1
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
2
|
Özden-Yılmaz G, Savas B, Bursalı A, Eray A, Arıbaş A, Senturk S, Karaca E, Karakülah G, Erkek-Ozhan S. Differential Occupancy and Regulatory Interactions of KDM6A in Bladder Cell Lines. Cells 2023; 12:cells12060836. [PMID: 36980177 PMCID: PMC10047809 DOI: 10.3390/cells12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.
Collapse
Affiliation(s)
| | - Busra Savas
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ahmet Bursalı
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Alirıza Arıbaş
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | |
Collapse
|
3
|
Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci 2022; 23:ijms232213869. [PMID: 36430344 PMCID: PMC9692470 DOI: 10.3390/ijms232213869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understanding of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are urgently needed. In this study, we utilized the systems biology method via genome-wide microarray data to explore the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic networks (GWGEN) through big data mining. Second, we applied the system identification and system order detection method to delete false positives in candidate GWGENs to obtain the real GWGENs of MIBC and ABC from their genome-wide microarray data. Third, we extracted the core GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the principal network projection (PNP) method. Finally, we obtained the core signaling pathways from the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for MIBC and ABC, we employed a deep neural network (DNN)-based drug-target interaction (DTI) model with drug specifications. The DNN-based DTI model was trained by drug-target interaction databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug design specifications based on regulation ability, sensitivity and toxicity were employed as filter criteria for screening the potential drug combinations of Embelin and Obatoclax for MIBC, and Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only investigated the oncogenic mechanisms of MIBC and ABC, but also provided promising therapeutic options for MIBC and ABC, respectively.
Collapse
|
4
|
Vasileva MV, Khromova NV, Kopnin BP, Dugina VB, Kopnin PB. Significance of NOTCH1 Expression in the Progression of Human Lung and Colorectal Cancers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1199-1205. [PMID: 36273888 DOI: 10.1134/s0006297922100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Lung and colorectal cancers are the most common types of cancer characterized by a poor prognosis and a high mortality rate. Mutations in the genes encoding components of the main intra- and extracellular signaling pathways, in particular the NOTCH1 gene (Notch1, a member of the Notch family of receptors), play one of the key roles in progression of these malignancies. Notch signaling is involved in maintaining homeostasis of the intestinal epithelium and structural and functional lung elements. Therefore, it is not surprising that the constitutive activity and hyperactivity of Notch signaling due to somatic mutations in genes coding for the products directly involved into its activation, could lead to the progression of these cancer types. The aim of our study was to investigate how the NOTCH1 downregulation via RNA interference (RNAi) affects the phenotype, characteristics, and Notch-dependent signaling of human A549 lung and HCT116 colorectal carcinoma cells. Several small harpin RNAs (shRNAs) were selected using the bioinformatic analysis and tested for their ability to suppress the NOTCH1 expression. The most efficient one was used to produce the A549 and HCT116 cells with NOTCH1 knockdown. The obtained cell lines demonstrated decreased proliferation rates, reduced colony-forming capacity under adhesive conditions, and decreased migration activity in a Boyden chamber. The NOTCH1 knockdown also significantly decreased expression of some Notch signaling target genes potentially involved in the acquisition and maintenance of more invasive and malignant cell phenotype. In vivo experiments in immunodeficient athymic female Balb/c nu/nu mice confirmed the results obtained in vitro: the NOTCH1 inhibition decreased the growth rates of the subcutaneous xenografts formed by A549 and HCT116 tumor cells. Therefore, downregulation of the gene encoding the Notch1 receptor potentially reduces malignant characteristics of human lung and colorectal carcinoma cells.
Collapse
Affiliation(s)
- Maria V Vasileva
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Natalia V Khromova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Boris P Kopnin
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Vera B Dugina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Pavel B Kopnin
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
5
|
Tang H, Li X, Jiang L, Liu Z, Chen L, Chen J, Deng M, Zhou F, Zheng X, Liu Z. RITA1 drives the growth of bladder cancer cells by recruiting TRIM25 to facilitate the proteasomal degradation of RBPJ. Cancer Sci 2022; 113:3071-3084. [PMID: 35701858 PMCID: PMC9459252 DOI: 10.1111/cas.15459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies worldwide, but it lacks effective targeted therapy due to its elusive molecular mechanism. Therefore, it is important to further investigate the molecular mechanisms that mediate BC progression. By performing a tumor tissue–based gene microarray and shRNA library screening, we found that recombination signal binding protein for immunoglobulin kappa J region (RBPJ) interacting and tubulin associated 1 (RITA1) is crucial for the growth of BC cells. Moreover, RITA1 is aberrantly highly expressed in BC tissues and is also correlated with poor prognosis in patients with BC. Mechanistically, we determined that RITA1 recruits tripartite motif containing 25 (TRIM25) to ubiquitinate RBPJ to accelerate its degradation via proteasome, which leads to the transcriptional inhibition of Notch1 downstream targets. Our results suggest that aberrant high expression of RITA1 drives the growth of BC cells via the RITA1/TRIM25/RBPJ axis and RITA1 may serve as a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Huancheng Tang
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangdong Li
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Jiang
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zefu Liu
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lei Chen
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiawei Chen
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Minhua Deng
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianchong Zheng
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuowei Liu
- Department of Urology, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Wiessner GB, Plumber SA, Xiang T, Mendelsohn CL. Development, regeneration and tumorigenesis of the urothelium. Development 2022; 149:dev198184. [PMID: 35521701 PMCID: PMC10656457 DOI: 10.1242/dev.198184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Gregory B. Wiessner
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Sakina A. Plumber
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Tina Xiang
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Cathy L. Mendelsohn
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Wang XZ, Xia L, Zhang XY, Chen Q, Li X, Mou Y, Wang T, Zhang YN. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed Pharmacother 2022; 149:112800. [PMID: 35279012 DOI: 10.1016/j.biopha.2022.112800] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
Paeoniflorin is a water-soluble monoterpenoid glycoside that can be derived from multiple herbaceous plants, such as Radix Paeoniae Rubra, Radix Paeoniae Alba, Paeonia suffruticosa and Cimicifugae Foetidae. Multiple studies have suggested that Paeoniflorin possesses an excellent anti-tumor effect in variety of tumors, including liver cancer, gastric cancer, breast cancer, lung cancer, pancreatic cancer, colorectal cancer and bladder cancer. It can induce cell apoptosis, inhibit proliferation, invasion and metastasis via different molecular mechanisms, which are mainly involved in nuclear transcription factor kappα (NF-κB), B-cell lymphoma-2(Bcl-2) family, MicroRNA, neural precursor cell expressed developmentally down-regulated protein 4(NEDD4) signaling pathway, transcription activating factor (STAT3), p21, p53/14-3-3 signaling pathway, transforming growth factor-β1(TGF-β1)/Smads signaling pathway, Mitogen-activated protein kinase (MAPK) signaling pathway and Notch-1. Current studies on anti-tumor effect and mechanism of action of Paeoniflorin remain unclear. Therefore, this study reviews the research progress in the anti-tumor effect and mechanism of Paeoniflorin in an attempt to provide a new thought and theoretical basis for further development and clinical application of Paeoniflorin.
Collapse
Affiliation(s)
- Xue Zhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Yu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - Ya Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
8
|
Zhang C, Berndt-Paetz M, Neuhaus J. A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13123089. [PMID: 34205690 PMCID: PMC8235546 DOI: 10.3390/cancers13123089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The Notch pathway is important in embryology and numerous tumor diseases. However, its role in bladder cancer (BCa) has not been deeply investigated thus far. Gene expression data are available for BCa, and bioinformatics analysis can provide insights into a possible role of the Notch pathway in BCa development and prognosis. Using this information can help in better understanding the origin of BCa, finding novel biomarkers for prediction of disease progression, and potentially opening new avenues to improved treatment. Our analysis identified the Notch receptors NOTCH2/3 and their ligand DLL4 as potential drivers of BCa by direct interaction with basic cell functions and indirect by modulating the immune response. Abstract Background: A hallmark of Notch signaling is its variable role in tumor biology, ranging from tumor-suppressive to oncogenic effects. Until now, the mechanisms and functions of Notch pathways in bladder cancer (BCa) are still unclear. Methods: We used publicly available data from the GTEx and TCGA-BLCA databases to explore the role of the canonical Notch pathways in BCa on the basis of the RNA expression levels of Notch receptors, ligands, and downstream genes. For statistical analyses of cancer and non-cancerous samples, we used R software packages and public databases/webservers. Results: We found differential expression between control and BCa samples for all Notch receptors (NOTCH1, 2, 3, 4), the delta-like Notch ligands (DLL1, 3, 4), and the typical downstream gene hairy and enhancer of split 1 (HES1). NOTCH2/3 and DLL4 can significantly differentiate non-cancerous samples from cancers and were broadly altered in subgroups. High expression levels of NOTCH2/3 receptors correlated with worse overall survival (OS) and shorter disease-free survival (DFS). However, at long-term (>8 years) follow-up, NOTCH2 expression was associated with a better OS and DFS. Furthermore, the cases with the high levels of DLL4 were associated with worse OS but improved DFS. Pathway network analysis revealed that NOTCH2/3 in particular correlated with cell cycle, epithelial–mesenchymal transition (EMT), numbers of lymphocyte subtypes, and modulation of the immune system. Conclusions: NOTCH2/3 and DLL4 are potential drivers of Notch signaling in BCa, indicating that Notch and associated pathways play an essential role in the progression and prognosis of BCa through directly modulating immune cells or through interaction with cell cycle and EMT.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Department of Urology, Chengdu Fifth People’s Hospital Affiliated to the Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Mandy Berndt-Paetz
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Correspondence: ; Tel.: +49-341-971-7688
| |
Collapse
|
9
|
Schulz GB, Elezkurtaj S, Börding T, Schmidt EM, Elmasry M, Stief CG, Kirchner T, Karl A, Horst D. Therapeutic and prognostic implications of NOTCH and MAPK signaling in bladder cancer. Cancer Sci 2021; 112:1987-1996. [PMID: 33686706 PMCID: PMC8088911 DOI: 10.1111/cas.14878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways that drive bladder cancer (BC) progression may be promising and specific targets for systemic therapy. Here, we investigated the clinical significance and targetability of NOTCH and mitogen-activated protein kinase (MAPK) signaling for this aggressive malignancy. We assessed NOTCH1 and MAPK activity in 222 stage III and IV BC specimens of patients that had undergone radical cystectomy, and tested for clinical associations including cancer-specific and overall survival. We examined therapeutic effects of NOTCH and MAPK repression in a murine xenograft model of human bladder cancer cells and evaluated tumor growth and tumor cell plasticity. In BC, NOTCH1 and MAPK signaling marked two distinct tumor cell subpopulations. The combination of high NOTCH1 and high MAPK activity indicated poor cancer-specific and overall survival in univariate and multivariate analyses. Inhibition of NOTCH and MAPK in BC xenografts in vivo depleted targeted tumor cell subpopulations and revealed strong plasticity in signaling pathway activity. Combinatorial inhibition of NOTCH and MAPK signaling most strongly suppressed tumor growth. Our findings indicate that tumor cell subpopulations with high NOTCH and MAPK activity both contribute to tumor progression. Furthermore, we propose a new concept for BC therapy, which advocates specific and simultaneous targeting of these different tumor cell subpopulations through combined NOTCH and MAPK inhibition.
Collapse
Affiliation(s)
- Gerald B Schulz
- Department of Urology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sefer Elezkurtaj
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Teresa Börding
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Manal Elmasry
- Institute of Pathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Karl
- Department of Urology, Barmherzige Brüder, Munich, Germany
| | - David Horst
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
11
|
Anusewicz D, Orzechowska M, Bednarek AK. Notch Signaling Pathway in Cancer-Review with Bioinformatic Analysis. Cancers (Basel) 2021; 13:cancers13040768. [PMID: 33673145 PMCID: PMC7918426 DOI: 10.3390/cancers13040768] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary The Notch signaling pathway, which controls multiple cell differentiation processes during the embryonic stage and adult life, is associated with carcinogenesis and disease progression. The aim of the present study was to highlight cancer heterogeneity with respect to the Notch pathway. Our analysis concerns the effects of the Notch signaling at different levels, including core components and downstream target genes. We also demonstrate overall and disease-free survival results, pointing out the characteristics of particular Notch components. Depending on tissue context, Notch members can be either oncogenic or suppressive. We observed different expression profile core components and target genes that could be associated with distinct survival of patients. Advances in our understanding of the Notch signaling in cancer are very promising for the development of new treatment strategies for the benefit of patients. Abstract Notch signaling is an evolutionarily conserved pathway regulating normal embryonic development and homeostasis in a wide variety of tissues. It is also critically involved in carcinogenesis, as well as cancer progression. Activation of the Notch pathway members can be either oncogenic or suppressive, depending on tissue context. The present study is a comprehensive overview, extended with a bioinformatics analysis of TCGA cohorts, including breast, bladder, cervical, colon, kidney, lung, ovary, prostate and rectum carcinomas. We performed global expression profiling of the Notch pathway core components and downstream targets. For this purpose, we implemented the Uniform Manifold Approximation and Projection algorithm to reduce the dimensions. Furthermore, we determined the optimal cutpoint using Evaluate Cutpoint software to established disease-free and overall survival with respect to particular Notch members. Our results demonstrated separation between tumors and their corresponding normal tissue, as well as between tumors in general. The differentiation of the Notch pathway, at its various stages, in terms of expression and survival resulted in distinct profiles of biological processes such as proliferation, adhesion, apoptosis and epithelial to mesenchymal transition. In conclusion, whether oncogenic or suppressive, Notch signaling is proven to be associated with various types of malignancies, and thus may be of interest as a potential therapeutic target.
Collapse
|
12
|
Zhou Z, Cui D, Sun MH, Huang JL, Deng Z, Han BM, Sun XW, Xia SJ, Sun F, Shi F. CAFs-derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling. FASEB J 2020; 34:7970-7988. [PMID: 32293074 DOI: 10.1096/fj.201902659r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment and contribute to tumor cell proliferation and metastasis. Microfibrillar-associated protein 5 (MFAP5), a component of elastic microfibers and an oncogenic protein in several types of tumors, is secreted by CAFs. However, the role of MFAP5 in the bladder cancer remains unclear. Here, we report that MFAP5 is upregulated in bladder cancer and is associated with poor patient survival. Downregulation of MFAP5 in CAFs led to an impairment in proliferation and invasion of bladder cancer cells. Luciferase reporter assays and electrophoretic mobility shift assays (EMSA) showed QKI directly downregulates MFAP5 in CAFs. In addition, CAFs-derived MFAP5 led to an activation of the NOTCH2/HEY1 signaling pathway through direct interaction with the NOTCH2 receptor, thereby stimulating the N2ICD release. RNA-sequencing revealed that MFAP5-mediated PI3K-AKT signaling activated the DLL4/NOTCH2 pathway axis in bladder cancer. Moreover, downregulation of NOTCH2 by short hairpin RNA or the inactivating anti-body NRR2Mab was able to reverse the adverse effects of MFAP5 stimulation in vitro and in vivo. Together, these results demonstrate CAFs-derived MFAP5 promotes the bladder cancer proliferation and metastasis and provides new insight for targeting CAFs as novel diagnostic and therapeutic strategy.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Hao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Lang Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Deng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wen Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Cooley LF, McLaughlin KA, Meeks JJ. Genomic and Therapeutic Landscape of Non-muscle-invasive Bladder Cancer. Urol Clin North Am 2019; 47:35-46. [PMID: 31757298 DOI: 10.1016/j.ucl.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is heterogeneous, but current diagnostic and treatment strategies rely primarily on clinical parameters, lacking individualization to tumor and host genetics and biology. The heterogeneity of NMIBCs is derived from mutations, mutation signatures, chromosomal loss, and disruption of molecular pathways, which ultimately affects tumor progression, recurrence, and responsiveness to intravesical and systemic chemotherapy. Although research is still underway, advances in sequencing technology, insight into differential bacillus Calmette-Guérin responses, and new investigational treatment targets will soon offer clinicians new, precision-based tools to risk stratify and determine treatment regimens for future patients with bladder cancer.
Collapse
Affiliation(s)
- Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Northwestern University, 300 East Superior Street, Tarry 16-703, Chicago, IL 60611, USA
| | - Kimberly A McLaughlin
- Department of Urology, Feinberg School of Medicine, Northwestern University, 300 East Superior Street, Tarry 16-703, Chicago, IL 60611, USA; Department of Biochemistry, Northwestern University, Feinberg School of Medicine, Polsky Urologic Cancer Institute, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine, Northwestern University, 300 East Superior Street, Tarry 16-703, Chicago, IL 60611, USA; Department of Biochemistry, Northwestern University, Feinberg School of Medicine, Polsky Urologic Cancer Institute, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espinosa L, Fernández-Barral A, Barbáchano A, Domínguez O, Laughney AM, Megías D, Muñoz A, Real FX. Urothelial organoids originating from Cd49f high mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10:4407. [PMID: 31562298 PMCID: PMC6764959 DOI: 10.1038/s41467-019-12307-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding urothelial stem cell biology and differentiation has been limited by the lack of methods for their unlimited propagation. Here, we establish mouse urothelial organoids that can be maintained uninterruptedly for >1 year. Organoid growth is dependent on EGF and Wnt activators. High CD49f/ITGA6 expression features a subpopulation of organoid-forming cells expressing basal markers. Upon differentiation, multilayered organoids undergo reduced proliferation, decreased cell layer number, urothelial program activation, and acquisition of barrier function. Pharmacological modulation of PPARγ and EGFR promotes differentiation. RNA sequencing highlighted genesets enriched in proliferative organoids (i.e. ribosome) and transcriptional networks involved in differentiation, including expression of Wnt ligands and Notch components. Single-cell RNA sequencing (scRNA-Seq) analysis of the organoids revealed five clusters with distinct gene expression profiles. Together, with the use of γ-secretase inhibitors and scRNA-Seq, confirms that Notch signaling is required for differentiation. Urothelial organoids provide a powerful tool to study cell regeneration and differentiation.
Collapse
Affiliation(s)
- Catarina P Santos
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Jaime Martínez de Villarreal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Laura Álvaro-Espinosa
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Asunción Fernández-Barral
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Antonio Barbáchano
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Orlando Domínguez
- Genomics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | | | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Muñoz
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Ruan JL, Hsu JW, Browning RJ, Stride E, Yildiz YO, Vojnovic B, Kiltie AE. Mouse Models of Muscle-invasive Bladder Cancer: Key Considerations for Clinical Translation Based on Molecular Subtypes. Eur Urol Oncol 2019; 2:239-247. [PMID: 31200837 DOI: 10.1016/j.euo.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT In the past few years, research has suggested that molecular subtypes in muscle-invasive bladder cancer (MIBC) may be exploited to accelerate developments in clinical disease management and novel therapeutics. OBJECTIVE To review MIBC mouse models from a molecular subtype perspective, their advantages and limitations, and their applications in translational medicine, based on a PubMed search for publications from January 2000 to February 2018. EVIDENCE ACQUISITION Publications relevant to MIBC mouse models and their molecular subtypes were identified in a literature review. EVIDENCE SYNTHESIS We classified the models according to the technique used for their establishment. For xenotransplant and allograft models, the inoculated cells and inoculated locations are the major determinants of molecular subtypes. Although the cell lines used in xenotransplant models can cover most of the basal-squamous and luminal subtypes, allograft models offer a more realistic environment in which to reconstruct aspects of the associated stromal and immune features. Autochthonous models, using genetic and/or chemical stimuli to induce disease progression, can also generate models with basal-squamous and luminal subtypes, but further molecular characterisation is needed since other mutational variants may be introduced in these models. CONCLUSIONS We identified preclinical MIBC models with different subtype specifications and assessed their promise and current limitations. These models are versatile tools that can reproduce the molecular complexity of MIBC and support novel therapeutic development. PATIENT SUMMARY Understanding which models of muscle-invasive bladder cancer most accurately represent the clinical situation is important for the development of novel drugs and disease management strategies. We review the different models currently available and their relevance to different clinical subtypes.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jong-Wei Hsu
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Yesna O Yildiz
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Borivoj Vojnovic
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Goriki A, Seiler R, Wyatt AW, Contreras-Sanz A, Bhat A, Matsubara A, Hayashi T, Black PC. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 2018; 15:345-357. [DOI: 10.1038/s41585-018-0005-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Loss of nuclear NOTCH1, but not its negative regulator NUMB, is an independent predictor of cervical malignancy. Oncotarget 2018; 9:18916-18928. [PMID: 29721172 PMCID: PMC5922366 DOI: 10.18632/oncotarget.24828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/24/2018] [Indexed: 12/29/2022] Open
Abstract
The participation of NOTCH signaling in invasive cervical cancer (ICC) remains controversial since both tumor suppressive and oncogenic properties have been described. Additionally, the role of NUMB, a negative regulator of NOTCH, remains unclear in ICC. We aimed to investigate the role of NOTCH1 and NUMB expression and their localization in cervical intraepithelial neoplasia (CIN) and ICC samples. A total of 144 biopsies were obtained from the Instituto Nacional de Cancerología, México from 2004 to 2017, and were subjected to immunohistochemistry for NOTCH1 and NUMB. We found that nuclear NOTCH1 expression was more frequently found in CIN samples compared with ICC (77.55% vs. 15.79%, p = 0.001). NUMB was almost exclusively found in the nucleus of CIN samples (32.65% vs. 6.32%, p = 0.001). Cytoplasmic expression of NOTCH1 (44.21%) and NUMB (35.79%) was the most frequent localization in ICC. Multivariable-adjusted analysis showed that the loss of nuclear NOTCH1 expression was an independent predictor of malignancy (β = -3.428, 95% confidence interval [95% CI] = -5.127, -1.728, p = 0.001). In contrast, the association between cytoplasmic NUMB expression and cervical cancer was lost after adjusting for nuclear NOTCH1 expression (β = 2.074, 95% [CI] = -0.358, 4.506, P = 0.094). Additionally, patients with cytoplasmic NOTCH1 expression showed a borderline association with longer overall survival (OS) than those with nuclear NOTCH1 expression (P = 0.08). Our data suggest that the loss of nuclear NOTCH1 but not NUMB might be an independent predictor of malignancy in cervical cancer.
Collapse
|
18
|
Zhang H, Liu L, Liu C, Pan J, Lu G, Zhou Z, Chen Z, Qian C. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget 2018; 8:34362-34373. [PMID: 28416766 PMCID: PMC5470974 DOI: 10.18632/oncotarget.16156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer.
Collapse
Affiliation(s)
- Heng Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jinhong Pan
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gensheng Lu
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
19
|
Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 2017; 8:3217. [PMID: 29242529 PMCID: PMC5870579 DOI: 10.1038/s41419-017-0024-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation observed in cancer can provide survival benefits to cells by silencing genes essential for anti-tumor activity. DNA-demethylating agents such as Decitabine (DAC)/Azacitidine (AZA) activate otherwise silenced tumor suppressor genes, alter immune response and epigenetically reprogram tumor cells. In this study, we show that non-cytotoxic nanomolar DAC concentrations modify the bladder cancer transcriptome to activate NOTCH1 at the mRNA and protein level, increase double-stranded RNA sensors and CK5-dependent differentiation. Importantly, DAC treatment increases ICN1 expression (the active intracellular domain of NOTCH1) significantly inhibiting cell proliferation and causing changes in cell size inducing morphological alterations reminiscent of senescence. These changes were not associated with β-galactosidase activity or increased p16 levels, but instead were associated with substantial IL-6 release. Increased IL-6 release was observed in both DAC-treated and ICN1 overexpressing cells as compared to control cells. Exogenous IL-6 expression was associated with a similar enlarged cell morphology that was rescued by the addition of a monoclonal antibody against IL-6. Treatment with DAC, overexpression with ICN1 or addition of exogenous IL-6 showed CK5 reduction, a surrogate marker of differentiation. Overall this study suggests that in MIBC cells, DNA hypomethylation increases NOTCH1 expression and IL-6 release to induce CK5-related differentiation.
Collapse
|
20
|
Dobranowski P, Ban F, Contreras-Sanz A, Cherkasov A, Black PC. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2017; 91:691-706. [PMID: 29078041 DOI: 10.1111/cbdd.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
The Notch pathway is a cell-cell communication system where membrane-bound ligands interact with the extracellular region of Notch receptors to induce intracellular, downstream effects on gene expression. Aberrant Notch signaling promotes tumorigenesis, and the Notch pathway has tremendous potential for novel targeting strategies in cancer treatment. While γ-secretase inhibitors as Notch-inhibiting agents are already promising in clinical trials, they are highly non-specific with adverse side-effects. One of the underlying challenges is that two of the four known human Notch paralogs, NOTCH1 and 2, share very high structural similarity but play opposing roles in some tumorigenesis pathways. This perspective explores the feasibility of developing Notch-specific small molecule inhibitors targeting the anti-NOTCH2 antibody-binding epitopes or the "S2-Leu-plug-binding site" using a computer-aided drug discovery approach.
Collapse
Affiliation(s)
- Peter Dobranowski
- Department of Pediatrics, British Columbia Children's Hospital Research, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fuqiang Ban
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Alberto Contreras-Sanz
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Peter C Black
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol 2017; 25:7-17. [PMID: 28697535 DOI: 10.1111/iju.13404] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
There is growing evidence of the presence of cancer stem cells in urothelial carcinoma. Cancer stem cells have the ability to self-renew and to differentiate into all cell types of the original heterogeneous tumor. A panel of diverse cancer stem cell markers might be suitable for simulation studies of urothelial cancer stem cells and for the development of optimized treatment protocols. The present review focuses on the advances in recognizing the markers of urothelial cancer stem cells and possible therapeutic targets. The commonly reported markers and pathways that were evaluated include CD44, CD133, ALDH1, SOX2 & SOX4, BMI1, EZH1, PD-L1, MAGE-A3, COX2/PGE2/STAT3, AR, and autophagy. Studies on the epithelial-mesenchymal transition-related pathways (Shh, Wnt/β-catenin, Notch, PI3K/Akt, TGF-β, miRNA) are also reviewed. Most of these markers were recognized through the expression patterns of cancer stem cell-rich side populations. Their regulative role in the development and differentiation of urothelial cancer stem cells was confirmed in vitro by functional analyses (e.g. cell migration, colony formation, sphere formation), and in vivo in xenograft experiments. Although a small number of these pathways are targeted by currently available drugs or drugs that are the currently being tested in clinical trials, a clear treatment approach has not been developed for most pathways. A greater understanding of the mechanisms that control the proliferation and differentiation of cancer stem cells is expected to lead to improvements in targeted therapy.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.,Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| |
Collapse
|
22
|
Du E, Zhang C, Qin Z, Yang K, Li C, Wang A, Zhang Z, Xu Y. Low expression of TMEM67 is a critical predictor of poor prognosis in human urothelial carcinoma of the bladder. Urol Oncol 2017; 35:152.e7-152.e12. [PMID: 28161324 DOI: 10.1016/j.urolonc.2016.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of the study was to evaluate the expression of TMEM67 in urothelial carcinoma of the bladder (UCB) tissues and to determine the potential relevance between the expression of TMEM67 and prognosis of UCB. MATERIAL AND METHODS In this study, the expression of TMEM67 mRNA was performed by quantitative real-time PCR in 80 UCB and 54 noncancerous tissues. The expression of TMEM67 protein was identified by immunohistochemistry and western blotting. Chi-square test was conducted to verify the relevance between the expression of TMEM67 and clinical parameters. Kaplan-Meier survival analysis was demonstrated between high or low expression level of TMEM67 mRNA and recurrence-free survival probability. Cox regression analysis was conducted to evaluate the relevance between the expression of TMEM67 and the prognosis in UCB. RESULTS Low expression of TMEM67 mRNA and protein was detected in most of UCB tissues using quantitative real-time polymerase chain reaction and western blotting, compared with noncancerous tissues. Low expressions of TMEM67 were associated with TNM stage, grade, and lymph node metastasis (P<0.05). Kaplan-Meier analysis showed that the low expression of TMEM67 mRNA had significantly shorter recurrence-free survival probability (P = 0.018). Cox regression analysis confirmed that low expression of TMEM67 mRNA predicted poor prognosis of patients with UCB (HR = 2.950, P = 0.029, 95% CI: 1.116-7.796). CONCLUSIONS TMEM67 expression is low in UCB tissues, and the TMEM67 low expression predicted poor prognosis of patients with UCB.
Collapse
Affiliation(s)
- E Du
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Changwen Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenbang Qin
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Aixiang Wang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China.
| | - Yong Xu
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Zhang Q, Yuan Y, Cui J, Xiao T, Jiang D. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway. Biomed Pharmacother 2016; 78:197-203. [PMID: 26898442 DOI: 10.1016/j.biopha.2016.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/20/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Paeoniflorin (PF), one of the major active ingredients of Chinese peony, was reported to possess anti-tumor effect. However, the role of PF in breast cancer remains to be clarified. Therefore, in this context, the present study investigated the effects of PF on breast cancer cell proliferation and invasion, as well as the underlying mechanism. Our results found that PF suppressed the proliferation and invasion of breast cancer cells. We further demonstrated that PF down-regulated the expression of Notch-1; in addition, overexpression of Notch-1 reversed PF-inhibited proliferation and invasion, and knockdown of Notch-1 enhanced PF-inhibited proliferation and invasion in breast cancer cells. In conclusion, the present study suggests that PF inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway. Therefore, PF may represent a chemopreventive and/or therapeutic agent in the prevention of breast cancer.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Yonghui Yuan
- Department of Infection, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jianchun Cui
- Department of Endocrine Surgery, People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Tingting Xiao
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
24
|
Hayashi T, Gust KM, Wyatt AW, Goriki A, Jäger W, Awrey S, Li N, Oo HZ, Altamirano-Dimas M, Buttyan R, Fazli L, Matsubara A, Black PC. Not all NOTCH Is Created Equal: The Oncogenic Role of NOTCH2 in Bladder Cancer and Its Implications for Targeted Therapy. Clin Cancer Res 2016; 22:2981-92. [PMID: 26769750 DOI: 10.1158/1078-0432.ccr-15-2360] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/31/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent molecular analyses of bladder cancer open the door to significant advances in targeted therapies. NOTCH has been identified as a tumor suppressor in bladder cancer, but prior reports have focused on NOTCH1 Here we hypothesized that NOTCH2 is an oncogene suitable for therapeutic targeting in bladder cancer. EXPERIMENTAL DESIGN We studied genomic aberrations of NOTCH, compared survival and tumor progression according to NOTCH2 expression levels, and studied NOTCH2 function in vitro and vivo RESULTS We report a high rate of NOTCH2 copy number gain in bladder cancer. High NOTCH2 expression was identified especially in the basal subtype and in mesenchymal tumors. NOTCH2 activation correlated with adverse disease parameters and worse prognosis by immunohistochemistry. Forced overexpression of the intracellular domain of NOTCH2 (N2ICD) induced cell growth and invasion by cell-cycle progression, maintenance of stemness and epithelial-to-mesenchymal transition (EMT). These effects were abrogated by silencing of CSL, indicating that the effects were mediated through the canonical NOTCH signaling pathway. In an orthotopic xenograft model, forced overexpression of N2ICD increased growth, invasion, and metastasis. To explore the potential for therapeutic targeting of NOTCH2, we first silenced the receptor with shRNA and subsequently treated with a specific inhibitory antibody. Both interventions decreased cell growth, invasion, and metastasis in vitro and in the orthotopic xenograft model. CONCLUSIONS We have demonstrated that NOTCH2 acts as an oncogene that promotes bladder cancer growth and metastasis through EMT, cell-cycle progression, and maintenance of stemness. Inhibition of NOTCH2 is a rational novel treatment strategy for invasive bladder cancer. Clin Cancer Res; 22(12); 2981-92. ©2016 AACR.
Collapse
Affiliation(s)
- Tetsutaro Hayashi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. Department of Urology, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Kilian M Gust
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander W Wyatt
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Akihiro Goriki
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. Department of Urology, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Wolfgang Jäger
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Awrey
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Na Li
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Manuel Altamirano-Dimas
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Buttyan
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Peter C Black
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Greife A, Hoffmann MJ, Schulz WA. Consequences of Disrupted Notch Signaling in Bladder Cancer. Eur Urol 2015; 68:3-4. [PMID: 25791514 DOI: 10.1016/j.eururo.2015.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 01/02/2023]
Abstract
The Notch pathway, which controls stem cell maintenance and cell differentiation, is activated in certain cancers and therefore constitutes a therapeutic target. Especially in invasive urothelial carcinoma, the pathway is inactivated instead, and drugs inhibiting Notch signaling are likely contra-indicated.
Collapse
Affiliation(s)
- Annemarie Greife
- Department of Urology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
26
|
Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 2014; 47:106-14. [PMID: 25501392 PMCID: PMC4444046 DOI: 10.1038/ng.3168] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
Cancers exhibit extensive mutational heterogeneity and the resulting long tail
phenomenon complicates the discovery of the genes and pathways that are significantly
mutated in cancer. We perform a Pan-Cancer analysis of mutated networks in 3281 samples
from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a novel algorithm
to find mutated subnetworks that overcomes limitations of existing single gene and
pathway/network approaches.. We identify 14 significantly mutated subnetworks that include
well-known cancer signaling pathways as well as subnetworks with less characterized roles
in cancer including cohesin, condensin, and others. Many of these subnetworks exhibit
co-occurring mutations across samples. These subnetworks contain dozens of genes with rare
somatic mutations across multiple cancers; many of these genes have additional evidence
supporting a role in cancer. By illuminating these rare combinations of mutations,
Pan-Cancer network analyses provide a roadmap to investigate new diagnostic and
therapeutic opportunities across cancer types.
Collapse
|