rusnita
- 2Anatomy Department, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Nita Afriani
- 3Histology Department, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | | | - Veronica Y Susilo
- 5The Center of Radioisotopes and Radiopharmaceuticals Technology, Badan Tenaga Nuklir Nasional, Puspitek Serpong, Tangerang Selatan, Indonesia
| | - Sri Setiyowati
- 5The Center of Radioisotopes and Radiopharmaceuticals Technology, Badan Tenaga Nuklir Nasional, Puspitek Serpong, Tangerang Selatan, Indonesia
| | - Wirsma Arif Harahap
- 6Surgery Department, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| |
Collapse
|
12
|
Rathod M, Chatterjee S, Dutta S, Kalraiya R, Bhattacharyya D, De A. Mannose glycosylation is an integral step for NIS localization and function in human breast cancer cells. J Cell Sci 2019; 132:jcs.232058. [PMID: 31455607 DOI: 10.1242/jcs.232058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Chasing an intriguing biological question on the disparity of sodium iodide symporter (NIS, officially known as SLC5A5) expression and function in the clinical scenario of breast cancer, this study addresses key molecular defects involved. NIS in cancer patients has primarily been recorded to be a cytoplasmic protein, thus limiting the scope for targeted radio-iodine therapy. We developed NIS transgene-overexpressing MCF-7 breast cancer cells, and found a few clonal derivatives that show predominant expression of NIS in the plasma membrane. The majority of clones, however, showed cytosolic NIS expression over long passages. Cells expressing membranous NIS show unperturbed dynamic trafficking of NIS through secretory pathway organelles when compared to cells expressing cytoplasmic NIS or to parental cells. Further, treatment of cells expressing membranous NIS with specific glycosylation inhibitors highlighted the importance of inherent glycosylation processing and an 84 gene signature glycosylation RT-Profiler array revealed that clones expressing NIS in their membrane cluster separately compared to the other cells. We further confirm a role of three differentially expressed genes, i.e. MAN1B1, MAN1A1 and MAN2A1, in regulating NIS localization by RNA interference. Thus, this study shows the important role of mannosidase in N-glycosylation processing in order to correctly traffic NIS to the plasma membrane in breast cancer cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maitreyi Rathod
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Sushmita Chatterjee
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Shruti Dutta
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India
| | - Rajiv Kalraiya
- Glycobiology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Dibyendu Bhattacharyya
- Cell Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra 410210, India .,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| |
Collapse
|
13
|
Le Goas M, Paquet M, Paquirissamy A, Guglielmi J, Compin C, Thariat J, Vassaux G, Geertsen V, Humbert O, Renault JP, Carrot G, Pourcher T, Cambien B. Improving 131I Radioiodine Therapy By Hybrid Polymer-Grafted Gold Nanoparticles. Int J Nanomedicine 2019; 14:7933-7946. [PMID: 31686819 PMCID: PMC6777639 DOI: 10.2147/ijn.s211496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human trials combining external radiotherapy (RT) and metallic nanoparticles are currently underway in cancer patients. For internal RT, in which a radioisotope such as radioiodine is systemically administered into patients, there is also a need for enhancing treatment efficacy, decreasing radiation-induced side effects and overcoming radio-resistance. However, if strategies vectorising radioiodine through nanocarriers have been documented, sensitizing the neoplasm through the use of nanotherapeutics easily translatable to the clinic in combination with the standard systemic radioiodine treatment has not been assessed yet. METHOD AND MATERIALS The present study explored the potential of hybrid poly(methacrylic acid)-grafted gold nanoparticles to improve the performances of systemic 131I-mediated RT on cancer cells and in tumor-bearing mice. Such nanoparticles were chosen based on their ability previously described by our group to safely withstand irradiation doses while exhibiting good biocompatibility and enhanced cellular uptake. RESULTS In vitro clonogenic assays performed on melanoma and colorectal cancer cells showed that poly(methacrylic acid)-grafted gold nanoparticles (PMAA-AuNPs) could efficiently lead to a marked tumor cell mortality when combined to a low activity of radioiodine, which alone appeared to be essentially ineffective on tumor cells. In vivo, tumor enrichment with PMAA-AuNPs significantly enhanced the killing potential of a systemic radioiodine treatment. CONCLUSION This is the first report of a simple and reliable nanomedicine-based approach to reduce the dose of radioiodine required to reach curability. In addition, these results open up novel perspectives for using high-Z metallic NPs in additional molecular radiation therapy demonstrating heterogeneous dose distributions.
Collapse
Affiliation(s)
- Marine Le Goas
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie Paquet
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
- Nuclear Medicine Department, Centre Antoine Lacassagne, Nice, France
| | - Aurélie Paquirissamy
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Guglielmi
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Cathy Compin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Université de Normandie, Caen, France
| | - Georges Vassaux
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Valérie Geertsen
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Humbert
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
- Nuclear Medicine Department, Centre Antoine Lacassagne, Nice, France
| | - Jean-Philippe Renault
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Géraldine Carrot
- NIMBE, Commissariat à l’Energie Atomique, Centre National Recherche Scientifique UMR 3685, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| | - Béatrice Cambien
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Commissariat à l’Energie Atomique, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Nice Sophia Antipolis, Nice, France
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), University Côte d’Azur, Nice, France
| |
Collapse
|
14
|
Khatami F, Larijani B, Nikfar S, Hasanzad M, Fendereski K, Tavangar SM. Personalized treatment options for thyroid cancer: current perspectives. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:235-245. [PMID: 31571972 PMCID: PMC6750856 DOI: 10.2147/pgpm.s181520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Thyroid cancer is one of the most common endocrine malignancies, with increasing incidence all over the world. In spite of good prognosis for differentiated thyroid carcinoma, for an unknown reason, about 5–10% of the patients, the cancer will show aggressive behavior, develop metastasis, and be refractory to treatment strategies like radioactive iodine. Regarding the genetic information, each thyroid cancer patient can be considered as an individual unique one, with unique genetic information. Contrary to standard chemotherapy drugs, target therapy components aim at one or more definite molecular pathway on cancer cells, so their selection is underlying patient’s genetic information. Nowadays, several mutations and rearrangements including BRAF, VEGF receptors, RET, and RET/PTC, KDR, KIT, PDGFRA, CD274, and JAK2 are taken into account for the therapeutic components like larotrectinib (TRK inhibitor), vemurafenib, sunitinib, sorafenib, selumetinib, and axitinib. With the new concept of personalized treatment of thyroid cancer diagnoses, planning treatment, finding out how well treatment will work, and estimating a prognosis has changed for the better over the last decade.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiarad Fendereski
- Pediateric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Elliyanti A, Putra AE, Sribudiani Y, Noormartany N, Masjhur JS, Achmad TH, Dachriyanus D. Epidermal Growth Factor and Adenosine Triphosphate Induce Natrium Iodide Symporter Expression in Breast Cancer Cell Lines. Open Access Maced J Med Sci 2019; 7:2088-2092. [PMID: 31456831 PMCID: PMC6698106 DOI: 10.3889/oamjms.2019.620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
AIM This study aims to investigate the effect of ATP, EGF and combination of those two to the Natrium Iodide Symporter (NIS) expression in MCF7, SKBR3 and HaCaT cell lines. METHODS MCF7, SKBR3 and HaCaT cell lines were treated with ATP, EGF and combination of those two for 6, 12 and 24 hours. The expression of NIS mRNA was measured through quantitative-reverse transcription-polymerase chain reaction (qRT-PCR). The NIS protein expression was confirmed by immunocytofluorescence. RESULTS NIS mRNA was expressed in SKBR3 and HaCaT cell lines but not in MCF7. The levels of NIS mRNA expression, after treatment by epidermal growth factor (EGF), adenosine Tri-Phosphate (ATP) or the combination of both for 6 and 12 hours were not significantly different from those of untreated cells. However, the treatment by a combination of ATP and EGF for 24 hours increases the level of NIS mRNA expression by 1.6 fold higher than that of the untreated cells (1.6241 ± 0.3, p < 0.05) and protein NIS expression increase significantly by the treatment than untreated cells (P < 0.05). CONCLUSION The level of NIS expression varies among the different subtypes of breast cancer cell lines. MCF7 cell line is representing the luminal A subtype of breast cancer does not express NIS. Only SKBR3 cell line express NIS and this subtype might be suitable to receive radioiodine therapy as those cells expressing NIS. A combination treatment of EGF and ATP increases the expression of NIS mRNA and protein at the membrane in SKBR3 cells.
Collapse
|
16
|
Shiozaki A, Ariyoshi Y, Iitaka D, Kosuga T, Shimizu H, Kudou M, Konishi T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Ichikawa D, Otsuji E. Functional analysis and clinical significance of sodium iodide symporter expression in gastric cancer. Gastric Cancer 2019; 22:473-485. [PMID: 30191346 DOI: 10.1007/s10120-018-0874-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have described important roles for the sodium iodide symporter (NIS) in tumor behavior. The objectives of the present study were to investigate the role of NIS in the regulation of genes involved in tumor progression and the clinicopathological significance of its expression in gastric cancer (GC). METHODS In human GC cell lines, knockdown experiments were conducted using NIS siRNA, and the effects on proliferation, survival, and cellular movement were analyzed. The gene expression profiles of cells were examined using a microarray analysis. An immunohistochemical analysis was performed on 145 primary tumor samples obtained from GC patients. RESULTS NIS was strongly expressed in MKN45 and MKN74 cells. The depletion of NIS inhibited cell proliferation, migration, and invasion and induced apoptosis. The results of the microarray analysis revealed that various interferon (IFN) signaling-related genes, such as STAT1, STAT2, IRF1, and IFIT1, were up-regulated in NIS-depleted MKN45 cells. Furthermore, the down-regulation of NIS affected the phosphorylation of MAPKs and NF-kB. Immunohistochemical staining showed that NIS was primarily located in the cytoplasm or cell membranes of carcinoma cells, and its expression was related to the histological type or venous invasion. Prognostic analyses revealed that the strong expression of NIS was associated with shorter postoperative survival. CONCLUSIONS These results suggest that NIS regulates tumor progression by affecting IFN signaling, and that its strong expression is related to a worse prognosis in patients with GC. These results provide an insight into the role of NIS as a mediator and/or a biomarker for GC.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yosuke Ariyoshi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Iitaka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Gastrointestinal, Breast and Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoki Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, 602-8013, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Gastrointestinal, Breast and Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
17
|
Karaca T, Demirtas S, Uzun Goren D. Pendrin and sodium/iodide symporter protein expression in the testicular tissue of normal and diabetic rats in prepubertal and post pubertal stages. IRANIAN JOURNAL OF VETERINARY RESEARCH 2018; 19:255-261. [PMID: 30774665 PMCID: PMC6361603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/16/2018] [Accepted: 06/03/2018] [Indexed: 06/09/2023]
Abstract
Pendrin (PDS) and sodium/iodide symporter (NIS) are transmembrane proteins that are located in numerous tissue types, particularly thyroid follicular epithelial cells, where they are entrusted with the regulation of iodine molecules. In the present study, we aimed to clarify changes in PDS and NIS protein expression, in the testicular tissue of prepubertal and post pubertal rats at normal or diabetic conditions. Forty Wistar albino male rats (20 prepubertal and 20 post pubertal) were divided into four groups, as follows: group I was prepubertal control, group II was prepubertal diabetic (60 mg/kg intraperitoneal [ip] streptozotocin [STZ]), group III was post pubertal control, and group IV was post pubertal diabetic (60 mg/kg ip STZ). Ki67 immunoreactivity decreased in testicular tissue of both the prepubertal and post pubertal diabetic groups; the apoptotic tubule index and apoptotic cell number increased in the diabetic groups as compared to the control groups. Pendrin immunoreactivity was detected in seminiferous tubules and Leydig cells; and was significantly reduced in the diabetic groups (P<0.05). The number of cells positive for NIS was significantly decreased in prepubertal and post pubertal rats with diabetes, compared to the controls. Enzyme-linked immunosorbent assay (ELISA) analysis showed that PDS and NIS values were significantly reduced in the prepubertal and post pubertal diabetic groups as compared to the control groups. Our results indicate a potential relationship between puberty and PDS and NIS expression in rat testicular tissue and showed the decreasing effects of diabetes on PDS and NIS expression in testicular tissues in rats.
Collapse
Affiliation(s)
- T. Karaca
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Balkan Campus, 22030, Edirne, Turkey
| | - S. Demirtas
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Balkan Campus, 22030, Edirne, Turkey
- Ph.D. Student, Department of Histology and Embryology, Institute of Health Sciences, Trakya University, Balkan Campus, 22030, Edirne, Turkey
| | - D. Uzun Goren
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Balkan Campus, 22030, Edirne, Turkey
- Ph.D. Student, Department of Histology and Embryology, Institute of Health Sciences, Trakya University, Balkan Campus, 22030, Edirne, Turkey
| |
Collapse
|
18
|
da Fonseca FL, Yamanaka PK, Mazoti L, Arakawa-Sugueno L, Kato JM, Matayoshi S. Correlation among ocular surface disease, xerostomia, and nasal symptoms in patients with differentiated thyroid carcinoma subjected to radioiodine therapy: A prospective comparative study. Head Neck 2017; 39:2381-2396. [PMID: 28945293 DOI: 10.1002/hed.24895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Some complications of radioiodine therapy have been reported, but the involvement of the eyes and adnexa is rarely discussed. The purpose of this study was to determine the correlation among ocular surface changes, xerostomia, and changes in the nasal mucosa associated with radioiodine therapy. METHODS Patients subjected to radioiodine therapy (group 1) or not subjected (group 2) were prospectively evaluated by examinations of the ocular surface and tear film, saliva production, and nasal endoscopy. Ocular and nasal symptoms and xerostomia were evaluated using questionnaires. RESULTS Evaluation of the ocular surface did not indicate significant differences between the groups. Nasal endoscopy revealed higher mucosal pallor in group 1 and worsening of the endoscopic appearance. Worsening of ocular symptoms and nasal symptoms, xerostomia, and a significant decrease in salivary production was also observed in group 1. CONCLUSION Subjective worsening of xerostomia, xerophthalmia, nasal symptoms, and changes in the nasal mucosa in group 1 was observed.
Collapse
Affiliation(s)
| | | | - Luciana Mazoti
- Department of Otorhinolaryngology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Lica Arakawa-Sugueno
- Department of Head and Neck Surgery, Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliana Mika Kato
- Department of Ophthalmology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzana Matayoshi
- Department of Ophthalmology, Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Nagarajah J, Janssen M, Hetkamp P, Jentzen W. Iodine Symporter Targeting with 124I/131I Theranostics. J Nucl Med 2017; 58:34S-38S. [DOI: 10.2967/jnumed.116.186866] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
|
20
|
Journy NM, Bernier MO, Doody MM, Alexander BH, Linet MS, Kitahara CM. Hyperthyroidism, Hypothyroidism, and Cause-Specific Mortality in a Large Cohort of Women. Thyroid 2017; 27:1001-1010. [PMID: 28578598 PMCID: PMC5564026 DOI: 10.1089/thy.2017.0063] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of hyperthyroidism and hypothyroidism is 0.5-4% in iodine-replete communities, but it is 5-10 times higher in women than in men. Those conditions are associated with a broad range of metabolic disorders and cardiovascular diseases. Biological evidence of a role of thyroid hormones in carcinogenesis also exists. However, the association between thyroid dysfunction and cardiovascular disease or cancer mortality risk remains controversial. In a large cohort of women, the associations of hyperthyroidism and hypothyroidism with cause-specific mortality were evaluated after nearly 30 years of follow-up. METHODS The prospective study included 75,076 women aged 20-89 years who were certified as radiologic technologists in the United States in 1926-1982, completed baseline questionnaires in 1983-1998 from which medical history was ascertained, and reported no malignant disease or benign thyroid disease except thyroid dysfunction. A passive follow-up of this cohort was performed through the Social Security Administration database and the National Death Index-Plus. Cause-specific mortality risks were compared according to self-reported thyroid status, with proportional hazards models adjusted for baseline year and age, race/ethnicity, body mass index, family history of breast cancer, and life-style and reproductive factors. RESULTS During a median follow-up of 28 years, 2609 cancer, 1789 cardiovascular or cerebrovascular, and 2442 other non-cancer deaths were recorded. Women with hyperthyroidism had an elevated risk of breast cancer mortality after 60 years of age (hazard ratio [HR] = 2.04 [confidence interval (CI) 1.16-3.60], 13 cases in hyperthyroid women) compared to women without thyroid disease. Hypothyroid women had increased mortality risks for diabetes mellitus (HR = 1.58 [CI 1.03-2.41], 27 cases in hypothyroid women), cardiovascular disease (HR = 1.20 [CI 1.01-1.42], 179 cases), and cerebrovascular disease (HR = 1.45 [CI 1.01-2.08], 35 cases, when restricting the follow-up to ≥10 years after baseline). Other causes of death were not associated with hyperthyroidism or hypothyroidism, though there was a suggestion of an elevated risk of ovarian cancer mortality in hyperthyroid women based on very few cases. CONCLUSION The excess mortality risks observed in a large, prospective 30-year follow-up of patients with thyroid dysfunction require confirmation, and, if replicated, further investigation will be needed because of the clinical implications.
Collapse
Affiliation(s)
- Neige M.Y. Journy
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marie-Odile Bernier
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratoire d'épidémiologie des rayonnements ionisants, Service de Radiobiologie et d'Epidémiologie, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Michele M. Doody
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bruce H. Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Martha S. Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cari M. Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Kelkar MG, Thakur B, Derle A, Chatterjee S, Ray P, De A. Tumor suppressor protein p53 exerts negative transcriptional regulation on human sodium iodide symporter gene expression in breast cancer. Breast Cancer Res Treat 2017; 164:603-615. [PMID: 28528452 DOI: 10.1007/s10549-017-4297-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/14/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) is well documented but the transcription factors (TF) regulating its aberrant expression is poorly known. We identify the presence of three p53 binding sites on the human NIS promoter sequence by conducting genome-wide TF analysis, and further investigate their regulatory role. METHODS The differences in transcription and translation were measured by real-time PCR, luciferase reporter assay, site-directed mutagenesis, in vivo optical imaging, and chromatin immunoprecipitation. The relation of NIS and p53 in clinical samples was judged by TCGA data analysis and immunohistochemistry. RESULTS Overexpression of wild-type p53 as a transgene or pharmacological activation by doxorubicin drug treatment shows significant suppression of NIS transcription in multiple BC cell types which also results in lowered NIS protein content and cellular iodide intake. NIS repression by activated p53 is further confirmed by non-invasive bioluminescence imaging in live cell and orthotropic tumor model. Abrogation of p53-binding sites by directional mutagenesis confirms reversal of transcriptional activity in wild-type p53-positive BC cells. We also observe direct binding of p53 to these sites on the human NIS promoter. Importantly, TCGA data analysis of NIS and p53 co-expression registers an inverse relationship between the two candidates. CONCLUSION Our data for the first time highlight the role of p53 as a negative regulator of functional NIS expression in BC, where the latter is a potential targeted radioiodine therapy candidate. Thus, the study provides an important insight into prospective clinical application of this approach that may significantly impact the patient with mutant versus wild-type p53 profile.
Collapse
Affiliation(s)
- Madhura G Kelkar
- Molecular Functional Imaging Lab, Tata Memorial Centre, ACTREC, Sector 22, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Bhushan Thakur
- Imaging Cell Signaling and Therapeutics Lab, Tata Memorial Centre, ACTREC, Navi Mumbai, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Abhishek Derle
- Molecular Functional Imaging Lab, Tata Memorial Centre, ACTREC, Sector 22, Kharghar, Navi Mumbai, 410210, India
| | - Sushmita Chatterjee
- Molecular Functional Imaging Lab, Tata Memorial Centre, ACTREC, Sector 22, Kharghar, Navi Mumbai, 410210, India
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Tata Memorial Centre, ACTREC, Navi Mumbai, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Tata Memorial Centre, ACTREC, Sector 22, Kharghar, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
23
|
da Fonseca FL, Yamanaka PK, Kato JM, Matayoshi S. Lacrimal System Obstruction After Radioiodine Therapy in Differentiated Thyroid Carcinomas: A Prospective Comparative Study. Thyroid 2016; 26:1761-1767. [PMID: 27565021 DOI: 10.1089/thy.2015.0657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Radioiodine therapy (RIT) is an established treatment for differentiated thyroid carcinomas, and is widely used throughout the world, given the increasing incidence of this malignancy. Although serious adverse effects are infrequent, complications such as dry mouth, sialadenitis, and dysphagia have been described. The involvement of the eyes and accessory visual structures is not commonly discussed, despite dry eye, keratoconjunctivitis, and lacrimal system obstruction (LSO) being reported, especially after high cumulative doses of radiopharmaceuticals. The incidence of LSO is not well established. OBJECTIVES The aim of this study was to determine the frequency of LSO in patients undergoing RIT at 2, 4, 6, and 12 months after treatment. METHODS Patients with differentiated thyroid carcinoma undergoing (group 1) and not undergoing (group 2) RIT were evaluated in the preoperative and postoperative periods and 2, 4, 6, and 12 months post surgery or post RIT. Patients underwent tear film evaluation and lacrimal system probing and irrigation. RESULTS Group 1 (n = 44; 88 eyes) contained three patients (four eyes) with LSO, corresponding to an incidence of 4.55% (four events in 88 eyes) or 6.8% (three cases in 44 patients). Group 2 (n = 43; 86 eyes) did not present any cases of LSO. CONCLUSIONS In this study, an active prospective investigation allowed LSO detection during the first six months after RIT. This finding demonstrates the importance of making this association clear to patients and health professionals, with a view to early diagnosis, appropriate treatment, and preventing LSO-related complications.
Collapse
Affiliation(s)
- Fabricio Lopes da Fonseca
- Department of Ophthalmology, Clinical Hospital, School of Medicine, University of São Paulo (Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo-HCFMUSP) , São Paulo, Brazil
| | - Patricia Kazue Yamanaka
- Department of Ophthalmology, Clinical Hospital, School of Medicine, University of São Paulo (Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo-HCFMUSP) , São Paulo, Brazil
| | - Juliana Mika Kato
- Department of Ophthalmology, Clinical Hospital, School of Medicine, University of São Paulo (Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo-HCFMUSP) , São Paulo, Brazil
| | - Suzana Matayoshi
- Department of Ophthalmology, Clinical Hospital, School of Medicine, University of São Paulo (Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo-HCFMUSP) , São Paulo, Brazil
| |
Collapse
|
24
|
Wang J, Arulanandam R, Wassenaar R, Falls T, Petryk J, Paget J, Garson K, Cemeus C, Vanderhyden BC, Wells RG, Bell JC, Le Boeuf F. Enhancing Expression of Functional Human Sodium Iodide Symporter and Somatostatin Receptor in Recombinant Oncolytic Vaccinia Virus for In Vivo Imaging of Tumors. J Nucl Med 2016; 58:221-227. [PMID: 27635026 DOI: 10.2967/jnumed.116.180463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a novel tool in our therapeutic arsenals for fighting cancer. As a live biologic agent, OV has the ability to target and selectively amplify at the tumor sites. We have reported that a vaccinia-based OV (Pexa-Vec) has shown good efficacy in preclinical models and in clinical trials. To give an additional tool to clinicians to allow both treatment of the tumor and improved visualization of tumor margins, we developed new viral-based platforms with 2 specific gene reporters. METHODS We incorporated the human sodium iodide symporter (hNIS) and the human somatostatin receptor 2 (hSSR2) in the vaccinia-based OV and tested viral constructs for their abilities to track and treat tumor development in vivo. RESULTS Early and high-level expression of hNIS is detrimental to the recombinant virus, leading to the aggregation of hNIS protein and early cell death. Putting hNIS under a late synthetic promoter allowed a higher functional expression of the protein and much stronger 123I or 99Tc uptake. In vivo, the hNIS-containing virus infected and amplified in the tumor site, showing a better efficacy than the parental virus. The hNIS expression at the tumor site allowed for the imaging of viral infection and tumor regression. Similarly, hSSR2-containing OV vaccinia infected and lysed cancer cells. CONCLUSION When tumor-bearing mice were given hNIS- and hSSR2-containing OV, 99Tc and 111In signals coalesced at the tumor, highlighting the power of using these viruses for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahu Wang
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Richard Wassenaar
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Theresa Falls
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Julia Petryk
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Judith Paget
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Garson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Catia Cemeus
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - R Glenn Wells
- Cardiac PET Research, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fabrice Le Boeuf
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Ahn BC. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1680464. [PMID: 27239470 PMCID: PMC4864569 DOI: 10.1155/2016/1680464] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
Abstract
Molecular imaging based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theranostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contribute to the success of personalized medicine. Although the term "theranostics" was used after the second millennium, its basic principle was applied more than 70 years ago in the field of thyroidology with radioiodine molecular imaging. Differentiated thyroid cancer, which arises from follicular cells in the thyroid, is the most common endocrine malignancy, and theranostic radioiodine has been successfully applied to diagnose and treat differentiated thyroid cancer, the applications of which were included in the guidelines published by various thyroid or nuclear medicine societies. Through better pathophysiologic understanding of thyroid cancer and advancements in nuclear technologies, theranostic radioiodine contributes more to modern tailored personalized management by providing high therapeutic effect and by avoiding significant adverse effects in differentiated thyroid cancer. This review details the inception of theranostic radioiodine and recent radioiodine applications for differentiated thyroid cancer management as a prototype of personalized medicine based on molecular imaging.
Collapse
Affiliation(s)
- Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50 Samduk-dong 2-ga, Jung-gu, Daegu 700-721, Republic of Korea
| |
Collapse
|
26
|
Fisher W, Wang J, George NI, Gearhart JM, McLanahan ED. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective. PLoS One 2016; 11:e0149300. [PMID: 26930410 PMCID: PMC4773173 DOI: 10.1371/journal.pone.0149300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.
Collapse
Affiliation(s)
- W. Fisher
- US FDA, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, Arkansas, 72079, United States of America
- * E-mail:
| | - Jian Wang
- US FDA, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Springs, Maryland, 20993, United States of America
| | - Nysia I. George
- US FDA, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, Arkansas, 72079, United States of America
| | - Jeffery M. Gearhart
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Bldg 837, Wright-Patterson AFB, Ohio, 43433, United States of America
- Wright State University Boonshoft School of Medicine, Dayton, Ohio, 45435, United States of America
| | - Eva D. McLanahan
- CDC/ATSDR, Division of Community Health Investigations, 4770 Buford HWY NE, Atlanta, Georgia, 30341, United States of America
| |
Collapse
|
27
|
Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation. Sci Rep 2016; 6:19341. [PMID: 26777440 PMCID: PMC4726020 DOI: 10.1038/srep19341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/02/2015] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of human sodium iodide symporter (NIS) in breast cancer (BC) has raised the possibility of using targeted radioiodide therapy. Here we investigate modulation of endogenous, functional NIS expression by histone deacetylase inhibitors (HDACi) in vitro and in vivo. Luciferase reporter based initial screening of six different HDACi shows 2–10 fold enhancement of NIS promoter activity in majority of the cell types tested. As a result of drug treatment, endogenous NIS transcript and protein shows profound induction in BC cells. To get an insight on the mechanism of such transcriptional activation, role of Stat4, CREB and other transcription factors are revealed by transcription factor profiling array. Further, NIS-mediated intracellular iodide uptake also enhances substantially (p < 0.05) signifying functional relevance of the transcriptional modulation strategy. Gamma camera imaging confirms 30% higher uptake in VPA or NaB treated BC tumor xenograft. Corroborating with such functional impact of NIS, significant reduction in cell survival (p < 0.005) is observed in VPA, NaB or CI994 drug and 131I combination treatment in vivo indicating effective radioablation. Thus, for the first time this study reveals the mechanistic basis and demonstrates functional relevance of HDACi pre-treatment strategy in elevating NIS gene therapy approach for BC management in clinic.
Collapse
|
28
|
Lin CY, Lin CL, Huang WS, Kao CH. Risk of Breast Cancer in Patients with Thyroid Cancer Receiving or Not Receiving 131I Treatment: A Nationwide Population-Based Cohort Study. J Nucl Med 2015; 57:685-90. [PMID: 26719377 DOI: 10.2967/jnumed.115.164830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED An increased risk of second primary malignancy after (131)I therapy has been reported. The objective of this study was to determine the risk of breast cancer in patients with thyroid cancer receiving or not receiving radioiodine treatment in Taiwan. METHODS This nationwide population-based cohort study was conducted using data obtained from the Taiwan National Health Insurance Database from 2000 to 2011. A total of 10,361 female patients with thyroid cancer (3,292 did not receive (131)I treatment and 7,069 received (131)I treatment) were enrolled, and 41,444 female controls were frequency-matched to the thyroid cancer patients in a 1:4 ratio by age (5-y age group). A Cox proportional hazards model was applied to estimate the risk of breast cancer in thyroid cancer patients receiving or not receiving (131)I treatment in terms of hazard ratios and 95% and 98% confidence intervals. RESULTS The incidence rates of breast cancer in patients with thyroid cancer receiving (131)I therapy, those not receiving (131)I therapy, and controls were 18.9, 17.7, and 13.1 per 10,000 person-years, respectively. Compared with patients with thyroid cancer treated with a cumulative (131)I dose of 4.44 GBq or less, the risk of breast cancer was not significantly increased in those treated with a cumulative (131)I dose of more than 4.44 GBq (adjusted hazard ratio, 0.78; 95% confidence interval, 0.50-1.21, P = 0.26; 98% confidence interval, 0.45-1.33, P > 0.02). CONCLUSION The greatest increased risk of breast cancer in patients with thyroid cancer is associated with the fact that the patient has thyroid cancer regardless of (131)I administration. However, (131)I further increased that risk but not as much as just having thyroid cancer.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Department of Nuclear Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Changhua Christian Hospital, Changhua, and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; and Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
29
|
Marti-Climent JM, Collantes M, Jauregui-Osoro M, Quincoces G, Prieto E, Bilbao I, Ecay M, Richter JA, Peñuelas I. Radiation dosimetry and biodistribution in non-human primates of the sodium/iodide PET ligand [(18)F]-tetrafluoroborate. EJNMMI Res 2015; 5:70. [PMID: 26635227 PMCID: PMC4669333 DOI: 10.1186/s13550-015-0148-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
Background [18F]-tetrafluoroborate is a PET radiotracer taken up by the sodium/iodide symporter (NIS). Albeit the in vivo behavior in rodents is similar to the 99mTc-pertechnetate, no studies exist in primates or in humans. The aims of this study were to evaluate the biodistribution of [18F]-tetrafluoroborate in non-human primates with PET and to estimate the absorbed dose in organs. Methods Whole-body PET imaging was done in a Siemens ECAT HR+ scanner in two male Macaca fascicularis monkeys. After an i.v. injection of 24.93 ± 0.05 MBq/kg of [18F]-tetrafluoroborate, prepared by isotopic exchange of sodium tetrafluoroborate with [18F]-fluoride under acidic conditions, eight sequential images from the head to the thigh (five beds) were collected for a total duration of 132 min. The whole-body emission scan was reconstructed applying attenuation and scatter corrections. After image reconstruction, three-dimensional volumes of interest (VOIs) were hand-drawn on the PET transaxial or coronal slices of the frame where the organ was most conspicuous. Time-activity curves for each VOI were obtained, and the organ residence times were calculated by integration of the time-activity curves. Human absorbed doses were estimated using the OLINDA/EXM software and the standard human model. Results [18F]-tetrafluoroborate was able to discriminate clearly the thyroid gland with an excellent signal-to-noise ratio. Most of the radiotracers (residence time) are localised in the organs that express NIS (stomach wall, salivary glands, thyroid, olfactory mucosa), are involved in excretion (kidneys and bladder), or reflect the vascular phase (heart and lungs). Considering the OLINDA source organs, the critical organs were the stomach wall, thyroid and bladder wall, with absorbed doses lower than 0.078 mGy/MBq. The effective dose was 0.025 mSv/MBq. Conclusions [18F]-tetrafluoroborate is a very useful radiotracer for PET thyroid imaging in primates, with a characteristic biodistribution in organs expressing NIS. It delivers an effective dose slightly higher than the dose produced by 99mTc-pertechnetate but much lower than that produced by radioiodine in the form of 131INa, 123INa, or 124INa. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0148-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J M Marti-Climent
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - M Collantes
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain. .,Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA) - Clínica Universidad de Navarra, Pamplona, Spain.
| | | | - G Quincoces
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - E Prieto
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - I Bilbao
- Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA) - Clínica Universidad de Navarra, Pamplona, Spain. .,Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) - CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - M Ecay
- Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA) - Clínica Universidad de Navarra, Pamplona, Spain.
| | - J A Richter
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - I Peñuelas
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain. .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain. .,Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA) - Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
30
|
Azoury SC, Aufforth R, He M, Yang Z, Nilubol N, Kebebew E. Quantitative reverse transcription polymerase chain reaction-based detection of thyroid-specific gene expression in fine-needle aspirate for thyroid cancer recurrence evaluation: a case report and review of the literature. Head Neck 2015; 37:E165-8. [PMID: 25784309 DOI: 10.1002/hed.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Despite improved surveillance for patients after total thyroidectomy for cancer, there has yet to be a diagnostic method that detects recurrence with 100% accuracy. METHODS A 60-year-old woman with a family history of papillary thyroid cancer (PTC) underwent total thyroidectomy and radioactive iodine ablation. On postoperative surveillance, ultrasound examination of the neck demonstrated a focus concerning for recurrence and a fine-needle aspirate (FNA) was performed. The cytology report was nondiagnostic and, hence, RNA was extracted from the specimen followed by reverse transcription (cDNA), and quantitative real-time polymerase chain reaction (qRT-PCR) to detect thyroid-specific gene expression (thyroglobulin =Tg; sodium-iodide symporter = NIS; thyroperoxidase = TPO). RESULTS Expression of select thyroid-specific genes was demonstrated, and given the patient's remarkable cancer and family history, surgical resection was elected. Final pathology demonstrated follicular adenoma. CONCLUSION This case demonstrates a novel approach used in the evaluation for recurrent thyroid cancer as an adjunct to FNA cytology.
Collapse
Affiliation(s)
- Saïd C Azoury
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Rachel Aufforth
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mei He
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhiming Yang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Patent Highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|