1
|
Gerwing M, Hoffmann E, Geyer C, Helfen A, Maus B, Schinner R, Wachsmuth L, Heindel W, Eisenblaetter M, Faber C, Wildgruber M. Intratumoral heterogeneity after targeted therapy in murine cancer models with differing degrees of malignancy. Transl Oncol 2023; 37:101773. [PMID: 37666208 PMCID: PMC10483060 DOI: 10.1016/j.tranon.2023.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION Conventional morphologic and volumetric assessment of treatment response is not suitable for adequately assessing responses to targeted cancer therapy. The aim of this study was to evaluate changes in tumor composition after targeted therapy in murine models of breast cancer with differing degrees of malignancy via non-invasive magnetic resonance imaging (MRI). MATERIALS AND METHODS Mice bearing highly malignant 4T1 tumors or low malignant 67NR tumors were treated with either a combination of two immune checkpoint inhibitors (ICI, anti-PD1 and anti-CTLA-4) or the multi-tyrosine kinase inhibitor sorafenib, following experiments with macrophage-depleting clodronate-loaded liposomes and vessel-stabilizing angiopoietin-1. Mice were imaged on a 9.4 T small animal MRI system with a multiparametric (mp) protocol, comprising T1 and T2 mapping and diffusion-weighted imaging. Tumors were analyzed ex vivo with histology. RESULTS AND DISCUSSIONS All treatments led to an increase in non-viable areas, but therapy-induced intratumoral changes differed between the two tumor models and the different targeted treatments. While ICI treatment led to intratumoral hemorrhage, sorafenib treatment mainly induced intratumoral necrosis. Treated 4T1 tumors showed increasing and extensive areas of necrosis, in comparison to 67NR tumors with only small, but also increasing, necrotic areas. After either of the applied treatments, intratumoral heterogeneity, was increased in both tumor models, and confirmed ex vivo by histology. Apparent diffusion coefficient with subsequent histogram analysis proved to be the most sensitive MRI sequence. In conclusion, mp MRI enables to assess dedicated therapy-related intratumoral changes and may serve as a biomarker for treatment response assessment.
Collapse
Affiliation(s)
- M Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - E Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - C Geyer
- Clinic of Radiology, University of Münster, Münster, Germany
| | - A Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - B Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - R Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - L Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - W Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - M Eisenblaetter
- Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, University of Bielefeld, Bielefeld, Germany
| | - C Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - M Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Zhao R, Du S, Gao S, Shi J, Zhang L. Time Course Changes of Synthetic Relaxation Time During Neoadjuvant Chemotherapy in Breast Cancer: The Optimal Parameter for Treatment Response Evaluation. J Magn Reson Imaging 2023; 58:1290-1302. [PMID: 36621982 DOI: 10.1002/jmri.28597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Synthetic MRI (syMRI) has enabled quantification of multiple relaxation parameters (T1/T2 relaxation time [T1/T2], proton density [PD]), and their longitudinal change during neoadjuvant chemotherapy (NAC) promises to be valuable parameters for treatment response evaluation in breast cancer. PURPOSE To investigate the time course changes of syMRI parameters during NAC and evaluate their value as predictors for pathological complete response (pCR) in breast cancer. STUDY TYPE Retrospective, longitudinal. POPULATION A total of 129 women (median age, 50 years; range, 28-69 years) with locally advanced breast cancer who underwent NAC; all performed multiple conventional breast MRI examinations with added syMRI during NAC. FIELD STRENGTH/SEQUENCE A 3.0 T, T1-weighted dynamic contrast enhanced and syMRI acquired by a multiple-dynamic, multiple-echo sequence. ASSESSMENT Breast MRI was set at four time-points: baseline, after one cycle, after three or four cycles of NAC and preoperation. SyMRI parameters and tumor diameters were measured and their changes from baseline were calculated. All parameters were compared between pCR and non-pCR. Interaction between syMRI parameters and clinicopathological features was analyzed. STATISTICAL TESTS Mann-Whitney U tests, random effects model of repeated measurement, receiver operating characteristic (ROC) analysis, interaction analysis. RESULTS Median synthetic T1/T2/PD and tumor diameter generally decreased throughout NAC. Absolute T1 at early-NAC, T1, and PD at mid-NAC were significantly lower in the pCR group. After early-NAC, the T1 change was significantly higher in the pCR (median ± IQR, 18.17 ± 11.33) than the non-pCR group (median ± IQR, 10.90 ± 10.03), with the highest area under the ROC curves (AUC) of 0.769 (95% CI, 0.684-0.838). Interaction analysis showed that histological grade III patients had higher odds ratio (OR) (OR = 1.206) compared to grade II patients (OR = 1.067). DATA CONCLUSION Synthetic T1 changes after one cycle of NAC maybe useful for early evaluating NAC response in breast cancer during whole treatment cycles. However, its discriminative ability is significantly affected by histological grade. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ruimeng Zhao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Siyao Du
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Si Gao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
4
|
Agarwal S, Decavel-Bueff E, Wang YH, Qin H, Santos RD, Evans MJ, Sriram R. Defining the Magnetic Resonance Features of Renal Lesions and Their Response to Everolimus in a Transgenic Mouse Model of Tuberous Sclerosis Complex. Front Oncol 2022; 12:851192. [PMID: 35814396 PMCID: PMC9260108 DOI: 10.3389/fonc.2022.851192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an inherited genetic disorder characterized by mutations in TSC1 or TSC2 class of tumor suppressers which impact several organs including the kidney. The renal manifestations are usually in the form of angiomyolipoma (AML, in 80% of the cases) and cystadenomas. mTOR inhibitors such as rapamycin and everolimus have shown efficacy in reducing the renal tumor burden. Early treatment prevents the progression of AML; however, the tumors regrow upon cessation of therapy implying a lifelong need for monitoring and management of this morbid disease. There is a critical need for development of imaging strategies to monitor response to therapy and progression of disease which will also facilitate development of newer targeted therapy. In this study we evaluated the potential of multiparametric 1H magnetic resonance imaging (mpMRI) to monitor tumor response to therapy in a preclinical model of TSC, the transgenic mouse A/J Tsc2+/-. We found 2-dimensional T2-weighted sequence with 0.5 mm slice thickness to be optimal for detecting renal lesions as small as 0.016 mm3. Baseline characterization of lesions with MRI to assess physiological parameters such as cellularity and perfusion is critical for distinguishing between cystic and solid lesions. Everolimus treatment for three weeks maintained tumor growth at 36% from baseline, while control tumors displayed steady growth and were 70% larger than baseline at the end of therapy. Apparent diffusion coefficient, T1 values and normalized T2 intensity changes were also indictive of response to treatment. Our results indicate that standardization and implementation of improved MR imaging protocols will significantly enhance the utility of mpMRI in determining the severity and composition of renal lesions for better treatment planning.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Decavel-Bueff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Renuka Sriram,
| |
Collapse
|
5
|
Contrast-free MRI quantitative parameters for early prediction of pathological response to neoadjuvant chemotherapy in breast cancer. Eur Radiol 2022; 32:5759-5772. [PMID: 35267091 DOI: 10.1007/s00330-022-08667-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To assess early changes in synthetic relaxometry after neoadjuvant chemotherapy (NAC) for breast cancer and establish a model with contrast-free quantitative parameters for early prediction of pathological response. METHODS From March 2019 to January 2021, breast MRI were performed for a primary cohort of women with breast cancer before (n = 102) and after the first (n = 93) and second (n = 90) cycle of NAC. Tumor size, synthetic relaxometry (T1/T2 relaxation time [T1/T2], proton density), and ADC were obtained, and the changes after treatment were calculated. Prediction models were established by multivariate logistic regression; evaluated with discrimination, calibration, and clinical application; and compared with Delong tests, net reclassification (NRI), and integrated discrimination index (IDI). External validation was performed from February to June 2021 with an independent cohort of 35 patients. RESULTS In the primary cohort, all parameters changed after early treatment. Synthetic relaxometry decreased to a greater degree in major histologic responders (MHR, Miller-Payne G4-5) compared with non-MHR (Miller-Payne G1-3). A model combining ADC after treatment, changes in T1 and tumor size, and cancer subtype achieved the highest AUC after the first (primary/validation cohort, 0.83/0.82) and second cycles (primary/validation cohort, 0.85/0.84). No difference of AUC (p ≥ 0.27), NRI (p ≥ 0.31), and IDI (p ≥ 0.32) was found between models with different cycles and size-measured sequences. Model calibration and decision curves demonstrated a good fitness and clinical benefit, respectively. CONCLUSIONS Early reduction in synthetic relaxometry indicated pathological response to NAC. Contrast-free T1 and ADC combined with size and cancer subtype predicted effectively pathological response after one NAC cycle. KEY POINTS • Synthetic MRI relaxometry changed after early neoadjuvant chemotherapy, which demonstrated pathological response for mass-like breast cancers. • Contrast-free quantitative parameters including T1 relaxation time and apparent diffusion coefficient, combined with tumor size and cancer subtype, stratified major histologic responders. • A contrast-free model predicted an early pathological response after the first treatment cycle of neoadjuvant chemotherapy.
Collapse
|
6
|
Baidya Kayal E, Sharma N, Sharma R, Bakhshi S, Kandasamy D, Mehndiratta A. T1 mapping as a surrogate marker of chemotherapy response evaluation in patients with osteosarcoma. Eur J Radiol 2022; 148:110170. [DOI: 10.1016/j.ejrad.2022.110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022]
|
7
|
Pandey S, Snider AD, Moreno WA, Ravi H, Bilgin A, Raghunand N. Joint total variation-based reconstruction of multiparametric magnetic resonance images for mapping tissue types. NMR IN BIOMEDICINE 2021; 34:e4597. [PMID: 34390047 DOI: 10.1002/nbm.4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Multispectral analysis of coregistered multiparametric magnetic resonance (MR) images provides a powerful method for tissue phenotyping and segmentation. Acquisition of a sufficiently varied set of multicontrast MR images and parameter maps to objectively define multiple normal and pathologic tissue types can require long scan times. Accelerated MRI on clinical scanners with multichannel receivers exploits techniques such as parallel imaging, while accelerated preclinical MRI scanning must rely on alternate approaches. In this work, tumor-bearing mice were imaged at 7 T to acquire k-space data corresponding to a series of images with varying T1-, T2- and T2*-weighting. A joint reconstruction framework is proposed to reconstruct a series of T1-weighted images and corresponding T1 maps simultaneously from undersampled Cartesian k-space data. The ambiguity introduced by undersampling was resolved by using model-based constraints and structural information from a reference fully sampled image as the joint total variation prior. This process was repeated to reconstruct T2-weighted and T2*-weighted images and corresponding maps of T2 and T2* from undersampled Cartesian k-space data. Validation of the reconstructed images and parameter maps was carried out by computing tissue-type maps, as well as maps of the proton density fat fraction (PDFF), proton density water fraction (PDwF), fat relaxation rate ( R2f*) and water relaxation rate ( R2w*) from the reconstructed data, and comparing them with ground truth (GT) equivalents. Tissue-type maps computed using 18% k-space data were visually similar to GT tissue-type maps, with dice coefficients ranging from 0.43 to 0.73 for tumor, fluid adipose and muscle tissue types. The mean T1 and T2 values within each tissue type computed using only 18% k-space data were within 8%-10% of the GT values from fully sampled data. The PDFF and PDwF maps computed using 27% k-space data were within 3%-15% of GT values and showed good agreement with the expected values for the four tissue types.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA
| | - A David Snider
- Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA
| | - Wilfrido A Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ali Bilgin
- Departments of Medical Imaging, Biomedical Engineering, and Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
Ding H, Velasco C, Ye H, Lindner T, Grech-Sollars M, O’Callaghan J, Hiley C, Chouhan MD, Niendorf T, Koh DM, Prieto C, Adeleke S. Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:4742. [PMID: 34638229 PMCID: PMC8507535 DOI: 10.3390/cancers13194742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.
Collapse
Affiliation(s)
- Hao Ding
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Huihui Ye
- State Key Laboratory of Modern Optical instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Matthew Grech-Sollars
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Surrey GU2 7XX, UK;
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - James O’Callaghan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Crispin Hiley
- Cancer Research UK, Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK;
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck, Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK;
- Department of Radiology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Sola Adeleke
- High Dimensional Neurology Group, Queen’s Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Oncology, Guy’s & St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
9
|
Zormpas-Petridis K, Poon E, Clarke M, Jerome NP, Boult JKR, Blackledge MD, Carceller F, Koers A, Barone G, Pearson ADJ, Moreno L, Anderson J, Sebire N, McHugh K, Koh DM, Chesler L, Yuan Y, Robinson SP, Jamin Y. Noninvasive MRI Native T 1 Mapping Detects Response to MYCN-targeted Therapies in the Th- MYCN Model of Neuroblastoma. Cancer Res 2020; 80:3424-3435. [PMID: 32595135 DOI: 10.1158/0008-5472.can-20-0133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
Noninvasive early indicators of treatment response are crucial to the successful delivery of precision medicine in children with cancer. Neuroblastoma is a common solid tumor of young children that arises from anomalies in neural crest development. Therapeutic approaches aiming to destabilize MYCN protein, such as small-molecule inhibitors of Aurora A and mTOR, are currently being evaluated in early phase clinical trials in children with high-risk MYCN-driven disease, with limited ability to evaluate conventional pharmacodynamic biomarkers of response. T1 mapping is an MRI scan that measures the proton spin-lattice relaxation time T1. Using a multiparametric MRI-pathologic cross-correlative approach and computational pathology methodologies including a machine learning-based algorithm for the automatic detection and classification of neuroblasts, we show here that T1 mapping is sensitive to the rich histopathologic heterogeneity of neuroblastoma in the Th-MYCN transgenic model. Regions with high native T1 corresponded to regions dense in proliferative undifferentiated neuroblasts, whereas regions characterized by low T1 were rich in apoptotic or differentiating neuroblasts. Reductions in tumor-native T1 represented a sensitive biomarker of response to treatment-induced apoptosis with two MYCN-targeted small-molecule inhibitors, Aurora A kinase inhibitor alisertib (MLN8237) and mTOR inhibitor vistusertib (AZD2014). Overall, we demonstrate the potential of T1 mapping, a scan readily available on most clinical MRI scanners, to assess response to therapy and guide clinical trials for children with neuroblastoma. The study reinforces the potential role of MRI-based functional imaging in delivering precision medicine to children with neuroblastoma. SIGNIFICANCE: This study shows that MRI-based functional imaging can detect apoptotic responses to MYCN-targeted small-molecule inhibitors in a genetically engineered murine model of MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Matthew Clarke
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Neil P Jerome
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
- Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Alexander Koers
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Giuseppe Barone
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Andrew D J Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Lucas Moreno
- Pediatric Hematology & Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - John Anderson
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
- Institute of Child Health, University College London, London, United Kingdom
| | - Neil Sebire
- Institute of Child Health, University College London, London, United Kingdom
- Department of Pathology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kieran McHugh
- Department of Radiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| |
Collapse
|
10
|
Zhang C, Zhang Y, Zhang W, Tong H, Li S, Yan Y. WISP1 promotes bovine MDSC differentiation via recruitment of ANXA1 for the regulation of the TGF-β signalling pathway. Mol Cell Biochem 2020; 470:215-227. [PMID: 32458119 DOI: 10.1007/s11010-020-03763-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is one of the most important tissues of the human body necessary for sporting activities. The differentiation of muscle-derived satellite cells (MDSCs) plays an important role in the development and regeneration of skeletal muscles. Similarly, the Wnt/β-catenin signalling pathway plays an important role in the process of muscle differentiation. Wnt1-inducible signalling pathway protein-1 (WISP1), a downstream protein of the Wnt/β-catenin signalling pathway and a member of the CCN family that also plays an important role in the differentiation process, and its expression increase during the differentiation of bovine MDSCs. However, its role in MDSC differentiation is poorly understood. Therefore, we investigated the mechanisms regulating this process via Western blot and immunofluorescence staining. Immunoprecipitation and mass spectrometry detected annexin A1 (ANXA1), a protein that interacts with WISP1. To determine whether WISP1 influences TGF-β signalling and differentiation independently of ANXA1, the latter was knocked down, while WISP1 was activated. WISP1 expression increased significantly during bovine MDSC differentiation. However, WISP1 did not affect the TGF-β signalling pathway protein marker when ANXA1 was inhibited. Taken together, WISP1 regulates the TGF-β signalling pathway through ANXA1 recruitment, thereby promoting bovine MDSC differentiation, suggesting the Wnt/β-catenin signalling pathway as another target to promote cell differentiation.
Collapse
Affiliation(s)
- Chunyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Yuhan Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Wenyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
11
|
Fiedorowicz M, Khan MI, Strzemecki D, Orzeł J, Wełniak-Kamińska M, Sobiborowicz A, Wieteska M, Rogulski Z, Cheda L, Wargocka-Matuszewska W, Kilian K, Szczylik C, Czarnecka AM. Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep 2020; 10:5379. [PMID: 32214151 PMCID: PMC7096525 DOI: 10.1038/s41598-020-62205-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer. Prognosis for ccRCC is generally poor since it is largely resistant to chemo- and radiotherapy. Many studies suggested that cancer stem cells/tumor initiating cells (CSCs/TICs) are responsible for development of tumor, disease progression, aggressiveness, metastasis and drug resistance. However, tumorigenic potential of CSCs/TICs isolated from established RCC cell lines - basic ccRCC research model - has never been investigated in vivo. CD105+, CD105-, CD44+ and CD44- as well as CD44-/CD105- CD44+/CD105+ and CD44-/CD105+ cells were isolated from Caki-1 RCC cell line, confirming coexistence of multiple subpopulations of stem-related phenotype in stable cell line. Sorted cells were injected subcutaneously into NOD SCID mice and tumor growth was monitored with MRI and PET/CT. Tumor growth was observed after implantation of CD105+, CD44+, CD44-, CD44-/CD105+ and CD44-/CD105- but not CD105- or CD44+/CD105+. Implantation of CD44-/CD105- cells induced tumors that were characterized by longer T1 and distinct metabolic pattern than other tumors. All the tumors were characterized by low uptake of [18F]FDG. CD105+ and CD44- tumors expresses Nanog and Oct-4, while CD44- tumors additionally expressed endothelial cell marker - CD31.
Collapse
Affiliation(s)
- M Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | - M I Khan
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, ON, N6A 3K7, Canada
| | - D Strzemecki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - J Orzeł
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - M Wełniak-Kamińska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - A Sobiborowicz
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - M Wieteska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Z Rogulski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - L Cheda
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - W Wargocka-Matuszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - K Kilian
- Heavy Ion Laboratory, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - C Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Oncology, European Health Centre, Otwock, Poland
- Medical Center for Postgraduate Education, Warsaw, Poland
| | - A M Czarnecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
12
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
13
|
Faller TL, Trotier AJ, Rousseau AF, Franconi JM, Miraux S, Ribot EJ. 2D multislice MP2RAGE sequence for fast T 1 mapping at 7 T: Application to mouse imaging and MR thermometry. Magn Reson Med 2020; 84:1430-1440. [PMID: 32083341 DOI: 10.1002/mrm.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/24/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a 2D radial multislice MP2RAGE sequence for fast and reliable T1 mapping at 7 T in mice and for MR thermometry. METHODS The 2D-MP2RAGE sequence was performed with the following parameters: TI1 -TI2 -MP2RAGETR = 1000-3000-9000 ms. The multiple dead times within the sequence were used for interleaved multislice acquisition, enabling one to acquire six slices in 9 seconds. The excitation pulse shape, inversion selectivity, and interslice gap were optimized. In vitro comparison with the inversion-recovery sequence was performed. The T1 variations with temperature were measured on tubes with T1 ranging from 800 ms to 2000 ms. The sequence was used to acquire T1 maps continuously during 30 minutes on the brain and abdomen of healthy mice. RESULTS A three-lobe cardinal sine excitation pulse, combined with an inversion slice thickness and an interslice gap of respectively 150% and 50% of the imaging slice thickness, led to a SD and bias of the T1 measurements below 1% and 2%, respectively. A linear dependence of T1 with temperature was measured between 10°C and 60°C. In vivo, less than 1% variation was measured between successive T1 maps in the mouse brain. In the abdomen, no obvious in-plane motion artifacts were observed but respiratory motion in the slice dimension led to 6% T1 underestimation. CONCLUSION The multislice MP2RAGE sequence could be used for fast whole-body T1 mapping and MR thermometry. Its reconstruction method would enable on-the-fly reconstruction.
Collapse
Affiliation(s)
- Thibaut L Faller
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Alice F Rousseau
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Song P, Eldar YC, Mazor G, Rodrigues MRD. HYDRA: Hybrid deep magnetic resonance fingerprinting. Med Phys 2019; 46:4951-4969. [DOI: 10.1002/mp.13727] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Pingfan Song
- Department of Electronic and Electrical Engineering Imperial College London UK
| | - Yonina C. Eldar
- Faculty of Mathematics and Computer Science Weizmann Institute of Science Rehovot Israel
| | - Gal Mazor
- Department of Electrical Engineering Technion – Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
15
|
Tanoue M, Saito S, Takahashi Y, Araki R, Hashido T, Kioka H, Sakata Y, Yoshioka Y. Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7 T magnetic resonance imaging system. Magn Reson Imaging 2019; 62:181-190. [PMID: 31302222 DOI: 10.1016/j.mri.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was (i) to determine the optimal magnetization transfer (MT) pulse parameter for amide proton transfer (APT) chemical exchange saturation transfer (CEST) imaging on an ultra-high-field magnetic resonance imaging (MRI) system and (ii) to use APT CEST imaging to noninvasively assess brain orthotopic and ectopic tumor cells transplanted into the mouse brain. METHODS To evaluate APT without the influence of other metabolites, we prepared egg white phantoms. Next, we used 7-11-week-old nude female mice and the following cell lines to establish tumors after injection into the left striatum of mice: C6 (rat glioma, n = 8) as primary tumors and Neuro-2A (mouse neuroblastoma, n = 11) and MDA-MB231 (human breast cancer, n = 8) as metastatic tumors. All MRI experiments were performed on an 11.7 T vertical-bore scanner. CEST imaging was performed at 1 week after injection of Neuro-2A cells and at 2 weeks after injection of C6 and MDA-MB231 cells. The MT pulse amplitude was set at 2.2 μT or 4.4 μT. We calculated and compared the magnetization transfer ratio (MTR) and difference of MTR asymmetry between normal tissue and tumor (ΔMTR asymmetry) on APT CEST images between mouse models of brain tumors. Then, we performed hematoxylin and eosin (HE) staining and Ki-67 immunohistochemical staining to compare the APT CEST effect on tumor tissues and the pathological findings. RESULTS Phantom study of the amide proton phantom containing chicken egg white, z-spectra obtained at a pulse length of 500 ms showed smaller peaks, whereas those obtained at a pulse length of 2000 ms showed slightly higher peaks. The APT CEST effect on tumor tissues was clearer at a pulse amplitude of 2.2 μT than at 4.4 μT. For all mouse models of brain tumors, ΔMTR asymmetry was higher at 2.2 μT than at 4.4 μT. ΔMTR asymmetry was significantly higher for the Neuro-2A model than for the MDA-MB231 model. HE staining revealed light bleeding in Neuro-2A tumors. Immunohistochemical staining revealed that the density of Ki-67-positive cells was higher in Neuro-2A tumors than in C6 or MDA-MB231 tumors. CONCLUSION The MTR was higher at 4.4 μT than at 2.2 μT for each concentration of egg white at a pulse length of 500 ms or 2000 ms. High-resolution APT CEST imaging on an ultra-high-field MRI system was able to provide tumor information such as proliferative potential and intratumoral bleeding, noninvasively.
Collapse
Affiliation(s)
- Minori Tanoue
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 560-0871, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 560-0871, Japan.
| | - Yusuke Takahashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Rikita Araki
- BioSpin Division, Bruker Japan K.K., Yokohama, Kanagawa 221-0022, Japan
| | - Takashi Hashido
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 560-0871, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 560-0871, Japan
| |
Collapse
|
16
|
Kato Y, Ichikawa K, Okudaira K, Taoka T, Kawaguchi H, Murata K, Maruyama K, Koerzdoerfer G, Pfeuffer J, Nittka M, Naganawa S. Comprehensive Evaluation of B 1+-corrected FISP-based Magnetic Resonance Fingerprinting: Accuracy, Repeatability and Reproducibility of T 1 and T 2 Relaxation Times for ISMRM/NIST System Phantom and Volunteers. Magn Reson Med Sci 2019; 19:168-175. [PMID: 31217366 PMCID: PMC7553811 DOI: 10.2463/mrms.mp.2019-0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose: This study aimed to evaluate comprehensively; accuracy, repeatability and reproducibility of T1 and T2 relaxation times measured by magnetic resonance fingerprinting using B1+-corrected fast imaging with steady-state precession (FISP–MRF). Methods: The International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) phantom was scanned for 100 days, and six healthy volunteers for 5 days using a FISP–MRF prototype sequence. Accuracy was evaluated on the phantom by comparing relaxation times measured by FISP–MRF with the reference values provided by the phantom manufacturer. Daily repeatability was characterized as the coefficient of variation (CV) of the measurements over 100 days for the phantom and over 5 days for volunteers. In addition, the cross-scanner reproducibility was evaluated in volunteers. Results: In the phantom study, T1 and T2 values from FISP–MRF showed a strong linear correlation with the reference values of the phantom (R2 = 0.9963 for T1; R2 = 0.9966 for T2). CVs were <1.0% for T1 values larger than 300 ms, and <3.0% for T2 values across a wide range. In the volunteer study, CVs for both T1 and T2 values were <5.0%, except for one subject. In addition, all T2 values estimated by FISP–MRF in vivo were lower than those measured with conventional mapping sequences reported in previous studies. The cross-scanner variation of T1 and T2 showed good agreement between two different scanners in the volunteers. Conclusion: B1+-corrected FISP-MRF showed an acceptable accuracy, repeatability and reproducibility in the phantom and volunteer studies.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Radiological Technology, Nagoya University Hospital
| | | | | | - Toshiaki Taoka
- Department of Radiology, Graduate School of Medicine, Nagoya University
| | | | | | | | | | | | | | - Shinji Naganawa
- Department of Radiology, Graduate School of Medicine, Nagoya University
| |
Collapse
|
17
|
Radial MP2RAGE sequence for rapid 3D T 1 mapping of mouse abdomen: application to hepatic metastases. Eur Radiol 2019; 29:5844-5851. [PMID: 30888483 DOI: 10.1007/s00330-019-06081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The T1 longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T1 mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion. Consequently, a radial encoding scheme was implemented for the detection and T1 measurement of hepatic metastases in mice at 7T. METHODS A 3D radial encoding scheme was developed using a golden angle distribution for the k-space trajectories. As in that case, each projection contributes to the image contrast, the signal equations had to be modified. Phantoms containing increasing gadoteridol concentrations were used to determine the accuracy of the sequence in vitro. Healthy mice were repetitively scanned to assess the reproducibility of the T1 values. The growth of hepatic metastases was monitored. Undersampling robustness was also evaluated. RESULTS The accuracy of the T1 values obtained with the radial MP2RAGE sequence was > 90% compared to the Inversion-Recovery sequence. The motion robustness of this new sequence also enabled repeatable T1 measurements on abdominal organs. Hepatic metastases of less than 1-mm diameter were easily detected and T1 heterogeneities within the metastasis and between the metastases within the same animal were measured. With a twofold acceleration factor using undersampling, high-quality 3D T1 abdominal maps were achieved in 9 min. CONCLUSIONS The radial MP2RAGE sequence could be used for fast 3D T1 mapping, to detect and characterize metastases in regions subjected to respiratory motion. KEY POINTS • The Cartesian encoding of the MP2RAGE sequence was modified to a radial encoding. The modified sequence enabled accurate T 1 measurements on phantoms and on abdominal organs of mice. • Hepatic metastases were easily detected due to high contrast. Heterogeneity in T 1 was measured within the metastases and between each metastasis within the same animal. • As implementation of this sequence does not require specific hardware, we expect that it could be readily available for clinical practice in humans.
Collapse
|
18
|
García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging 2019; 10:28. [PMID: 30830470 PMCID: PMC6399375 DOI: 10.1186/s13244-019-0703-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cancers represent complex structures, which display substantial inter- and intratumor heterogeneity in their genetic expression and phenotypic features. However, cancers usually exhibit characteristic structural, physiologic, and molecular features and display specific biological capabilities named hallmarks. Many of these tumor traits are imageable through different imaging techniques. Imaging is able to spatially map key cancer features and tumor heterogeneity improving tumor diagnosis, characterization, and management. This paper aims to summarize the current and emerging applications of imaging in tumor biology assessment.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England, HA6 2RN, UK
| | - Antonio Luna-Alcalá
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
- MRI Unit, Clínica Las Nieves, Health Time, Jaén, Spain
| | - Juan Antonio Vallejo-Casas
- Unidad de Gestión Clínica de Medicina Nuclear. IMIBIC. Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Evis Sala
- Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona and IDI, Lorenzana 36, 17002, Girona, Spain
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital & Institute of Cancer Research, Fulham Road, London, SW3 6JJ, UK
| | - Michel Herranz-Carnero
- Nuclear Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Galicia, Spain
- Molecular Imaging Program, IDIS, USC, Santiago de Compostela, Galicia, Spain
| | - Herbert Alberto Vargas
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Radiology, 1275 York Av. Radiology Academic Offices C-278, New York, NY, 10065, USA
| |
Collapse
|
19
|
Ropella-Panagis KM, Seiberlich N, Gulani V. Magnetic Resonance Fingerprinting: Implications and Opportunities for PET/MR. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:388-399. [PMID: 32864537 DOI: 10.1109/trpms.2019.2897425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic Resonance Imaging (MRI) can be used to assess anatomical structure, and its sensitivity to a variety of tissue properties enables superb contrast between tissues as well as the ability to characterize these tissues. However, despite vast potential for quantitative and functional evaluation, MRI is typically used qualitatively, in which the underlying tissue properties are not measured, and thus the brightness of each pixel is not quantitatively meaningful. Positron Emission Tomography (PET) is an inherently quantitative imaging modality that interrogates functional activity within a tissue, probed by a molecule of interest coupled with an appropriate tracer. These modalities can complement one another to provide clinical information regarding both structure and function, but there are still technical and practical hurdles in the way of the integrated use of both modalities. Recent advances in MRI have moved the field in an increasingly quantitative direction, which is complementary to PET, and could also potentially help solve some of the challenges in PET/MR. Magnetic Resonance Fingerprinting (MRF) is a recently described MRI-based technique which can efficiently and simultaneously quantitatively map several tissue properties in a single exam. Here, the basic principles behind the quantitative approach of MRF are laid out, and the potential implications for combined PET/MR are discussed.
Collapse
Affiliation(s)
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
20
|
Trotier AJ, Rapacchi S, Faller TL, Miraux S, Ribot EJ. Compressed-Sensing MP2RAGE sequence: Application to the detection of brain metastases in mice at 7T. Magn Reson Med 2018; 81:551-559. [PMID: 30198115 DOI: 10.1002/mrm.27438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To develop a Compressed Sensing (CS)-MP2RAGE sequence to drastically shorten acquisition duration and then detect and measure the T1 of brain metastases in mice at 7 T. METHODS The encoding trajectory of the standard Cartesian MP2RAGE sequence has been modified (1) to obtain a variable density Poisson disk under-sampling distribution along the ky -kz plane, and (2) to sample the central part of the k-space exactly at TI1 and TI2 inversion times. In a prospective study, the accuracy of the T1 measurements was evaluated on phantoms containing increasing concentrations of gadolinium. The CS acceleration factors were increased to evaluate their influence on the contrast and T1 measurements of brain metastases in vivo. Finally, the 3D T1 maps were acquired with at 4-fold increased spatial resolution. The volumes and T1 values of the metastases were measured while using CS to reduce scan time. RESULTS The implementation of the CS-encoding trajectory did not affect the T1 measurements in vitro. Accelerating the acquisition by a factor of 2 did not alter the contrast or the T1 values of the brain metastases. 3D T1 maps could be obtained in < 1 min using a CS factor of 6. Increasing the spatial resolution enabled more accurately measurement of the metastasis volumes while maintaining an acquisition duration below 5 min. CONCLUSION The CS-MP2RAGE sequence could be of great interest in oncology to either rapidly obtain mouse brain 3D T1 maps or to increase the spatial resolution with no penalty on the scan duration.
Collapse
Affiliation(s)
- Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | | | - Thibaut L Faller
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| |
Collapse
|
21
|
Duetzmann S, Pilatus U, Seifert V, Marquardt G, Setzer M. Ex vivo 1H MR spectroscopy and histology after experimental chronic spinal cord compression. JOURNAL OF SPINE SURGERY 2017; 3:176-183. [PMID: 28744498 DOI: 10.21037/jss.2017.05.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Proton magnetic resonance imaging (MRS) is used increasingly to image the spinal cord in compressive cervical myelopathy (CSM). However, detailed analyses of the underlying histomorphological changes leading to MRS alterations are still lacking. The aim of our study was to correlate neuroimaging and neuropathologic alterations in a rabbit myelopathy model. METHODS Chronic spinal cord compression was induced in a rabbit model (n=16) allowing for a gradual 270° compression of the spinal cord. Spinal cord compression core areas were divided into two samples for (A) 1H MRS and (B) histopathological analyses. Postoperatively the animals underwent a neurological examination twice a day and outcome was categorized in pattern of injury and amount of recovery. RESULTS Three groups were observed and categorized: (I) animals with severe deficits and no or minimal recovery; (II) animals with severe deficits and complete or almost complete recovery; (III) animals with mild to moderate deficits and a complete recovery. Significant differences in the lesioned spinal cords between the different recovery groups were found for N-acetyl-aspartate and choline. NAA/Cr was detected significantly (P<0.001, ANOVA) less in the group that did show permanent neurological deficits. To the contrary, choline was detected significantly (P<0.001, ANOVA) more in the group that did show permanent neurological deficits. Histologically the first group showed more apoptosis and necrosis than the second and third group. CONCLUSIONS MR spectroscopy (MRS) may be helpful for clinicians in improving the prognostic accuracy in cervical myelopathies since this method nicely reflects the extent and severity of spinal cord damage.
Collapse
Affiliation(s)
- Stephan Duetzmann
- Department of Neurosurgery, Central Research Facility, Goethe University, Frankfurt/Main, Germany
| | - Ulrich Pilatus
- Brain Imaging Center, Central Research Facility, Goethe University, Frankfurt/Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, Central Research Facility, Goethe University, Frankfurt/Main, Germany
| | - Gerhard Marquardt
- Department of Neurosurgery, Central Research Facility, Goethe University, Frankfurt/Main, Germany
| | - Matthias Setzer
- Department of Neurosurgery, Central Research Facility, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
22
|
Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T 1 and T 2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med 2016; 78:1452-1457. [PMID: 27790751 DOI: 10.1002/mrm.26509] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE The purpose of this study was to evaluate accuracy and repeatability of T1 and T2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. METHODS The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T1 , T2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T1 and T2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T1 and T2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. RESULTS T1 and T2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R2 = 0.999 for T1 ; R2 = 0.996 for T2 ). The MRF estimates over the wide ranges of T1 and T2 values have less than 5% variation, except for the shortest T2 relaxation times where the method still maintains less than 8% variation. CONCLUSION MRF measurements of T1 and T2 are highly repeatable over time and across wide ranges of T1 and T2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Karl F Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Vikas Gulani
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, Wright KL, Seiberlich N, Griswold MA, Gulani V. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology 2016; 279:278-86. [PMID: 26794935 DOI: 10.1148/radiol.2016152037] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. MATERIALS AND METHODS This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects. RESULTS Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively). CONCLUSION A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.
Collapse
Affiliation(s)
- Yong Chen
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Yun Jiang
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Shivani Pahwa
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Dan Ma
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Lan Lu
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Michael D Twieg
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Katherine L Wright
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Nicole Seiberlich
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Mark A Griswold
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Vikas Gulani
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| |
Collapse
|
24
|
Ravoori MK, Nishimura M, Singh SP, Lu C, Han L, Hobbs BP, Pradeep S, Choi HJ, Bankson JA, Sood AK, Kundra V. Tumor T1 Relaxation Time for Assessing Response to Bevacizumab Anti-Angiogenic Therapy in a Mouse Ovarian Cancer Model. PLoS One 2015; 10:e0131095. [PMID: 26098849 PMCID: PMC4476738 DOI: 10.1371/journal.pone.0131095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 05/28/2015] [Indexed: 12/19/2022] Open
Abstract
Purpose To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed. Results Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis. Conclusions Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response.
Collapse
Affiliation(s)
- Murali K. Ravoori
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Sheela P. Singh
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Chunhua Lu
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lin Han
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Brian P. Hobbs
- Department of Biostatistics, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Sunila Pradeep
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hyun J. Choi
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - James A. Bankson
- Department of Imaging Physics, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vikas Kundra
- Department of Cancer Systems Imaging, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Radiology, U.T.- M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Winfield JM, Payne GS, deSouza NM. Functional MRI and CT biomarkers in oncology. Eur J Nucl Med Mol Imaging 2015; 42:562-78. [PMID: 25578953 DOI: 10.1007/s00259-014-2979-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T1 relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R2*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives.
Collapse
Affiliation(s)
- J M Winfield
- CRUK Imaging Centre at the Institute of Cancer Research, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK,
| | | | | |
Collapse
|