1
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
2
|
Zhang B, Zhou B, Huang G, Huang J, Lin X, Li Z, Lian Y, Huang Q, Ye Y. Nitidine chloride inhibits G2/M phase by regulating the p53/14-3-3 Sigma/CDK1 axis for hepatocellular carcinoma treatment. Heliyon 2024; 10:e24012. [PMID: 38283241 PMCID: PMC10818205 DOI: 10.1016/j.heliyon.2024.e24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Background Liver cancer had become the sixth most common cancer. Nitidine chloride (NC) has demonstrated promising anti-HCC properties; however, further elucidation of its mechanism of action is necessary. Methods The anti-HCC targets of NC were identified through the utilization of multiple databases and ChIPs data analysis. The GO and KEGG analyses to determine the specific pathway affected by NC. The Huh 7 and Hep G2 cells were subjected to a 24-h treatment with NC, followed by evaluating the impact of NC on cell proliferation and cell cycle. The involvement of the p53/14-3-3 Sigma/CDK1 axis in HCC cells was confirmed by qPCR and WB analysis of the corresponding genes and proteins. Results The GO and KEGG analysis showed the targets were related to cell cycle and p53 signaling pathways. In vitro experiments showed that NC significantly inhibited the proliferation of HCC cells and induced G2/M phase arrest. In addition, qPCR and WB experiments showed that the expression of p53 in HCC cells increased after NC intervention, while the expression of 14-3-3 Sigma and CDK1 decreased. Conclusion NC can inhibit the proliferation of HCC cells and induce G2/M cell cycle arrest, potentially by regulating the p53/14-3-3 Sigma/CDK1 axis.
Collapse
Affiliation(s)
- Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Guihong Huang
- Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Jing'an Huang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Xiaoxin Lin
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanchu Lian
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Qiujie Huang
- Guangxi University of Chinese Medicine, Teaching Experiment and Training Center, Nanning, China
| | - Yong Ye
- School of Pharmacy, Guangxi Medical University, Guangxi, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, China
| |
Collapse
|
3
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
Chen S, Liao Y, Lv J, Hou H, Feng J. Quantitative Proteomics Based on iTRAQ Reveal that Nitidine Chloride Induces Apoptosis by Activating JNK/c-Jun Signaling in Hepatocellular Carcinoma Cells. PLANTA MEDICA 2022; 88:1233-1244. [PMID: 35104905 DOI: 10.1055/a-1676-4307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to investigate the cytotoxic effects and underlying molecular mechanisms of nitidine chloride (NC) in hepatocellular carcinoma cells via quantitative proteomics. MTT assays were used to detect the inhibitory effects of NC in Bel-7402 liver cancer cells, and the number of apoptotic cells was measured by flow cytometry. Quantitative proteomics technology based on iTRAQ was used to discover differential expressed proteins after NC treatment, and bioinformatic techniques were further used to screen potential targets of NC. Molecular docking was applied to evaluate the docking activity of NC with possible upstream proteins, and their expression was detected at the mRNA and protein levels by quantitative reverse transcription PCR and western blotting. NC inhibited the proliferation of Bel-7402 cells after 24 h of treatment and stimulated apoptosis in vitro. The proteomics experiment showed that NC triggers mitochondrial damage in HCC cells and transcription factor AP-1 (c-Jun) may be a potential target of NC (fold change = 4.36 ± 0.23). Molecular docking results revealed the highest docking score of NC with c-Jun N-terminal kinase (JNK), one of the upstream proteins of c-Jun. Moreover, the mRNA and protein expression of c-Jun and JNK were significantly increased after NC treatment (p < 0.05). These findings indicate that NC significantly induced mitochondrial damage in HCC cells, and induced apoptosis by activating JNK/c-Jun signaling.
Collapse
Affiliation(s)
- Shipeng Chen
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Pharmacy, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yinan Liao
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinyan Lv
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Huaxin Hou
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Jia M, Wang Y, Guo Y, Yu P, Sun Y, Song Y, Zhao L. Nitidine chloride suppresses epithelial-mesenchymal transition and stem cell-like properties in glioblastoma by regulating JAK2/STAT3 signaling. Cancer Med 2021; 10:3113-3128. [PMID: 33788424 PMCID: PMC8085923 DOI: 10.1002/cam4.3869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is the most aggressive and common intracranial malignant tumor, and the prognosis is still poor after various treatments. Based on the poor prognosis of glioma, new drugs that suppress the rapid progression and aggressive growth of glioma are urgently needed. It has been reported that nitidine chloride (NC) can inhibit tumor growth and epithelial‐mesenchymal transition (EMT), and EMT is associated with cancer stem cell properties. The present study aimed to investigate the inhibitory effect of NC on the EMT process and stem cell‐like properties in glioma cells. The results showed that the migration and invasion abilities in U87 and LN18 glioma cells were significantly increased after the induction of EMT and these effects were inhibited by NC in a concentration‐dependent manner. NC treatment decreased the expression of EMT markers in glioma cells and self‐renewal capacity of glioma stem‐like cells. We demonstrated that these effects of NC were achieved via JAK2/STAT3 signaling. Taken together, these results indicate that NC inhibits the EMT process and glioma stem‐like properties via JAK2/STAT3 signaling pathway, suggesting that NC may be a potential anti‐glioma drug.
Collapse
Affiliation(s)
- Mingbo Jia
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yingxue Guo
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Pengyue Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yanke Song
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Tian H, He Z. Anti-hepatoma effect of taccalonolide A through suppression of sonic hedgehog pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:939-947. [PMID: 32496832 DOI: 10.1080/21691401.2020.1773484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Taccalonolide A has been reported to have anti-tumour efficiency. However, the underlying mechanism for taccalonolides A therapy of hepatocellular carcinoma (HCC) is still obscure. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Apoptosis was determined by flow cytometry. Protein expression of B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), sonic hedgehog (Shh), Smoothened (Smo) and Gli family zinc finger 1 (Gli1) was analyzed by western blot. The expression of Shh, Smo and Gli1 mRNA was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that taccalonolide A inhibited cell proliferation, induced apoptosis and cell cycle arrest at the G0/G1 phase, and improved the cytotoxicity of sorafenib in HCC cells. The expressions of Shh, Smo, Gli1 mRNA and protein were decreased after taccalonolide A treatment. More importantly, activation of the Shh pathway attenuated taccalonolide A-induced inhibition on cell viability and promotion on apoptosis and cell cycle arrest in HCC. Also, activation of the Shh pathway neutralized the effect of taccalonolide A on sorafenib cytotoxicity in HCC. We clarified that taccalonolide A suppressed cell viability facilitated apoptosis, and improved the cytotoxicity of sorafenib in HCC by inhibition of the activation of the Shh pathway, providing alternative treatments for HCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zhenkun He
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
7
|
Folic acid modified TPGS as a novel nano-micelle for delivery of nitidine chloride to improve apoptosis induction in Huh7 human hepatocellular carcinoma. BMC Pharmacol Toxicol 2021; 22:1. [PMID: 33407916 PMCID: PMC7789002 DOI: 10.1186/s40360-020-00461-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/17/2020] [Indexed: 01/23/2023] Open
Abstract
Background The development of novel and effective drugs for targeted human hepatocellular carcinoma still remains a great challenge. The alkaloid nitidine chloride (NC), a component of a traditional Chinese medicine, has been shown to have anticancer properties, but doses at therapeutic levels have unacceptable side effects. Here we investigate folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-FA) as a potential carrier for controlled delivery of the drug. Methods Synthesized TPGS-FA was characterized by FTIR, UV-visible and 1H NMR spectroscopy, and TPGS loaded with NC was evaluated for its ability to induce apoptosis in Huh7 cells by Annexin V/PI and MTT assays, and observed by laser scanning confocal microscopy and inverted phase contrast microscopy. Results TPGS-FA/NC complexes were prepared successfully, and were homogenious with a uniform size of ~ 14 nm diameter. NC was released from the TPGS-FA/NC complexes in a controlled and sustained manner under physiological conditions (pH 7.4). Furthermore, its cytotoxicity to hepatocarcinoma cells was greater than that of free NC. Conclusions TPGS-FA is shown to be useful carrier for drugs such as NC, and TPGS-FA/NC could potentially be a potent and safe drug for the treatment of hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-020-00461-y.
Collapse
|
8
|
Zhang J, Cao R, Lian C, Cao T, Shi Y, Ma J, Wang P, Xia J. Nitidine chloride suppresses NEDD4 expression in lung cancer cells. Aging (Albany NY) 2020; 13:782-793. [PMID: 33288736 PMCID: PMC7834991 DOI: 10.18632/aging.202185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/29/2020] [Indexed: 12/02/2022]
Abstract
Nitidine chloride (NC) possesses anticancer properties in various types of human malignancies. However, the effects of NC on lung cancer cells have not been elucidated. Moreover, the molecular mechanism of NC-involved antitumor activity is unclear. Therefore, we aimed to determine the biological effect of NC and the underlying molecular insights in lung cancer cells. The antineoplastic function of NC was assessed by MTT assays, Annexin V-FITC/PI apoptosis assay, wound healing analysis, and Transwell chamber migration and invasion assay in lung cancer cells. NEDD4 modulation was evaluated by western blotting assays of lung cancer cells after NC treatments. NEDD4 overexpression and downregulation were employed to validate the critical role of NEDD4 in the NC-mediated tumor suppressive effects. We found that NC suppressed cell viability, migration and invasion, but induced apoptosis in lung cancer cells. Mechanistic exploration revealed that NC exhibited its antitumor effects by reducing NEDD4 expression. Furthermore, our rescue experiments dissected that overexpression of NEDD4 abrogated the NC-mediated antineoplastic effects in lung cancer cells. Consistently, downregulation of NEDD4 enhanced the NC-induced anticancer effects. Thus, NC is a promising antitumor agent in lung cancer, indicating that NC might have potential therapeutic applications in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ruoxue Cao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Tong Cao
- Department of Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, China
| | - Ying Shi
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, Anhui, China
| |
Collapse
|
9
|
Lu Q, Ma R, Yang Y, Mo Z, Pu X, Li C. Zanthoxylum nitidum (Roxb.) DC: Traditional uses, phytochemistry, pharmacological activities and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112946. [PMID: 32492492 DOI: 10.1016/j.jep.2020.112946] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum), which is known in China as Liang-Mian-Zhen, is mainly distributed in southern China and is widely used in traditional Chinese medicine. It is traditionally used for treating stomach ache, toothache, rheumatic arthralgia, traumatic injury and venomous snake bites. Additional medical applications include the treatment of inflammations, various types of cancer, bacterial and viral infections, gastric and oral ulcers and liver damage. AIM OF THIS REVIEW This paper aims to offer up-to-date information on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Z. nitidum. This review also discussed the perspectives for possible future research on Z. nitidum. MATERIALS AND METHODS A comprehensive review was carried out on studies about Z. nitidum conducted in the past 60 years by using different resources, including Flora of China, Pharmacopoeia of the People's Republic of China and academic databases. RESULTS At present, more than 150 chemical constituents have been separated and identified from Z. nitidum, most of which include alkaloids. Biological activities, including anti-inflammation, analgesia, haemostasis, anticancer and antibacterial, were determined via in vitro and in vivo studies. The variations in the efficacy of Z. nitidum can be attributed to the biological activities of its natural products, especially alkaloids. Toxicity studies on Z. nitidum are relatively few, thus requiring further study. CONCLUSIONS This article generalises the current research achievements related to Z. nitidum, which is an important medicinal material in China. Some traditional uses of Z. nitidum have been assessed by pharmacological studies. Unresolved problems remain, including molecular mechanisms underlying biological activities, pharmacokinetics, toxicology and therapeutic effect, which are still being studied and explored before Z. nitidum can be integrated into clinical medicine.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Yang Yang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Zhimi Mo
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Xudong Pu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China.
| |
Collapse
|
10
|
Zhang J, Wu L, Lian C, Lian S, Bao S, Zhang J, Wang P, Ma J, Li Y. Nitidine chloride possesses anticancer property in lung cancer cells through activating Hippo signaling pathway. Cell Death Discov 2020; 6:91. [PMID: 33024576 PMCID: PMC7502074 DOI: 10.1038/s41420-020-00326-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Nitidine chloride (NC) has significant anti-tumor properties; however, the precise mechanism related to NC still needs further investigation. This study intends to investigate the anti-tumor functions and the feasible molecular basis of NC in NSCLC cells. Therefore, we determined the mechanism of NC-mediated anti-tumor function through various methods. Cell proliferation ability and migration and invasion were detected by CCK-8, colony formation assay and Transwell assay, respectively. Furthermore, flow cytometry was used to detect apoptosis, cell cycle and ROS. Moreover, protein expression level was measured by western blot. Our results showed that NC can inhibit the growth, motility of NSCLC cells, induce apoptosis and arrest cell cycle. Meanwhile, NC increased the level of ROS in NSCLC cells. Moreover, western blot data showed that NC suppressed the expression of Lats1, Mob1, and YAP, and enhanced the expression of p-Lats1, p-Mob1, p-YAP1 (ser127). Overall, our research reveals that NC exerts anticancer activity by activating and modulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Anhui, 233030 China
| | - Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Anhui, 233030 China
| | - Chaoqun Lian
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030 China
| | - Shuo Lian
- School of Clinical Medicine, Bengbu Medical College, Anhui, 233030 China
| | - Shimeng Bao
- School of Pharmacy, Bengbu Medical College, Anhui, 233030 China
| | - Jisheng Zhang
- School of Life Sciences, Bengbu Medical College, Anhui, 233030 China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030 China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030 China
| | - Yuyun Li
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030 China
| |
Collapse
|
11
|
Gong H, Wang L, Zhao J, Wang L, Yu Q, Wan Y. Nitidine chloride inhibits the appearance of cancer stem-like properties and regulates potential the mitochondrial membrane alterations of colon cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:591. [PMID: 32566618 PMCID: PMC7290554 DOI: 10.21037/atm-20-3432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Nitidine chloride (NC) is a natural alkaloid that can inhibit tumor growth and induce apoptosis in varieties of cancers. However, the effec12/268t of NC on colon cancer (CC) cells has not been extensively studied. Methods Conlon cancer SW480 cells was treated with different concentrations of NC (0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100, and 200 µM) in DMEM medium for 24 hours. Western blotting (WB) was used to detect the expression of related proteins, such as Ki67, PCNA, NANOG, SOX2, OCT4, Bcl-2, Bax, Caspase-3, Caspase-9, ERK1/2, p-ERK1/2, AKT, p-AKT, STAT3, p-STAT3, P65 and p-P65. The pellet formation experiment was used to detect the pellet formation of stem cells. The JC-1 experiment was used to detect the change of mitochondrial membrane potential. Kit was performed to detect the activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA). In vivo experiments were used to verify the results of in vitro experiments. TUNEL assay was designed to detect the apoptosis in mice tissue. IHC was used to detect expression of Ki67 and OCT4 protein in tissue. Results NC significantly inhibited the expression levels of Ki-67 and a proliferating cell nuclear antigen (PCNA). NC can reduce the pellet colony and pellet size of tumor stem cells and block the stem cell characteristics of CC cells. The corresponding stem cell marker molecules NANOG, SOX2, and OCT4 were also downregulated. NC treatment induced the mitochondrial membrane potential depolarization of CC cells. The expression of pro-apoptotic proteins such as caspase-3, caspase-9, and Bax were upregulated, while the expression level of apoptotic Bcl-2 was significantly down-regulated. Moreover, NC reduced SOD activity and MDA content in CC cells. In addition, studies on pathway phosphorylation have shown that NC inhibits the expression of p-erk and p-akt proteins. Finally, the results were further confirmed by experiments in nude mice. NC inhibited tumor growth in mice. NC promoted apoptosis in tissues. NC inhibited the expression of Ki67 and OCT4 in tissues. NC inhibited the phosphorylation of pathway proteins ERK1/2 and AKT in tissues. Conclusions NC treatment inhibited the proliferation and stemness of CC tissues, promoted the apoptosis of tumor tissues, downregulated the expression of p-ERK and p-AKT in tumor tissues, which suggests that NC may play an important role in regulating ERK and AKT pathways.
Collapse
Affiliation(s)
- Hongyan Gong
- Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264001, China
| | - Li Wang
- Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264001, China
| | - Jing Zhao
- Department of Intravenous Medication, West Campus of Zibo Central Hospital, Zibo 255020 China
| | - Lixin Wang
- Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264001, China
| | - Qiangzong Yu
- Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264001, China
| | - Yong Wan
- Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264001, China
| |
Collapse
|
12
|
Cui Y, Wu L, Cao R, Xu H, Xia J, Wang ZP, Ma J. Antitumor functions and mechanisms of nitidine chloride in human cancers. J Cancer 2020; 11:1250-1256. [PMID: 31956371 PMCID: PMC6959075 DOI: 10.7150/jca.37890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Nitidine chloride (NC), a quaternary ammonium alkaloid, exhibits multiple biological activities, including antimalarial, antifungal, and antiangiogenesis. Recently, NC has been characterized to perform antitumor activity in a variety of malignancies. NC has been identified to suppress cell proliferation, stimulate apoptosis, and induce cell cycle arrest, retard migration, invasion and metastasis. Moreover, NC is reported to sensitize cancer cells to chemotherapeutic drugs. In this review article, we describe the functions of NC in human cancers and discuss the molecular insight into NC-involved antitumor feature. This review article will stimulate the deeper investigation for using NC as a potent agent for the management of cancer patients.
Collapse
Affiliation(s)
- Yue Cui
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Linhui Wu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Ruoxue Cao
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Hui Xu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| |
Collapse
|
13
|
Xiong DD, Feng ZB, Lai ZF, Qin Y, Liu LM, Fu HX, He RQ, Wu HY, Dang YW, Chen G, Luo DZ. High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitidine chloride against hepatocellular carcinoma. Cell Death Dis 2019; 10:658. [PMID: 31506425 PMCID: PMC6737102 DOI: 10.1038/s41419-019-1890-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Nitidine chloride (NC) has been demonstrated to have an anticancer effect in hepatocellular carcinoma (HCC). However, the mechanism of action of NC against HCC remains largely unclear. In this study, three pairs of NC-treated and NC-untreated HCC xenograft tumour tissues were collected for circRNA sequencing analysis. In total, 297 circRNAs were differently expressed between the two groups, with 188 upregulated and 109 downregulated, among which hsa_circ_0088364 and hsa_circ_0090049 were validated by real-time quantitative polymerase chain reaction. The in vitro experiments showed that the two circRNAs inhibited the malignant biological behaviour of HCC, suggesting that they may play important roles in the development of HCC. To elucidate whether the two circRNAs function as "miRNA sponges" in HCC, we identified circRNA-miRNA and miRNA-mRNA interactions by using the CircInteractome and miRwalk, respectively. Subsequently, 857 miRNA-associated differently expressed genes in HCC were selected for weighted gene co-expression network analysis. Module Eigengene turquoise with 423 genes was found to be significantly related to the survival time, pathology grade and TNM stage of HCC patients. Gene functional enrichment analysis showed that the 423 genes mainly functioned in DNA replication- and cell cycle-related biological processes and signalling cascades. Eighteen hubgenes (SMARCD1, CBX1, HCFC1, RBM12B, RCC2, NUP205, ECT2, PRIM2, RBM28, COPS7B, PRRC2A, GPR107, ANKRD52, TUBA1B, ATXN7L3, FUS, MCM8 and RACGAP1) associated with clinical outcomes of HCC patients were then identified. These findings showed that the crosstalk between hsa_circ_0088364 and hsa_circ_0090049 and their competing mRNAs may play important roles in HCC, providing interesting clues into the potential of circRNAs as therapeutic targets of NC in HCC.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Feng Lai
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yue Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Li-Min Liu
- Department of Toxicology, Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hao-Xuan Fu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Yu Wu
- Department of Cell Biology & Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Liu LM, Lin P, Yang H, Dang YW, Chen G. Gene profiling of HepG2 cells following nitidine chloride treatment: An investigation with microarray and Connectivity Mapping. Oncol Rep 2019; 41:3244-3256. [PMID: 30942464 PMCID: PMC6489000 DOI: 10.3892/or.2019.7091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Nitidine chloride (NC), an inartificial bioactive alkaloid present in the root of Zanthoxylum nitidum (Roxb.) DC, is known for its versatile anti‑inflammation and anticancer capabilities. The molecular mechanisms underlying its anticancer properties, however, remain obscure. The authors of the present study demonstrated the tumor suppressive effects of NC in a human liver cancer cell line using an MTT assay. The tumor suppressive capacity of NC was also analysed in a tumor xenograft nude mouse model. Changes in tumor cell gene expression profiles following NC treatment were detected by microarray; bioinformatics analysis demonstrated that differentially expressed genes were enriched in several cancer‑associated pathways, including those initiated by transforming growth factor‑β and phosphatidylinositol 4,5‑bisphosphate 3‑kinase/RAC‑α serine/threonine‑protein kinase signaling. A Connectivity Map revealed that parthenolide, which has been identified previously as possessing anti‑inflammatory and anticancer functions, was potentially extremely similar in molecular function to NC. By screening the data from The Cancer Genome Atlas project, eight genes that were upregulated in liver cancer and significantly suppressed by NC treatment were identified. Overexpression of these genes was closely associated with advanced tumor stage and poor differentiation status. This combination of upregulated genes enabled successful identification and prediction of prognosis for liver cancer. The findings of the present study suggest that NC could inhibit the growth of liver cancer cells through several potential molecular targets and signaling pathways.
Collapse
Affiliation(s)
- Li-Min Liu
- Department of Toxicology, College of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- The Ultrasonics Division of Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- The Ultrasonics Division of Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
15
|
Shi Y, Cao T, Sun Y, Xia J, Wang P, Ma J. Nitidine Chloride inhibits cell proliferation and invasion via downregulation of YAP expression in prostate cancer cells. Am J Transl Res 2019; 11:709-720. [PMID: 30899373 PMCID: PMC6413267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Nitidine chloride (NC) exhibits tumor suppressive function in a variety of human cancers. However, the molecular mechanism of NC-triggered anti-cancer activity has not been fully elucidated. In the present study, we aim to investigate the anti-tumor molecular basis of NC in prostate cancer cells. Multiple approaches including MTT, FACS, wound healing assay, Transwell invasion assay, Transfection, and Western blotting were performed. We found that NC inhibited cell growth and induced apoptosis in prostate cancer cells. Moreover, NC suppressed cell migration and invasion in prostate cancer cells. Notably, we found that NC decreased the expression of YAP oncoprotein in prostate cancer cells. Downregulation of YAP enhanced the anti-tumor function mediated by NC in prostate cancer cells. On the contrary, upregulation of YAP abrogated the anti-cancer activity of NC treatment in prostate cancer cells. Our findings indicate that NC could be useful as a YAP inhibitor for the treatment of prostate cancer cells.
Collapse
Affiliation(s)
- Ying Shi
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, Anhui, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| |
Collapse
|
16
|
Xu H, Cao T, Zhang X, Shi Y, Zhang Q, Chai S, Yu L, Jin G, Ma J, Wang P, Li Y. Nitidine Chloride Inhibits SIN1 Expression in Osteosarcoma Cells. MOLECULAR THERAPY-ONCOLYTICS 2019; 12:224-234. [PMID: 30847386 PMCID: PMC6389778 DOI: 10.1016/j.omto.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Nitidine chloride (NC) has been demonstrated to exert a tumor-suppressive function in various types of human cancers. However, the detailed mechanism of NC-mediated anti-tumor effects remains elusive. It has been reported that SIN1, a component of mTORC2 (mammalian target of rapamycin complex C2), plays an oncogenic role in a variety of human cancers. Therefore, the inhibition of SIN1 could be useful for the treatment of human cancers. In this study, we explored whether NC triggered an anti-cancer function via the inhibition of SIN1 in osteosarcoma (OS) cells. An MTT assay was performed to measure the effect of NC on the cell growth of osteosarcoma cells, and flow cytometry was used to detect the apoptotic rate of the cells after NC treatment. The expression of SIN1 was detected by western blotting. Wound-healing assay and Transwell chamber invasion assay were conducted to analyze the motility of osteosarcoma cells following NC exposure. We found that exposure to NC led to the inhibition of cell growth, migration, and invasion and the induction of apoptosis. Mechanistically, we found that NC inhibited the expression of SIN1 in osteosarcoma cells. Overexpression of SIN1 abrogated the inhibition of cell growth and motility induced by NC in osteosarcoma cells. Our results indicate that NC exhibits its tumor-suppressive activity via the inhibition of SIN1 in osteosarcoma cells, suggesting that NC could be a potential inhibitor of SIN1 in osteosarcoma.
Collapse
Affiliation(s)
- Hui Xu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Tong Cao
- Department of Clinical Laboratory , The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Xiaoqing Zhang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ying Shi
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qing Zhang
- Department of Orthopedics, The Center Hospital of Bengbu, Bengbu, Anhui 233030, China
| | - Shuo Chai
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Li Yu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yuyun Li
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
17
|
Liu LM, Xiong DD, Lin P, Yang H, Dang YW, Chen G. DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride. Int J Oncol 2018; 53:1897-1912. [PMID: 30132517 PMCID: PMC6192772 DOI: 10.3892/ijo.2018.4531] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/31/2018] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to determine the role of topoisomerase 1 (TOP1) and topoisomerase 2A (TOP2A) in liver cancer (LC), and to investigate the inhibitory effect of nitidine chloride (NC) on these two topoisomerases. Immunohistochemistry (IHC) staining and microarray or RNA sequencing data mining showed markedly higher expression of TOP1 and TOP2A at the protein and mRNA levels in LC tissues compared with that in control non-tumor tissues. The prognostic values of TOP1 and TOP2A expression were also estimated based on data from The Cancer Genome Atlas. The elevated expression levels of TOP1 and TOP2A were closely associated with poorer overall survival and disease-free survival rates. When patients with LC were divided into high- and low-risk groups according to their prognostic index, TOP1 and TOP2A were highly expressed in the high-risk group. Bioinformatics analyses conducted on the co-expressed genes of TOP1 and TOP2A revealed that the topoisomerases were involved in several key cancer-related pathways, including the 'p53 pathway', 'pathway in cancer' and 'apoptosis signaling pathway'. Reverse transcription-quantitative polymerase chain reaction and IHC performed on triplicate tumor tissue samples from LC xenografts in control or NC-treated nude mice showed that NC treatment markedly reduced the protein and mRNA expression of TOP1 and TOP2A in LC tissues. Molecular docking studies further confirmed the direct binding of NC to TOP1 and TOP2A. In conclusion, the present findings indicate that TOP1 and TOP2A are oncogenes in LC and could serve as potential biomarkers for the prediction of the prognosis of patients with LC and for identification of high-risk cases, thereby optimizing individual treatment management. More importantly, the findings support TOP1 and TOP2A as potential drug targets of NC for the treatment of LC.
Collapse
Affiliation(s)
- Li-Min Liu
- Department of Toxicology, College of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division, Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Ultrasonics Division, Radiology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
18
|
Yang IH, Jung W, Kim LH, Shin JA, Cho NP, Hong SD, Hong KO, Cho SD. Nitidine chloride represses Mcl-1 protein via lysosomal degradation in oral squamous cell carcinoma. J Oral Pathol Med 2018; 47:823-829. [PMID: 29924888 DOI: 10.1111/jop.12755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND We have shown previously that nitidine chloride (NC) induces apoptosis via inhibition of signal transducer and activator of transcription 3 (STAT3). However, its downstream molecules are not fully understood yet. Here, we report that NC as STAT3 inhibitor downregulates myeloid cell leukemia-1 (Mcl-1) protein in HSC-3 and HSC-4 human oral squamous cell carcinoma (OSCC) cells and a nude mouse tumor xenograft model. METHODS This study investigated the effects of NC on Mcl-1 expression in HSC-3 and HSC-4 cells using Western blotting, RT-PCR, and dual-luciferase assay. Immunohistochemistry was employed to evaluate Mcl-1 expression levels in mouse tumor tissues. Construction of Mcl-1 overexpression vector and transient transfection was done to test the apoptosis of HSC-3 cells. RESULTS Nitidine chloride did not affect either mRNA level or promoter activity of Mcl-1, and the decrease in Mcl-1 protein by NC was caused by lysosome-dependent degradation, but not proteasome-dependent degradation. The overexpression of Mcl-1 protein in OSCC cell lines was sufficient to block the induction of apoptosis. In addition, NC strongly reduced the expression level of Mcl-1 protein compared with other STAT3 inhibitors such as cryptotanshione and S3I-201 in OSCCs. CONCLUSIONS Our findings suggest that NC triggers apoptosis via lysosome-dependent Mcl-1 protein degradation and could be chosen as a promising chemotherapeutic candidate against human OSCCs.
Collapse
Affiliation(s)
- In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Won Jung
- Department of Oral medicine, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Li H, Fan Y, Yang F, Zhao L, Cao B. The coordinated effects of Apatinib and Tripterine on the proliferation, invasiveness and apoptosis of human hepatoma Hep3B cells. Oncol Lett 2018; 16:353-361. [PMID: 29928421 PMCID: PMC6006384 DOI: 10.3892/ol.2018.8656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/22/2018] [Indexed: 12/25/2022] Open
Abstract
As a novel vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor, Apatinib has exhibited antitumor effects in a variety of solid tumors. Extracts of Chinese herbal medicines have emerged as a promising alternative option to increase the sensitivity of patients to chemotherapeutics while alleviating side effects. The present study aimed to investigate the effects of Apatinib and the traditional Chinese herb Tripterine on the proliferation, invasion and apoptosis of human hepatoma Hep3B cells. The expression of VEGFR-2 in Hep3B cells was detected by western blotting and immunofluorescence assays. Hep3B cells were then divided into four different groups: Control group, Apatinib group, Tripterine group and Apatinib plus Tripterine group. The proliferation, invasion and apoptosis of these four groups of Hep3B cells were assessed by MTS, wound healing and Transwell assays, and flow cytometry, respectively. Finally, the levels of the proliferation-associated proteins phosphorylated protein kinase B (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) and the apoptosis-associated proteins cleaved Caspase-3 and B-cell lymphoma-associated X protein (Bax) were detected by western blotting. The proliferation, migration and invasion of Hep3B cells were significantly inhibited by Apatinib and Tripterine, compared with the control group (P<0.01). The inhibitory effect of the combination group was markedly stronger than that of the Apatinib and Tripterine groups. The downregulation of p-Akt and p-ERK induced by Apatinib and Tripterine was further inhibited in the combination group (P<0.05), and the expression levels of Caspase-3 and Bax were also significantly increased in the combination group (P<0.05). The combination of Apatinib and Tripterine significantly inhibited the proliferation, migration and invasion ability and promoted the apoptosis of Hep3B cells by downregulating the expression of p-Akt and p-ERK, and upregulating the expression of Caspase-3 and Bax.
Collapse
Affiliation(s)
- Huihui Li
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yichang Fan
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fan Yang
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lei Zhao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bangwei Cao
- Department of Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
20
|
Li W, Yin H, Bardelang D, Xiao J, Zheng Y, Wang R. Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food Chem Toxicol 2017; 109:923-929. [PMID: 28223120 DOI: 10.1016/j.fct.2017.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
Nitidine chloride (NC) has demonstrated promising anticancer activity. However, NC has also shown non-specific toxicity in various healthy organs such as the liver. In this study, we aimed to develop a supramolecular formulation of NC and investigate the associated benefits of such a supramolecular formulation on modulating its inherent hepatotoxicity and anticancer activity. The formation of NC-cucurbit[7]uil (NC@CB[7]) complexes was characterized by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction analysis. As a consequence of the supramolecular complexation, NC@CB[7] showed significantly lower toxicity (IC50: 6.87 ± 0.80 μM) on a liver cell line (LO2), and higher cytotoxicity (IC50: 2.94 ± 0.15 μM) on a breast cancer cell line (MCF-7), when compared with the free drug (IC50 of 3.48 ± 0.49 μM and 7.28 ± 0.36 μM, on these two cell lines, respectively). Investigation of cellular uptakes revealed that CB[7]'s capability in modulating the toxicity/activity of NC was mainly attributed to the drug's different cellular uptake behaviors that were influenced by CB[7]'s complexation. Taken together, we have demonstrated that supramolecular formulation of NC by CB[7] significantly alleviated its hepatotoxicity and improved its anticancer activity in vitro.
Collapse
Affiliation(s)
- Wanying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | | | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
21
|
Kim LH, Khadka S, Shin JA, Jung JY, Ryu MH, Yu HJ, Lee HN, Jang B, Yang IH, Won DH, Kwon HJ, Jeong JH, Hong SD, Cho NP, Cho SD. Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget 2017; 8:91306-91315. [PMID: 29207645 PMCID: PMC5710925 DOI: 10.18632/oncotarget.20444] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Nitidine chloride (NC) is a natural alkaloid compound derived from the plant Zanthoxylum nitidum and is known for its therapeutic anticancer potential. In this study, we investigated the effects of NC on growth and signaling pathways in human oral cancer cell lines and a tumor xenograft model. The apoptotic effects and related molecular targets of NC on human oral cancer were investigated using trypan blue exclusion assay, DAPI staining, Live/Dead assay, Western blotting, Immunohistochemistry/Immunofluorescence and a nude mouse tumor xenograft. NC decreased cell viability in both HSC3 and HSC4 cell lines; further analysis demonstrated that cell viability was reduced via apoptosis. STAT3 was hyper-phosphorylated in human oral squamous cell carcinoma (OSCC) compared with normal oral mucosa (NOM) and dephosphorylation of STAT3 by the potent STAT3 inhibitor, cryptotanshinone or NC decreased cell viability and induced apoptosis. NC also suppressed cell viability and induced apoptosis accompanied by dephosphorylating STAT3 in four other oral cancer cell lines. In a tumor xenograft model bearing HSC3 cell tumors, NC suppressed tumor growth and induced apoptosis by regulating STAT3 signaling without liver or kidney toxicity. Our findings suggest that NC is a promising chemotherapeutic candidate against human oral cancer.
Collapse
Affiliation(s)
- Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sachita Khadka
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Mi-Heon Ryu
- Department of Oral Pathology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hae Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Hoon Won
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Joseph H Jeong
- Department of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University and Korea Mouse Phenotyping Center, Seoul, 08826, Republic of Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
22
|
Mou H, Guo P, Li X, Zhang C, Jiang J, Wang L, Wang Q, Yuan Z. Nitidine chloride inhibited the expression of S phase kinase-associated protein 2 in ovarian cancer cells. Cell Cycle 2017; 16:1366-1375. [PMID: 28594256 DOI: 10.1080/15384101.2017.1327490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nitidine chloride (NC) has been reported to exert its anti-tumor activity in various types of human cancers. However, the molecular mechanism of NC-mediated tumor suppressive function is largely unclear. In the current study, we used several approaches such as MTT, FACS, RT-PCR, Western blotting analysis, invasion assay, transfection, to explore the molecular basis of NC-triggered anti-cancer activity. We found that NC inhibited cell growth, induced cell apoptosis, caused cell cycle arrest in ovarian cancer cells. Emerging evidence has demonstrated that Skp2 plays an important oncogenic role in ovarian cancer. Therefore, we also explored whether NC exerts its biologic function via downregulation of Skp2 in ovarian cancer cells. We observed that NC significantly inhibited the expression of Skp2 in ovarian cancer cells. Notably, overexpression of Skp2 abrogated the anti-cancer activity induced by NC in ovarian cancer cells. Consistently, downregulation of Skp2 expression enhanced the sensitivity of ovarian cancer cells to NC treatment. Thus, inactivation of Skp2 by NC could be a novel strategy for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Huaping Mou
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Ping Guo
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Xiaoming Li
- c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| | - Chuanli Zhang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Jing Jiang
- a Department of Gynecology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Lishuai Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Qiu Wang
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China
| | - Zhiping Yuan
- b Department of Oncology , Second People Hospital of Sichuan Province , Yibin City , China.,c Department of Hematology , First Affiliated Hospital of Southwest Medical University , Sichuan , Luzhou , China
| |
Collapse
|
23
|
The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci Rep 2017; 7:352. [PMID: 28336967 PMCID: PMC5428649 DOI: 10.1038/s41598-017-00535-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have important therapeutic value in long-term clinical practice. However, because TCMs contain diverse ingredients and have complex effects on the human body, the molecular mechanisms of TCMs are poorly understood. In this work, we determined the gene expression profiles of cells in response to TCM components to investigate TCM activities at the molecular and cellular levels. MCF7 cells were separately treated with 102 different molecules from TCMs, and their gene expression profiles were compared with the Connectivity Map (CMAP). To demonstrate the reliability and utility of our approach, we used nitidine chloride (NC) from the root of Zanthoxylum nitidum, a topoisomerase I/II inhibitor and α-adrenoreceptor antagonist, as an example to study the molecular function of TCMs using CMAP data as references. We successfully applied this approach to the four ingredients in Danshen and analyzed the synergistic mechanism of TCM components. The results demonstrate that our newly generated TCM data and related methods are valuable in the analysis and discovery of the molecular actions of TCM components. This is the first work to establish gene expression profiles for the study of TCM components and serves as a template for general TCM research.
Collapse
|
24
|
Zhao M, Yu S, Zhang M. Differential expression of multidrug resistance‑related proteins in adriamycin‑resistant (pumc‑91/ADM) and parental (pumc‑91) human bladder cancer cell lines. Mol Med Rep 2016; 14:4741-4746. [PMID: 27748815 DOI: 10.3892/mmr.2016.5806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Multidrug resistance (MDR) is the major obstacle to bladder cancer chemotherapy. Several mechanisms have been implicated in the development of MDR, including extrusion of the drug by cell membrane pumps, associated with P‑glycoprotein (P‑gp) and multidrug resistance‑associated protein (MRP); increased DNA damage repair, associated with topoisomerase II (Topo II); suppression of drug‑induced apoptosis, associated with p53; and regulation of cancer cell growth, associated with vascular endothelial growth factor (VEGF). In the present study, the expression levels of these five markers were detected in an adriamycin (ADM)‑resistant human bladder cancer cell line (pumc‑91/ADM) and its parental cell line (pumc‑91), in order to determine which marker is more important, or whether all of them participate in drug resistance. The expression levels of P‑gp, MRP, Topo II, VEGF and p53 were measured in the two cell lines by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. A significant increase in P‑gp, MRP and VEGF, and a decrease in Topo II mRNA expression were detected in the pumc‑91/ADM drug‑resistant cell line compared with the pumc‑91 cell line; however, no difference in p53 mRNA expression was detected between the cells. In pumc‑91/ADM cells, the protein expression levels of P‑gp and MRP were upregulated, whereas Topo II was significantly decreased. However, no marked differences in p53 or VEGF expression were detected between the two cell lines at the protein level. The cytoplasmic and cell membrane localization of P‑gp and MRP, the cytoplasmic localization of VEGF, and the nuclear localization of p53 and Topo II were confirmed in the two cell lines. The present study detected increased P‑gp and MRP, and reduced Topo II expression in pumc‑91/ADM cells compared with pumc‑91 cells; however, no difference was detected in p53 and VEGF expression between the cell lines. In conclusion, a significant upregulation of MRP and downregulation of Topo II were detected in the ADM‑resistant human bladder cancer cell line (pumc‑91/ADM) compared with in the parental cell line (pumc‑91).
Collapse
Affiliation(s)
- Man Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shuliang Yu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
25
|
Liu M, Wang J, Qi Q, Huang B, Chen A, Li X, Wang J. Nitidine chloride inhibits the malignant behavior of human glioblastoma cells by targeting the PI3K/AKT/mTOR signaling pathway. Oncol Rep 2016; 36:2160-8. [DOI: 10.3892/or.2016.4998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022] Open
|