1
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Saadh MJ, Baher H, Li Y, Chaitanya M, Arias-Gonzáles JL, Allela OQB, Mahdi MH, Carlos Cotrina-Aliaga J, Lakshmaiya N, Ahjel S, Amin AH, Gilmer Rosales Rojas G, Ameen F, Ahsan M, Akhavan-Sigari R. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery. ENVIRONMENTAL RESEARCH 2023; 233:116490. [PMID: 37354932 DOI: 10.1016/j.envres.2023.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Yuanji Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mvnl Chaitanya
- Department of Pharmacognosy, School of Pharmacy, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | | | | | | | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Salam Ahjel
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurememts and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
4
|
Eck M, Aronovich R, Ilovitsh T. Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells. Int J Pharm X 2022; 4:100132. [PMID: 36189459 PMCID: PMC9520274 DOI: 10.1016/j.ijpx.2022.100132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Ultrasound insonation of microbubbles can be used to form pores in cell membranes and facilitate the local trans-membrane transport of drugs and genes. An important factor in efficient delivery is the size of the delivered target compared to the generated membrane pores. Large molecule delivery remains a challenge, and can affect the resulting therapeutic outcomes. To facilitate large molecule delivery, large pores need to be formed. While ultrasound typically uses megahertz frequencies, it was recently shown that when microbubbles are excited at a frequency of 250 kHz (an order of magnitude below the resonance frequency of these agents), their oscillations are significantly enhanced as compared to the megahertz range. Here, to promote the delivery of large molecules, we suggest using this low frequency and inducing large pore formation through the high-amplitude oscillations of microbubbles. We assessed the impact of low frequency microbubble-mediated sonoporation on breast cancer cell uptake by optimizing the delivery of 4 fluorescent molecules ranging from 1.2 to 70 kDa in size. The optimal ultrasound peak negative pressure was found to be 500 kPa. Increasing the pressure did not enhance the fraction of fluorescent cells, and in fact reduced cell viability. For the smaller molecule sizes, 1.2 kDa and 4 kDa, the groups treated with an ultrasound pressure of 500 kPa and MB resulted in a fraction of 58% and 29% of fluorescent cells respectively, whereas delivery of 20 kDa and 70 kDa molecules yielded 10% and 5%, respectively. These findings suggest that low-frequency (e.g., 250 kHz) insonation of microbubbles results in high amplitude oscillation in vitro that increase the uptake of large molecules. Successful ultrasound-mediated molecule delivery requires the careful selection of insonation parameters to maximize the therapeutic effect by increasing cell uptake.
Collapse
Affiliation(s)
- Michal Eck
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Papaefthymiou A, Doukatas A, Galanopoulos M. Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clin Res Hepatol Gastroenterol 2022; 46:101911. [PMID: 35346893 DOI: 10.1016/j.clinre.2022.101911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic cancer (PC) represents a malignancy with increased mortality rate, as less than 10% of patients survive for 5 years after diagnosis. Current evolution in basic sciences has revealed promising results by decrypting genetic loci vulnerable to mutations, as potential targets of novel treatment choices. In this regard, the "Oligonucleotide therapeutics", based on synthetic nucleotides, modify the function and expression of their targets. Antisense oligonucleotides (ASOs), small interfering RNA (siRNA), microRNAs (miRNAs), aptamers, CpG oligodeoxynucleotides and decoys comprise the main representatives of this emerging technology, by regulating oncogenes' expression, restoring DNA repairment mechanisms, sensitizing cancer cells in chemotherapy, and inhibiting PC progress. A plethora of genetic treatment molecules and respective targets have been described and are currently studied, thus providing a broad range of probable pharmaceutical options. This narrative review illuminates the main parameters of genetic treatment molecules for PC and underlines their deficiencies, to clarify the upcoming future and trigger further investigation in PC management.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Thessaly, Greece.
| | - Aris Doukatas
- Department of Pharmacy, National and Kapodistrian University of Athens, Attiki, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
6
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
7
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [PMID: 34861354 DOI: 10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Globally, pancreatic cancer (PC) is a common and highly malignant gastrointestinal tumor that is characterized by an insidious onset and ready metastasis and recurrence. Over recent decades, the incidence of PC has been increasing on an annual basis; however, the pathogenesis of this condition remains enigmatic. PC is not sensitive to radio- or chemotherapy, and except for early surgical resection, there is no curative treatment regime; consequently, the prognosis for patients with PC is extremely poor. Transcription factor p53 is known to play key roles in many important biological processes in vertebrates, including normal cell growth, differentiation, cell cycle progression, senescence, apoptosis, metabolism, and DNA damage repair. However, there is a significant paucity of basic and clinical studies to describe how p53 gene mutations or protein dysfunction facilitate the occurrence, progression, invasion, and resistance to therapy, of malignancies, including PC. Herein, we describe the involvement of p53 signaling reactivation in PC treatment as well as its underlying molecular mechanisms, thereby providing useful insights for targeting p53-related signal pathways in PC therapy.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
8
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [DOI: doi10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-feng Hu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zeng Ye
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Yi Qin
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xiao-wu Xu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xian-jun Yu
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qi-feng Zhuo
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Shun-rong Ji
- grid.452404.30000 0004 1808 0942Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
10
|
Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020; 25:E3620. [PMID: 32784890 PMCID: PMC7463484 DOI: 10.3390/molecules25163620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a global health challenge. There are drawbacks to conventional chemotherapy such as poor bioavailability, development of drug resistance and severe side effects. Novel drug delivery system may be an alternative to optimize therapeutic effects. When such systems consist of natural materials, they offer important advantages: they are usually highly biocompatible, biodegradable, nontoxic and nonimmunogenic. Furthermore, natural materials can be easily modified for conjugation with a wide range of therapeutic agents and targeting ligands, according to the therapeutic purpose. This article reviews different natural ingredients and their applications in drug delivery systems for cancer therapy. Firstly, an overview of the polysaccharides and protein-based polymers that have been extensively investigated for drug delivery are described. Secondly, recent advances in using various natural ingredient-based polymeric nanoparticles for cancer therapy are reviewed. The characteristics of these delivery systems are summarized, followed by a discussion of future development and clinical potential. This review aims to summarize current knowledge and provide a basis for developing effective tailor-made formulations for cancer therapy in the future.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
11
|
Wang JQ, Wang LY, Li SJ, Tong T, Wang L, Huang CS, Xu QC, Huang XT, Li JH, Wu J, Zhao W, Yin XY. Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy. NANOSCALE 2020; 12:15767-15774. [PMID: 32729861 DOI: 10.1039/d0nr03138k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Survival data have shown little therapeutic improvement in pancreatic ductal adenocarcinoma (PDAC) over the past several decades, mostly due to aggressive growth and resistance to therapy. Glutathione (GSH) depletion in PDAC may serve as a strategy to suppress tumour malignancy and sensitize tumour cells to therapy. Herein, novel l-cysteine-based poly(disulfide amide) polymers were fabricated to deliver a histone methyltransferase G9a inhibitor (UNC0638) that can simultaneously block GSH biosynthesis and clear cellular GSH levels in PDAC. The optimal UNC0638 nanodrug (NPUNC0638) had the desired particle size, reasonable drug loading capacity, and GSH-controlled drug release. Moreover, compared to UNC0638 alone, NPUNC0638 showed better efficacy in inhibiting cell viability, arresting the cell cycle, inducing apoptosis, and suppressing the invasion and self-renewal capacity of PDAC cells. Furthermore, NPUNC0638 was found to be tumour-specific and well tolerated with no apparent toxicity to vital organs and haematopoietic stem and progenitor cells. Additionally, treatment with NPUNC0638 provided favourable outcomes in the PDAC xenograft model. Therefore, this work presents a potent drug delivery platform to overcome the GSH-induced malignant potential of PDAC.
Collapse
Affiliation(s)
- Jie-Qin Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
13
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
14
|
Li H, Li H, Yu W, Huang S, Liu Y, Zhang N, Yuan J, Xu X, Duan S, Hu Y. PEGylated hyaluronidase/NIR induced drug controlled release system for synergetic chemo-photothermal therapy of hepatocellular carcinoma. Eur J Pharm Sci 2019; 133:127-136. [PMID: 30779981 DOI: 10.1016/j.ejps.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023]
Abstract
In recent years, cancer treatment has been facing the challenge of increasing antitumor efficiency and avoiding severe adverse effects simultaneously. In this study, we designed a controlled release drug delivery system, doxorubicin (Dox)-loaded and hyaluronic acid (HA)-modified PEGylated gold nanocages (AuNCs), which was designated as PEG-HAn-AuNCs/Dox (n represented 10n HA repeating units were modified on each AuNC). In this system, AuNCs were applied as the photothermal cores, Dox was employed as the model drug, HA was applied as the tumor-microenvironment responsive switch to achieve controlled release, and poly (ethylene glycol) (PEG) was used as the stealth polymer to prolong systemic circulation time. Firstly, we evaluated the physical and chemical properties of the PEG-HAn-AuNCs/Dox with different ratios of HA to AuNC and found that PEG-HA4-AuNCs/Dox was the optimal. Secondly, PEG-HA4-AuNCs/Dox revealed the feature of controlled release, namely, the drug release was triggered by hyaluronidase (HAase) and accelerated by the acidic pH and near-infrared (NIR) irradiation. And then PEG-HA4-AuNCs/Dox could be effectively delivered to a cultured SMMC-7721 cell line in vitro and the tumor tissues of the subcutaneous mouse models of hepatocellular carcinoma (HCC) in vivo. Finally, the results demonstrated the synergetic therapy, namely the combination of chemotherapy and photothermal therapy (PTT) (defined as chemo-photothermal therapy) mediated by PEG-HA4-AuNCs/Dox, could efficiently inhibit the tumor growth both in vitro and in vivo. Therefore, the advantages of PEG-HA4-AuNCs/Dox endowed it as a great potential candidate for HCC treatment.
Collapse
Affiliation(s)
- Huili Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Huanjie Li
- General Hospital of Xuzhou Mining Group, Quanshan District Coal Road No. 32, Xuzhou, 221006, PR China
| | - Wei Yu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Ying Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Ningxia Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Jinxiu Yuan
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Xin Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Shaofeng Duan
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, PR China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Medical Sciences, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, PR China.
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Modified gelatin nanoparticles for gene delivery. Int J Pharm 2019; 554:224-234. [DOI: 10.1016/j.ijpharm.2018.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
|
16
|
Muthukrishnan L, Chellappa M, Nanda A, Thukkaram S, Selvaraj G, Muthiah B, Sagadevan S, Lett JA. Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells. RSC Adv 2019; 9:15874-15886. [PMID: 35521408 PMCID: PMC9064322 DOI: 10.1039/c9ra01072f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles. In this study, stable silver nanoparticles were synthesized by exposing aqueous silver ions to an extracellular diffusible pigment produced by Pseudomonas aeruginosa (PA6) under optimized laboratory conditions. Spectroscopic and microscopic analyses showed the typical characteristics of silver with an average size of ∼28.30 nm and spherical shape. The particles were polydispersed and showed no definite agglomeration with a zeta potential of −32.3 mV, conferring stability. Antimicrobial studies were carried out using 5, 15, 25 and 50 μg mL−1 concentrations of pcAgNPs, which showed significant antibacterial activity toward clinically important pathogens at all concentrations compared to with the control sample. The bactericidal effect induced by pcAgNPs associated with cell damage was well demonstrated using electron microscopic studies. ROS production was measured using the DCFH-DA method and the oxidative stress was assessed by measuring the reduced glutathione (GSH) levels. Cytotoxicity studies on HEp-2 (Human Epidermoid Larynx Carcinoma) cells exposed to pcAgNPs showed dose-dependent cytotoxic effect with IC50 of 14.8 μg mL−1 compared to with IC50 of 7.38 μg mL−1 for the Vero cell control. Mechanistically, the pcAgNPs activated p53 that induced catalase, leading to apoptosis and DNA fragmentation via a p53 transcriptional pathway and electron transport arrest, which resulted in cell death. This synergistic efficacy of pigment-AgNPs demonstrated excellent antimicrobial and anti-proliferative activities, providing a potential lead for developing a broad-spectrum antibacterial agent and improving the therapeutic modalities targeting carcinoma cells at the gene level. Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles.![]()
Collapse
Affiliation(s)
| | - Muralidharan Chellappa
- Leather Process Technology
- Tannery Division
- CSIR – Central Leather Research Institute (CLRI)
- Chennai
- India
| | - Anima Nanda
- Faculty of Bio & Chemical Engineering
- Sathyabama Institute of Science and Technology (Deemed to be University)
- Chennai
- India
| | - Sudhakar Thukkaram
- Faculty of Bio & Chemical Engineering
- Sathyabama Institute of Science and Technology (Deemed to be University)
- Chennai
- India
| | - Gracyfathima Selvaraj
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai
- India
| | - Bavanilatha Muthiah
- Faculty of Bio & Chemical Engineering
- Sathyabama Institute of Science and Technology (Deemed to be University)
- Chennai
- India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - J. Anita Lett
- Department of Physics
- Sathyabama Institute of Science and Technology
- Chennai-600119
- India
| |
Collapse
|
17
|
Redox-responsive polymer inhibits macrophages uptake for effective intracellular gene delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2018; 175:392-402. [PMID: 30554018 DOI: 10.1016/j.colsurfb.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
The development of advanced gene delivery carriers with stimuli-responsive release manner for tumor therapeutics is desirable, since they can exclusively release the therapeutic gene via their structural changes in response to the specific stimuli of the target site. Moreover, interactions between macrophages and drug delivery systems (DDSs) seriously impair the treatment efficiency of DDSs, thus macrophages uptake inhibition would to some extent improve the intracellular uptake of DDSs in tumor cells. Herein, a PEGylated redox-responsive gene delivery system was developed for effective cancer therapy. PEG modified glycolipid-like polymer (P-CSSO) was electrostatic interacted with p53 to form P-CSSO/p53 complexes, which exhibited an enhanced redox sensitivity in that the disulfide bond was degraded and the rate the plasmid released from P-CSSO was 2.29-fold that of nonresponsive platform (P-CSO-SA) in 10 mM levels of glutathione (GSH). PEGylation could significantly weaken macrophages uptake, while enhance the accumulation of P-CSSO in tumor cells both in vitro and in vivo. Compared with nonresponsive complexes (P-CSO-SA/p53) (59.2%) and Lipofectamine™ 2000/p53 complexes (52.0%), the tumor inhibition rate of P-CSSO/p53 complexes (77.1%) significantly increased, which was higher than CSSO/p53 complexes (69.9%). The present study indicates that tumor microenvironment sensitive and macrophages uptake suppressive P-CSSO/p53 is a powerful in vivo gene delivery system for enhanced anticancer therapy.
Collapse
|
18
|
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2018; 24:151-160. [PMID: 30395768 DOI: 10.1177/2472630318811108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal forms of cancer and has proven to be difficult to treat through conventional methods, including surgery and chemotherapy. Gene therapy serves as a potential novel treatment to interfere with genes that make this cancer so aggressive, but free nucleic acids have low cell uptake due to their negative charge and are unstable in circulation. Nanoparticles can serve as an effective carrier for a wide variety of gene therapies for pancreatic cancer as they can improve the circulation time, decrease the recognition by the immune system, and be functionalized to target specific surface proteins. In this review, we focus on therapeutic strategies using nanoparticles as carriers of small interfering RNA (siRNA), microRNA (miRNA), and gene augmentation (DNA) therapies in the context of pancreatic cancer. Lastly, we discuss the future outlook of nanoparticle-based therapies, including challenges in the clinical setting.
Collapse
Affiliation(s)
- Trevin Kurtanich
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Nicole Roos
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Guanmeng Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jesse Yang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Alan Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.,2 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USC.,3 Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,4 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,5 Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.,6 Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Baillet J, Desvergnes V, Hamoud A, Latxague L, Barthélémy P. Lipid and Nucleic Acid Chemistries: Combining the Best of Both Worlds to Construct Advanced Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705078. [PMID: 29341288 DOI: 10.1002/adma.201705078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Hybrid synthetic amphiphilic biomolecules are emerging as promising supramolecular materials for biomedical and technological applications. Herein, recent progress in the field of nucleic acid based lipids is highlighted with an emphasis on their molecular design, synthesis, supramolecular properties, physicochemical behaviors, and applications in the field of health science and technology. In the first section, the design and the study of nucleolipids are in focus and then the glyconucleolipid family is discussed. In the last section, recent contributions of responsive materials involving nucleolipids and their use as smart drug delivery systems are discussed. The supramolecular materials generated by nucleic acid based lipids open new challenges for biomedical applications, including the fields of medicinal chemistry, biosensors, biomaterials for tissue engineering, drug delivery, and the decontamination of nanoparticles.
Collapse
Affiliation(s)
- Julie Baillet
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Valérie Desvergnes
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Aladin Hamoud
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Laurent Latxague
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM, U1212, CNRS UMR 5320, Université de Bordeaux, F-33076, Bordeaux, France
| |
Collapse
|
20
|
Sun M, Wang K, Oupický D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv Healthc Mater 2018; 7:10.1002/adhm.201701070. [PMID: 29227047 PMCID: PMC5821579 DOI: 10.1002/adhm.201701070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Indexed: 01/02/2023]
Abstract
Polymeric materials that respond to a variety of endogenous and external stimuli are actively developed to overcome the main barriers to successful systemic delivery of therapeutic nucleic acids. Here, an overview of viable stimuli that are proved to improve systemic delivery of nucleic acids is provided. The main focus is placed on nucleic acid delivery systems (NADS) based on polymers that respond to pathological or physiological changes in pH, redox state, enzyme levels, hypoxia, and reactive oxygen species levels. Additional discussion is focused on NADS suitable for applications that use external stimuli, such as light, ultrasound, and local hyperthermia.
Collapse
Affiliation(s)
- Minjie Sun
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - David Oupický
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
21
|
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 2017; 137:115-170. [PMID: 29405974 PMCID: PMC6550462 DOI: 10.1016/bs.acr.2017.11.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anish Babu
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ranganayaki Muralidharan
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Janani Panneerselvam
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Akhil Srivastava
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz Ahmed
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Meghna Mehta
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
22
|
Youngren-Ortiz SR, Hill DB, Hoffmann PR, Morris KR, Barrett EG, Forest MG, Chougule MB. Development of Optimized, Inhalable, Gemcitabine-Loaded Gelatin Nanocarriers for Lung Cancer. J Aerosol Med Pulm Drug Deliv 2017; 30:299-321. [PMID: 28277892 PMCID: PMC5650720 DOI: 10.1089/jamp.2015.1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 μm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Marsico Lung Institute/CF Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - Kenneth R. Morris
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- The Lachman Institute for Pharmaceutical Analysis, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University–Brooklyn Campus, Brooklyn, New York
| | - Edward G. Barrett
- Respiratory and Asthma Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - M. Gregory Forest
- Carolina Center for Interdisciplinary Applied Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i
- Pii Center for Pharmaceutical Technology, Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, Mississippi
- Translational Drug and Gene Delivery Research (TransDGDR) Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi
- Natural Products and Experimental Therapeutics Program, University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, Hawai'i
| |
Collapse
|
23
|
Affiliation(s)
- Anjusha Mohan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Shantikumar V. Nair
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Vinoth-Kumar Lakshmanan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
26
|
Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis 2016; 5:e250. [PMID: 27500388 PMCID: PMC5007827 DOI: 10.1038/oncsis.2016.52] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the 'bystander effect' through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis.
Collapse
Affiliation(s)
- M Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - M Talekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - P Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Q Ouyang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Abstract
A primary envisioned use for nanoparticles (NPs) in a cellular context is for controlled drug delivery where the full benefit of NP attributes (small size, large drug cargo loading capacity) can improve the pharmacokinetics of the drug cargo. This requires the ability to controllably manipulate the release of the drug cargo from the NP vehicle or ‘controlled actuation’. In this review, we highlight new developments in this field from 2013 to 2015. The number and breadth of reports are a testament to the significant advancements made in this field over this time period. We conclude with a perspective of how we envision this field to continue to develop in the years to come.
Collapse
|
28
|
Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 2016; 13:891-909. [DOI: 10.1517/17425247.2016.1156671] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sindhu Doppalapudi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Abraham J. Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, and Jerusalem College of Engineering (JCE), Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
29
|
Talekar M, Trivedi M, Shah P, Ouyang Q, Oka A, Gandham S, Amiji MM. Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles. Mol Ther 2015; 24:759-69. [PMID: 26686386 DOI: 10.1038/mt.2015.225] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in KRAS and p53 signaling pathways contribute to loss of responsiveness to current therapies and a decreased survival in lung cancer. In this study, we have investigated the delivery and transfection of wild-type (wt-) p53 and microRNA-125b (miR-125b) expressing plasmid DNA, in SK-LU-1 human lung adenocarcinoma cells as well as in Kras(G12D)/p53(fl/fl) (KP) genetically engineered mouse model of lung cancer. Systemic plasmid DNA delivery with dual CD44/EGFR-targeted hyaluronic acid (HA)-based nanoparticles (NPs) resulted in a 2- to 20-fold increase in wt-p53 and miR-125b gene expression in SK-LU-1 cells. This resulted in enhanced apoptotic activity as seen with increased APAF-1 and caspase-3 gene expression. Similarly, in vivo evaluations in KP mouse model indicated successful CD44/EGFR-targeted delivery. Tumor growth inhibition and apoptotic induction were also observed with (wt-p53+miR125b) combination therapy in KP tumor model. Lastly, J774.A1 murine macrophages co-cultured with transfected SK-LU-1 cells showed a 14- to 35-fold increase in the iNOS-Arg-1 ratio, supportive of previous results demonstrating a role of miR-125b in macrophage repolarization. Overall, these results show tremendous promise of wt-p53 and miR-125b gene therapy using dual CD44/EGFR-targeting HA NP vector for effective treatment of lung cancer.
Collapse
Affiliation(s)
- Meghna Talekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.,Current address: Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Davie, Florida, USA
| | - Parin Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Qijun Ouyang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Adwait Oka
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Singh A, Xu J, Mattheolabakis G, Amiji M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:589-600. [PMID: 26656632 DOI: 10.1016/j.nano.2015.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED In this study, we have formulated redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a targeted vector for systemic delivery of gemcitabine therapy in pancreatic cancer. The gelatin nanoparticles were formed by ethanol-induced desolvation process to encapsulate the bound drug. The surface of the nanoparticles was decorated either with poly(ethylene glycol) (PEG) chains to impart enhanced circulation time or with EGFR targeting peptide to confer target specificity. Our in vitro studies in Panc-1 human pancreatic ductal adenocarcinoma cells confirm that gemcitabine encapsulated in EGFR-targeted gelatin nanoparticles, released through disulfide bond cleavage, had a significantly improved cytotoxic profile. Further, the in vivo anticancer activity was evaluated in an orthotopic pancreatic adenocarcinoma tumor bearing SCID beige mice, which confirmed that EGFR-targeted gelatin nanoparticles could efficiently deliver gemcitabine to the tumor leading to higher therapeutic benefit as compared to the drug in solution. FROM THE CLINICAL EDITOR The treatment of pancreatic cancer remains unsatisfactory, with an average 5-year survival of less than 5%. New treatment modalities are thus urgently needed. In this study, the authors presented their formulation of redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a carrier for gemcitabine. In-vitro and in-vivo experiments showed encouraging results. It is hoped that the findings would provide a novel and alternative drug delivery platform for the future.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Jing Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.
| |
Collapse
|
31
|
Fonseca AC, Serra AC, Coelho JFJ. Bioabsorbable polymers in cancer therapy: latest developments. EPMA J 2015; 6:22. [PMID: 26605001 PMCID: PMC4657262 DOI: 10.1186/s13167-015-0045-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a devastating disease, being responsible for 13 % of all deaths worldwide. One of the main challenges in treating cancer concerns the fact that anti-cancer drugs are not highly specific for the cancer cells and the "death" of healthy cells in the course of chemotherapy treatment is inevitable. In this sense, the use of drug delivery systems (DDS) can be seen as a powerful tool to minimize or overcome this very important issue. DDS can be designed to target specific tissues in order to mitigate side effects. Bioabsorbable polymers, due to their inherent characteristics, and because they can be synthesized in a variety of forms, are materials whose importance in the DDS for cancer therapy has risen significantly in the last years. This review intends to give an overview about the latest developments in the use of bioabsorbable polymers as DDS in cancer therapy, with special focus on nanoparticles, micelles, and implants.
Collapse
Affiliation(s)
- Ana C. Fonseca
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C. Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge F. J. Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
32
|
Wang YU, Chen YN, Zhang W, Yang YU, Bai WK, Shen E, Hu B. Upregulation of ULK1 expression in PC-3 cells following tumor protein P53 transfection by sonoporation. Oncol Lett 2015; 11:699-704. [PMID: 26870270 DOI: 10.3892/ol.2015.3946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate whether ultrasound combined with microbubbles was able to enhance liposome-mediated transfection of genes into human prostate cancer cells, and to examine the association between autophagy and tumor protein P53 (P53). An MTT assay was used to evaluate cell viability, while flow cytometry and fluorescence microscopy were used to measure gene transfection efficiency. Autophagy was observed using transmission electron microscopy. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to assess the expression of autophagy-associated genes. The results of the present study revealed that cell viability was significantly reduced following successfully enhanced transfection of P53 by ultrasound combined with microbubbles. In addition, serine/threonine-protein kinase ULK1 levels were simultaneously upregulated. Castration-resistant prostate cancer is difficult to treat and is investigated in the present study. P53 has a significant role in a number of key biological functions, including DNA repair, apoptosis, cell cycle, autophagy, senescence and angiogenesis. Prior to the present study, to the best of our knowledge, increased transfection efficiency and reduced side effects have been difficult to achieve. Ultrasound is considered to be a 'gentle' technique that may be able to achieve increased transfection efficiency and reduced side effects. The results of the present study highlight a potential novel therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Y U Wang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yi-Ni Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wei Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Y U Yang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wen-Kun Bai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
33
|
Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells. Mol Pharm 2015; 12:4466-77. [PMID: 26523837 DOI: 10.1021/acs.molpharmaceut.5b00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development of efficient and versatile drug delivery platforms to overcome the physical and biological challenges in cancer therapeutics is an area of great interest, and novel materials are actively sought for such applications. Recent strides in polymer science have led to a combinatorial approach for generating a library of materials with different functional identities that can be "mixed and matched" to attain desired characteristics of a delivery vector. We have applied the combinatorial design to chitosan (CS), where the polymer backbone has been modified with polyethylene glycol, epidermal growth factor receptor-binding peptide, and lipid derivatives of varying chain length to encapsulate hydrophobic drugs. Cisplatin, cis-([PtCl2(NH3)2]), is one of the most potent chemotherapy drugs broadly administered for cancer treatment. Cisplatin is a hydrophilic drug, and in order for it to be encapsulated in the developed nanosystems, it was modified with lipids of varying chain length. The library of four CS derivatives and six platinum derivatives was self-assembled in aqueous medium and evaluated for physicochemical characteristics and cytotoxic effects in platinum-sensitive and -resistant lung cancer cells. The results show that the lipid-modified platinate encapsulation into CS nanoparticles significantly improved cellular cytotoxicity of the drug. In this work, we have also reinforced the idea that CS is a multifaceted system that can be as successful in delivering small molecules as it has been as a nucleic acids carrier.
Collapse
Affiliation(s)
- Ana Vanessa Nascimento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| | - Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto , Rua do Campo Alegre 823, 4050-313 Porto, Portugal
| | - Domingos Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,I3S, Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, Universidade do Porto , Rua do Campo Alegre 823, 4150 Porto, Portugal
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
34
|
Abstract
Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.
Collapse
|
35
|
Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int J Pharm 2015; 492:80-91. [DOI: 10.1016/j.ijpharm.2015.07.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/21/2022]
|
36
|
Hamid Akash MS, Rehman K, Chen S. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. POLYM REV 2015. [DOI: 10.1080/15583724.2014.995806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Talekar M, Ouyang Q, Goldberg MS, Amiji MM. Cosilencing of PKM-2 and MDR-1 Sensitizes Multidrug-Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer. Mol Cancer Ther 2015; 14:1521-31. [PMID: 25964202 DOI: 10.1158/1535-7163.mct-15-0100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022]
Abstract
Tumor multidrug resistance (MDR) is a serious clinical challenge that significantly limits the effectiveness of cytotoxic chemotherapy. As such, complementary therapeutic strategies are being explored to prevent relapse. The altered metabolic state of cancer cells, which perform aerobic glycolysis, represents an interesting target that can enable discrimination between healthy cells and cancer cells. We hypothesized that cosilencing of genes responsible for aerobic glycolysis and for MDR would have synergistic antitumor effect. In this study, siRNA duplexes against pyruvate kinase M2 and multidrug resistance gene-1 were encapsulated in hyaluronic acid-based self-assembling nanoparticles. The particles were characterized for morphology, size, charge, encapsulation efficiency, and transfection efficiency. In vivo studies included biodistribution assessment, gene knockdown confirmation, therapeutic efficacy, and safety analysis. The benefit of active targeting of cancer cells was confirmed by modifying the particles' surface with a peptide targeted to epidermal growth factor receptor, which is overexpressed on the membranes of the SKOV-3 cancer cells. To augment the studies involving transplantation of a paclitaxel-resistant cell line, an in vivo paclitaxel resistance model was developed by injecting repeated doses of paclitaxel following tumor inoculation. The nanoparticles accumulated significantly in the tumors, hindering tumor volume doubling time (P < 0.05) upon combination therapy in both the wild-type (2-fold) and resistant (8-fold) xenograft models. Although previous studies indicated that silencing of MDR-1 alone sensitized MDR ovarian cancer to paclitaxel only modestly, these data suggest that concurrent silencing of PKM-2 improves the efficacy of paclitaxel against MDR ovarian cancer.
Collapse
Affiliation(s)
- Meghna Talekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Qijun Ouyang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Michael S Goldberg
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
38
|
Li CM, Zhang L, Hou YH, Li N, Che MH. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using anti-EGFR antibody as a targeting agent. Shijie Huaren Xiaohua Zazhi 2015; 23:1890-1896. [DOI: 10.11569/wcjd.v23.i12.1890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the capability of epidermal growth factor receptor (EGFR)-grafted polybutylcyanoacrylate nanoparticles (EGFR-PBCA-NP) carrying gemcitabine (GEM) to treat pancreatic cancer.
METHODS: GEM nanoparticles were prepared by emulsion polymerization, and the particle size, drug-loading rate and encapsulation efficiency were characterized. Different numbers of PANC-1 cells in 100 μL PBS were inoculated subcutaneously into the right flank of Balb/c (nu/nu) mice to establish a xenograft model. The mice were divided into five groups (n = 10 each). The drugs were injected through the mouse tail vein to observe tumor inhibition. Every three days the short diameter and long diameter of tumors were measured to calculate tumor volume. After 12 d, the mice were killed. Tumor weight and volume were measured in nude mice bearing xenografts to calculate the tumor inhibition rate. Xenograft nude mice were randomly divided into two groups. Tumor tissues were removed from the mice which were sacrificed at 1, 5, and 12 h after the injection for frozen section fluorescence examinations.
RESULTS: As compared with the control group, the weight and volume of human pancreatic cancer xenografts of nude mice in the experimental group were decreased significantly (P < 0.05). The two indexes in the EGFR-GEM-PBCA-NP group were significantly better than those in other groups. In the experimental group (EGFR-Cy3-PBCA-NP), fluorescence intensity at 1, 5, and 12 h was stronger than that in the control group (Cy3-PBCA-NP), and fluorescence intensity in the experimental group at 5 h was stronger than that at 1 and 12 h.
CONCLUSION: EGFR-GEM-PBCA-NP shows a good receptor targeting ability and a significant inhibitory effect on human pancreatic cancer.
Collapse
|
39
|
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional chemotherapy for the treatment of cancer has limited specificity when administered systemically and is often associated with toxicity issues. Enhanced accumulation of polymeric nanocarriers at a tumor site may be achieved by passive and active targeting. Incorporation of trigger responsiveness into these polymeric nanocarriers improves the anticancer efficacy of such systems by modulating the release of the drug according to the tumor environment. Triggers used for tumor targeting include internal triggers such as pH, redox and enzymes and external triggers such as temperature, magnetic field, ultrasound and light. While internal triggers are specific cues of the tumor microenvironment, external triggers are those which are applied externally to control the release. This review highlights the various strategies employed for the preparation of such trigger responsive polymeric nanocarriers for cancer therapy and provides an overview of the state of the art in this field.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | | | | | | |
Collapse
|
40
|
PAN XINTING, ZHU QINGYUN, SUN YUNBO, LI LIANDI, ZHU YUNPENG, ZHAO ZHIHUI, ZUO JIANXIN, FANG WEI, LI KUN. PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Int J Mol Med 2015; 35:995-1002. [DOI: 10.3892/ijmm.2015.2096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/03/2015] [Indexed: 11/06/2022] Open
|
41
|
Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm 2015; 95:353-67. [PMID: 25592325 DOI: 10.1016/j.ejpb.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023]
Abstract
For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression.
Collapse
|
42
|
Abstract
Despite all scientists efforts exerted over the past years, the ocular delivery of drugs remains a great challenge due to several barriers and hurdles faced by this kind of administration. The exploitation of gelatin that has a long history of safe use in pharmaceuticals and which is considered as a GRAS (Generally Regarded As Safe) material by the FDA was not fully achieved in this field. This review summarizes the recent studies and findings where gelatin-based micro- and nanoparticles were used for successful ocular delivery aiming at drawing the attention of researchers and scientists to this valuable biomaterial that has not been fully explored.
Collapse
Affiliation(s)
- Rania M Hathout
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Mohamed K Omran
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
43
|
Core-shell nanoparticulate formulation of gemcitabine: lyophilization, stability studies, and in vivo evaluation. Drug Deliv Transl Res 2014; 4:439-51. [DOI: 10.1007/s13346-014-0206-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model. Mol Pharm 2014; 11:3515-27. [PMID: 25256346 PMCID: PMC4186685 DOI: 10.1021/mp5002894] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
RNA
interference has emerged as a powerful strategy in cancer therapy
because it allows silencing of specific genes associated with tumor
progression and resistance. Mad2 is an essential mitotic checkpoint
component required for accurate chromosome segregation during mitosis,
and its complete abolition leads to cell death. We have developed
an epidermal growth factor receptor (EGFR)-targeted chitosan system
for silencing the Mad2 gene as a strategy to efficiently
induce cell death in EGFR overexpressing human A549 non-small cell
lung cancer cells. Control and EGFR-targeted chitosan nanoparticles
loaded with small interfering RNAs (siRNAs) against Mad2 were formulated
and characterized for size, charge, morphology, and encapsulation
efficiency. Qualitative and quantitative intracellular uptake studies
by confocal imaging and flow cytometry, respectively, showed time-dependent
enhanced and selective intracellular internalization of EGFR-targeted
nanoparticles compared to nontargeted system. Targeted nanoparticles
showed nearly complete depletion of Mad2 expression in A549 cells
contrasting with the partial depletion in the nontargeted system.
Accordingly, Mad2-silencing-induced apoptotic cell death was confirmed
by cytotoxicity assay and flow cytometry. Our results demonstrate
that EGFR-targeted chitosan loaded with Mad2 siRNAs
is a potent delivery system for selective killing of cancer cells.
Collapse
Affiliation(s)
- Ana Vanessa Nascimento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, IINFACTS, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.
Collapse
Affiliation(s)
- Frederik R. Wurm
- Physical Chemistry of Polymers, Max Planck Institute for Polymer ResearchMainz, Germany
| | - Clemens K. Weiss
- Life Sciences and Engineering, University of Applied Sciences BingenBingen, Germany
| |
Collapse
|
46
|
Singh A, Talekar M, Tran TH, Samanta A, Sundaram R, Amiji M. Combinatorial approach in the design of multifunctional polymeric nano-delivery systems for cancer therapy. J Mater Chem B 2014; 2:8069-8084. [DOI: 10.1039/c4tb01083c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This update summarizes the recent advances in combinatorial design of polymeric material for developing multifunctional nanovectors to deliver nucleic acids and chemodrugs for cancer therapy.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Bouve College of Health Sciences
- Northeastern University
- Boston, USA
| | - Meghna Talekar
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Bouve College of Health Sciences
- Northeastern University
- Boston, USA
| | - Thanh-Huyen Tran
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Bouve College of Health Sciences
- Northeastern University
- Boston, USA
| | - Abishek Samanta
- College of Computer and Information Sciences
- Northeastern University
- Boston, USA
| | - Ravi Sundaram
- College of Computer and Information Sciences
- Northeastern University
- Boston, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Bouve College of Health Sciences
- Northeastern University
- Boston, USA
| |
Collapse
|