1
|
Jiang C, Qian Y, Bai X, Li S, Zhang L, Xie Y, Lu Y, Lu Z, Liu B, Jiang BH. SLC7A5/E2F1/PTBP1/PKM2 axis mediates progression and therapy effect of triple-negative breast cancer through the crosstalk of amino acid metabolism and glycolysis pathway. Cancer Lett 2025; 617:217612. [PMID: 40054655 DOI: 10.1016/j.canlet.2025.217612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Triple-negative breast cancer (TNBC) is one of the most challenging malignancies with the highest mortality rates among women. TNBC relies on both amino acid metabolism and glycolysis to fuel its bioenergetic and biosynthetic demands. However, the potential crosstalk between these two metabolic pathways and its impact on TNBC progression remain largely unexplored. In this study, we observed that SLC7A5, a key amino acid transporter, was upregulated in TNBC and strongly associated with poor patient prognosis. We demonstrated that the elevated SLC7A5 expression activated the amino acid pathway and promoted cell proliferation, tumor growth, and therapeutic resistance by inducing the switch from PKM1 to PKM2 expression, thereby mediating the crosstalk between amino acid metabolism and glycolysis. We further identified that the upregulation of SLC7A5 resulted from miR-152 suppression, which regulates TNBC cellular function and tumor growth. In addition, the miR-152/SLC7A5 axis mediated the expression of PTBP1, which maintains the balance between PKM1 and PKM2, linking amino acid signaling with the glycolysis pathway. To further understand the mechanism of PTBP1 upregulation, we identified that E2F1 transcriptionally activated PTBP1 expression through direct binding at the seed site, while E2F1 expression was also induced by SLC7A5 in TNBC. This novel SLC7A5/E2F1/PTBP1 axis plays a crucial role in regulating the crosstalk between amino acid signaling and glycolysis in TNBC and is essential for TNBC progression and therapeutic effectiveness. Our findings offer valuable insights into the molecular mechanisms underlying TNBC metabolic reprogramming and highlight potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Chengfei Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Yingchen Qian
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Shuangya Li
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Liyuan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yunxia Xie
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifan Lu
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, China
| | - Bingjie Liu
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Bing-Hua Jiang
- The Third Affiliated Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Alfarsi LH, Ansari RE, Erkan B, Fakroun A, Craze ML, Aleskandarany MA, Cheng KW, Ellis IO, Rakha EA, Green AR. SLC1A5 is a key regulator of glutamine metabolism and a prognostic marker for aggressive luminal breast cancer. Sci Rep 2025; 15:2805. [PMID: 39843491 PMCID: PMC11754656 DOI: 10.1038/s41598-025-87292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Cancer cells exhibit altered metabolism, often relying on glutamine (Gln) for growth. Breast cancer (BC) is a heterogeneous disease with varying clinical outcomes. We investigated the role of the amino acid transporter SLC1A5 (ASCT2) and its association with BC subtypes and patient outcomes. In large BC cohorts, SLC1A5 mRNA (n = 9488) and SLC1A5 protein (n = 1274) levels were assessed and correlated their expression with clinicopathological features, molecular subtypes, and patient outcomes. In vitro SLC1A5 knockdown and inhibition studies in luminal BC cell lines (ZR-75-1 and HCC1500) were used to further explore the role of SLC1A5 in Gln metabolism. Statistical analysis was performed using chi-squared tests, ANOVA, Spearman's correlation, Kaplan-Meier analysis, and Cox regression. SLC1A5 mRNA and SLC1A5 protein expression were strongly correlated in luminal B, HER2 + and triple-negative BC (TNBC). Both high SLC1A5 mRNA and SLC1A5 protein expression were associated with larger tumour size, higher grade, and positive axillary lymph node metastases (P < 0.01). Importantly, high SLC1A5 expression correlated with poor BC-specific survival specifically in the highly proliferative luminal subtype (P < 0.001). Furthermore, SLC1A5 knockdown by siRNA or GPNA inhibition significantly reduced cell proliferation and glutamine uptake in ZR-75-1 cells. Our findings suggest SLC1A5 plays a key role in the aggressive luminal BC subtype and represents a potential therapeutic target. Further research is needed to explore SLC1A5 function in luminal BC and its association with Gln metabolism pathways.
Collapse
Affiliation(s)
- Lutfi H Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Madeleine L Craze
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Kiu Wai Cheng
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, England
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, England
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England.
| |
Collapse
|
3
|
de Azevedo ALK, Gomig THB, Batista M, de Oliveira JC, Cavalli IJ, Gradia DF, Ribeiro EMDSF. Peptidomics and Machine Learning-based Evaluation of Noncoding RNA-Derived Micropeptides in Breast Cancer: Expression Patterns and Functional/Therapeutic Insights. J Transl Med 2024; 104:102150. [PMID: 39393531 DOI: 10.1016/j.labinv.2024.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease characterized by different subtypes arising from molecular alterations that give the disease different phenotypes, clinical behaviors, and prognostic. The noncoding RNA (ncRNA)-derived micropeptides (MPs) represent a novel layer of complexity in cancer study once they can be biologically active and can present potential as biomarkers and also in therapeutics. However, few large-scale studies address the expression of these peptides at the peptidomics level or evaluate their functions and potential in peptide-based therapeutics for breast cancer. In this study, we propose deepening the landscape of ncRNA-derived MPs in breast cancer subtypes and advance the comprehension of the relevance of these molecules to the disease. First, we constructed a 16,349 unique putative MP sequence data set by integrating 2 previously published lists of predicted ncRNA-derived MPs. We evaluated its expression on high-throughput mass spectrometry data of breast tumor samples from different subtypes. Next, we applied several machine and deep learning tools, such as AntiCP 2.0, MULocDeep, PEPstrMOD, Peptipedia, and PreAIP, to predict its functions, cellular localization, tertiary structure, physicochemical features, and other properties related to therapeutics. We identified 58 peptides expressed on breast tissue, including 27 differentially expressed MPs in tumor compared with nontumor samples and MPs exhibiting tumor or subtype specificity. These peptides presented physicochemical features compatible with the canonical proteome and were predicted to influence the tumor immune environment and participate in cell communication, metabolism, and signaling processes. In addition, some MPs presented potential as anticancer, antiinflammatory, and antiangiogenic molecules. Our data demonstrate that MPs derived from ncRNAs have expression patterns associated with specific breast cancer subtypes and tumor specificity, thus highlighting their potential as biomarkers for molecular classification. We also reinforce the relevance of MPs as biologically active molecules that play a role in breast tumorigenesis, besides their potential in peptide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Michel Batista
- Laboratory of Applied Sciences and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil; Mass Spectrometry Facility-RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | | | - Iglenir João Cavalli
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | - Daniela Fiori Gradia
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
4
|
Liu CC, Grencewicz D, Chakravarthy K, Li L, Liepold R, Wolf M, Sangwan N, Tzeng A, Hoyd R, Jhawar SR, Grobmyer SR, Al-Hilli Z, Sciallis AP, Spakowicz D, Ni Y, Eng C. Breast tumor microbiome regulates anti-tumor immunity and T cell-associated metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620864. [PMID: 39554133 PMCID: PMC11565759 DOI: 10.1101/2024.10.29.620864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Breast cancer, the most common cancer type among women, was recently found to contain a specific tumor microbiome, but its impact on host biology remains unclear. CD8+ tumor-infiltrating lymphocytes (TILs) are pivotal effectors of anti-tumor immunity that influence cancer prognosis and response to therapy. This study aims to elucidate interactions between CD8+ TILs and the breast tumor microbiome and metabolites, as well as how the breast tumor microbiome may affect the tumor metabolome. Methods We investigated the interplay among CD8+ TILs, the tumor microbiome, and the metabolome in a cohort of 46 breast cancer patients with mixed subtypes (Cohort A). We characterized the tumor metabolome by mass spectrometry and CD8+ TILs by immunohistochemistry. Microbiome composition and T cell gene transcript levels were obtained from data from our previous study, which utilized 16S rRNA gene sequencing and a targeted mRNA expression panel. To examine interactions between intratumoral Staphylococcus and specific breast cancer subtypes, we analyzed RNA sequencing data from an independent cohort of 370 breast cancer patients (Cohort B). We explored the functions of the tumor microbiome using mouse models of triple-negative breast cancer (TNBC). Results In tumors from Cohort A, the relative abundance of Staphylococcus positively correlated with the expression of T cell activation genes. The abundances of multiple metabolites exhibited significant correlations with CD8+ TILs, of which NADH, γ-glutamyltryptophan, and γ-glutamylglutamate displayed differential abundance in Staphylococcus-positive versus Staphylococcus-negative breast tumors. In a larger breast cancer cohort (Cohort B), we observed positive correlations between tumoral Staphylococcus and CD8+ TIL activity exclusively in TNBC. Preclinical experiments demonstrated that intratumoral administration of S. aureus, the predominant species of Staphylococcus in human breast tumors, resulted in a depletion of total NAD metabolites, and reduced the growth of TNBC tumors by activating CD8+ TILs. Conclusions We identified specific metabolites and microbial taxa associated with CD8+ TILs, delineated interactions between the breast tumor microbiome and metabolome, and demonstrated that intratumoral Staphylococcus influences anti-tumor immunity and TIL-associated metabolites. These findings highlight the role of low-biomass microbes in tumor tissues and provide potential biomarkers and therapeutic agents for breast cancer immunotherapy that merit further investigation.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis Grencewicz
- The Ohio State University College of Medicine, Columbus, OH 43201, USA
| | - Karthik Chakravarthy
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Lin Li
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ruth Liepold
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alice Tzeng
- Department of Medical Oncology, Dana–Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Stephen R. Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew P. Sciallis
- Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Ying Ni
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High-Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Liu J, Shi J, Zhang T, Chen M, Li Z, Lu C, Wang F. Serum and Fecal Metabolite Profiles Linking With Gut Microbiome in Triple-Negative Breast Cancer Patients. Breast Cancer (Auckl) 2024; 18:11782234241285645. [PMID: 39372067 PMCID: PMC11456214 DOI: 10.1177/11782234241285645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by poor prognosis due to the absence of effective targeted therapies. Emerging evidence indicates that the gut microbiota and its metabolites play a key role in the occurrence and development of TNBC. This study aimed to explore the metabolic changes and potential mechanisms associated with TNBC. Objectives This study aimed to explore the potential relationship between targeted metabolites and the gut microbiota in TNBC. Design We recruited 8 participants, including 4 with TNBC and 4 with benign fibroadenomas as controls. Methods The gut microbiota was analyzed using metagenomics on fecal samples. Liquid chromatography-mass spectrometry (LC-MS) was employed to identify differential metabolites in serum and fecal samples. The correlation between the gut microbiota and metabolites was analyzed using Spearman's correlation analysis. Results Analysis of altered serum metabolites in the TNBC group revealed changes, particularly in carboxylic acids and derivatives, benzene, and substituted derivatives. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis revealed significant enrichment in 18 pathways. Regarding fecal metabolites, differences between the 2 groups also included carboxylic acids and derivatives, benzene, and substituted derivatives, with 28 metabolic pathways enriched based on KEGG pathway analysis. Metagenomics analysis showed differences in the relative abundance of Anaerococcus, Fischerella, and Schizosaccharomyces at the genus level, which have been previously associated with breast cancer. Furthermore, 4 serum metabolites-L-glutamine, citrate, creatinine, and creatine-along with 9 fecal metabolites, were associated with the aforementioned microbiota. Conclusion Our findings highlight distinct metabolite profiles in the serum and feces of patients with TNBC. The identification of gut microbiota and their associated metabolites provides new insights into the pathophysiological mechanisms underlying TNBC.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Jing Shi
- Department of Breast Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Zhang
- Department of Breast Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mie Chen
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Zhennan Li
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Cheng Lu
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
- Department of Breast Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengliang Wang
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| |
Collapse
|
6
|
Xie F, Hua S, Guo Y, Wang T, Shan C, Zhang L, He T. Identification of TAT as a Biomarker Involved in Cell Cycle and DNA Repair in Breast Cancer. Biomolecules 2024; 14:1088. [PMID: 39334853 PMCID: PMC11430390 DOI: 10.3390/biom14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and the primary cause of cancer-related mortality in women. Treatment of triple-negative breast cancer (TNBC) remains particularly challenging due to its resistance to chemotherapy and poor prognosis. Extensive research efforts in BC screening and therapy have improved clinical outcomes for BC patients. Therefore, identifying reliable biomarkers for TNBC is of great clinical importance. Here, we found that tyrosine aminotransferase (TAT) expression was significantly reduced in BC and strongly correlated with the poor prognosis of BC patients, which distinguished BC patients from normal individuals, indicating that TAT is a valuable biomarker for early BC diagnosis. Mechanistically, we uncovered that methylation of the TAT promoter was significantly increased by DNA methyltransferase 3 (DNMT3A/3B). In addition, reduced TAT contributes to DNA replication and cell cycle activation by regulating homologous recombination repair and mismatch repair to ensure genomic stability, which may be one of the reasons for TNBC resistance to chemotherapy. Furthermore, we demonstrated that Diazinon increases TAT expression as an inhibitor of DNMT3A/3B and inhibits the growth of BC by blocking downstream pathways. Taken together, we revealed that TAT is silenced by DNMT3A/3B in BC, especially in TNBC, which promotes the proliferation of tumor cells by supporting DNA replication, activating cell cycle, and enhancing DNA damage repair. These results provide fresh insights and a theoretical foundation for the clinical diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Saiwei Hua
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Yajuan Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Taoyuan Wang
- Cardiothoracic Surgery Department, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin 300162, China;
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| |
Collapse
|
7
|
Gadwal A, Panigrahi P, Khokhar M, Sharma V, Setia P, Vishnoi JR, Elhence P, Purohit P. A critical appraisal of the role of metabolomics in breast cancer research and diagnostics. Clin Chim Acta 2024; 561:119836. [PMID: 38944408 DOI: 10.1016/j.cca.2024.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer (BC) remains the most prevalent cancer among women worldwide, despite significant advancements in its prevention and treatment. The escalating incidence of BC globally necessitates continued research into novel diagnostic and therapeutic strategies. Metabolomics, a burgeoning field, offers a comprehensive analysis of all metabolites within a cell, tissue, system, or organism, providing crucial insights into the dynamic changes occurring during cancer development and progression. This review focuses on the metabolic alterations associated with BC, highlighting the potential of metabolomics in identifying biomarkers for early detection, diagnosis, treatment and prognosis. Metabolomics studies have revealed distinct metabolic signatures in BC, including alterations in lipid metabolism, amino acid metabolism, and energy metabolism. These metabolic changes not only support the rapid proliferation of cancer cells but also influence the tumour microenvironment and therapeutic response. Furthermore, metabolomics holds great promise in personalized medicine, facilitating the development of tailored treatment strategies based on an individual's metabolic profile. By providing a holistic view of the metabolic changes in BC, metabolomics has the potential to revolutionize our understanding of the disease and improve patient outcomes.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Pragyan Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vaishali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Puneet Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
8
|
Jassem HA, Thaaban AJ. Prognostic value of serum phosphoglycerate dehydrogenase and glycine levels in breast cancer. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:69-74. [PMID: 39391524 PMCID: PMC11462141 DOI: 10.5114/pm.2024.140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/12/2024] [Indexed: 10/12/2024]
Abstract
Introduction Breast cancer (BC) is the most frequent cancer in women and is a serious worldwide health issue. Phosphoglycerate dehydrogenase (PHGDH) is an enzyme that catalyses the first steps in the serine biosynthetic pathways downstream of glycolysis. Phosphoglycerate and glycine are produced by a series of enzymatic processes from the glycolysis intermediate 3-phosphoglycerate. The aim of the study was to indicate the levels of PHGDH and glycine in patients with breast cancer. Material and methods The study was performed from December 2022 to March 2023. The total number of samples was 135 samples - 65 samples were collected from women with breast cancer, and 70 samples were from healthy women as a control group. Blood samples (5 ml) were obtained from all study group members. The complete blood count (CBC) neutrophils/lymphocytes, and haemoglobin ratio analysis was done on a CBC haematology analyser (Sysmex, Japan). Serum PHGDH and glycine were measure by enzyme-linked immunosorbent assay. Results The study findings revealed a significant increase in the neutrophil/lymphocytes ratio and a decrease in PHGDH level in patients with BC compare to controls (p < 0.01), while the serum glycine level showed a significant increase in patients with BC compare to the control group (p < 0.01). Conclusions Reduced PHGDH level and high glycine concentration in patients with BC could act as a prognostic factor in cancer development.
Collapse
Affiliation(s)
- Hussam Abd Jassem
- Medical Chemistry Department, College of Medicine, University of AL-Qadisiyah, Al- Diywaniyah, Iraq
| | - Anwar Jasib Thaaban
- Medical Chemistry Department, College of Medicine, University of AL-Qadisiyah, Al- Diywaniyah, Iraq
| |
Collapse
|
9
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
10
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
11
|
Taborda Ribas H, Sogayar MC, Dolga AM, Winnischofer SMB, Trombetta-Lima M. Lipid profile in breast cancer: From signaling pathways to treatment strategies. Biochimie 2024; 219:118-129. [PMID: 37993054 DOI: 10.1016/j.biochi.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Breast cancer is the most prevalent cancer in women. Metabolic abnormalities, particularly increased lipid synthesis and uptake, impact the onset and progression of the disease. However, the influence of lipid metabolism in breast cancer varies according to the disease stage and patient's hormone status. In postmenopausal patients, obesity is associated with a higher risk and poor prognosis of luminal tumors, while in premenopausal individuals, it is correlated to BRCA mutated tumors. In fact, the tumor's lipid profile may be used to distinguish between HER2+, luminal and BRCA-mutated tumors. Moreover, drug resistance was associated with increased fatty acid synthesis and alterations in membrane composition, impacting its fluidity and spatial subdomains such as lipid rafts. Here, we discuss the subtype-specific lipid metabolism alterations found in breast cancer and the potentiality of its modulation in a clinical setting.
Collapse
Affiliation(s)
- Hennrique Taborda Ribas
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands; Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands
| | - Sheila M B Winnischofer
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil; Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil; Postgraduate Program in Cellular and Molecular Biology, Biological Sciences Sector, UFPR, Curitiba, Brazil.
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands.
| |
Collapse
|
12
|
Tan Z, Boyapati K, Tressler CM, Jenkinson NM, Glunde K. Glutamine transporter SLC38A3 promotes breast cancer metastasis via Gsk3β/β-catenin/EMT pathway. Cancer Lett 2024; 586:216653. [PMID: 38309615 DOI: 10.1016/j.canlet.2024.216653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Breast cancer is the leading cancer-related cause of death in women. Here we show that solute carrier family 38-member 3 (SLC38A3) is overexpressed in breast cancer, particularly in triple-negative breast cancer (TNBC) cells and tissues. Our study reveals that SLC38A3 regulates cellular glutamine, glutamate, asparagine, aspartate, alanine, and glutathione (GSH) levels in breast cancer cells. Our data demonstrate that SLC38A3 enhances cell viability, cell migration and invasion in vitro, and promotes tumor growth and metastasis in vivo, while reducing apoptosis and oxidative stress. Mechanistically, we show that SLC38A3 suppresses the activity of glycogen synthase kinase 3-β (Gsk3β), a negative regulator of β-catenin, and increases protein levels of β-catenin, leading to the upregulation of epithelial-to-mesenchymal-transition (EMT)-inducing transcription factors and EMT markers in breast cancer. In summary, we show that SLC38A3 is overexpressed in breast cancer and promotes breast cancer metastasis via the GSK3β/β-catenin/EMT pathway, presenting a novel therapeutic target to explore for breast cancer.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Arenas M, Fargas-Saladié M, Moreno-Solé M, Moyano-Femenia L, Jiménez-Franco A, Canela-Capdevila M, Castañé H, Martínez-Navidad C, Camps J, Joven J. Metabolomics and triple-negative breast cancer: A systematic review. Heliyon 2024; 10:e23628. [PMID: 38187259 PMCID: PMC10770474 DOI: 10.1016/j.heliyon.2023.e23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Triple-negative breast cancer stands out as the most aggressive subtype of breast malignancy and is characterized by an unfavourable prognosis. Objective: This systematic review summarizes the insights gleaned from metabolomic analyses of individuals afflicted with this cancer variant. The overarching goal was to delineate the molecular alterations associated with triple-negative breast cancer, pinpointing potential therapeutic targets and novel biomarkers. Methods: We systematically searched for evidence using the PubMed database and followed the PRISMA and STARLITE guidelines. The search parameters were delimited to articles published within the last 13 years. Results: From an initial pool of 148 scrutinized articles, 17 studies involving 1686 participants were deemed eligible for inclusion. The current body of research shows a paucity of studies, and the available evidence presents conflicting outcomes. Notwithstanding, Pathway Enrichment Analysis identified the urea and glucose-alanine cycles as the most affected metabolic pathways, followed by arginine, proline, and aspartate metabolism. Conclusion: Future investigations need to focus on elucidating which of those metabolites and/or pathways might be reliable candidates for novel therapeutic interventions or reliable biomarkers for diagnosis and prognosis of this subtype of breast cancer.
Collapse
Affiliation(s)
- Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Maria Fargas-Saladié
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Marta Moreno-Solé
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Lucía Moyano-Femenia
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Marta Canela-Capdevila
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut D'Investigació Sanitària Pere Virgili, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
14
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
15
|
Huang R, Wang H, Hong J, Wu J, Huang O, He J, Chen W, Li Y, Chen X, Shen K, Wang Z. Targeting glutamine metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative breast cancer. Front Immunol 2023; 14:1251643. [PMID: 37731509 PMCID: PMC10507177 DOI: 10.3389/fimmu.2023.1251643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a heterogeneous disease that is characterized by metabolic disruption. Metabolic reprogramming and tumor cell immune escape play indispensable roles in the tumorigenesis that leads to TNBC. Methods In this study, we constructed and validated two prognostic glutamine metabolic gene models, Clusters A and B, to better discriminate between groups of TNBC patients based on risk. Compared with the risk Cluster A patients, the Cluster B patients tended to exhibit better survival outcomes and higher immune cell infiltration. In addition, we established a scoring system, the glutamine metabolism score (GMS), to assess the pattern of glutamine metabolic modification. Results We found that solute carrier family 7 member 5 (SLC7A5), an amino acid transporter, was the most important gene and plays a vital role in glutamine metabolism reprogramming in TNBC cells. Knocking down SLC7A5 significantly inhibited human and mouse TNBC cell proliferation, migration, and invasion. In addition, downregulation of SLC7A5 increased CD8+ T-cell infiltration. The combination of a SLC7A5 blockade mediated via JPH203 treatment and an anti-programmed cell death 1 (PD-1) antibody synergistically increased the immune cell infiltration rate and inhibited tumor progression. Conclusions Hence, our results highlight the molecular mechanisms underlying SLC7A5 effects and lead to a better understanding of the potential benefit of targeting glutamine metabolism in combination with immunotherapy as a new therapy for TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Karimpur Zahmatkesh A, Khalaj-Kondori M, Hosseinpour Feizi MA, Baradaran B. GLUL gene knockdown and restricted glucose level show synergistic inhibitory effect on the luminal subtype breast cancer MCF7 cells' proliferation and metastasis. EXCLI JOURNAL 2023; 22:847-861. [PMID: 37780942 PMCID: PMC10539544 DOI: 10.17179/excli2023-6287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023]
Abstract
The glutamine synthetase path is one of the most important metabolic pathways in luminal breast cancer cells, which plays a critical role in supplying glutamine as an intermediate in the biosynthesis of amino acids and nucleotides. On the other hand, glycolysis and its dominant substrate, glucose, are the most critical players in cancer metabolism. Accordingly, targeting these two critical paths might be more efficient in luminal-type breast cancer treatment. MCF7 cells were cultivated in media containing 4.5, 2, and 1 g/L glucose to study its effects on GLUL (Glutamate Ammonia Ligase) expression. Followingly, high and low glucose cell cultures were transfected with 220 pM of siGLUL and incubated for 48 h at 37 ºC. The cell cycle progression and apoptosis were monitored and assessed by flow cytometry. Expression of GLUL, known as glutamine synthetase, was evaluated in mRNA and protein levels by qRT-PCR and western blotting, respectively. To examine the migration and invasion capacity of studied cells exploited from wound healing assay and subsequent expression studies of glutathione-S-transferase Mu3 (GSTM3) and alfa-enolase (ENO1). Expression of GLUL significantly decreased in cells cultured at lower glucose levels compared to those at higher glucose levels. siRNA-mediated knockdown of GLUL expression in low glucose cultures significantly reduced growth, proliferation, migration, and invasion of the MCF7 cells and enhanced their apoptosis compared to the controls. Based on the results, GLUL suppression down-regulated GSTM3, a main detoxifying enzyme, and up-regulated Bax. According to the role of glycolysis as a ROS suppressor, decreased amounts of glucose could be associated with increased ROS; it can be considered an efficient involved mechanism in this study. Also, increased expression of Bax could be attributable to mTOR/AKT inhibition following GLUL repression. In conclusion, utilizing GLUL and glycolysis inhibitors might be a more effective strategy in luminal-type breast cancer therapy. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz
| |
Collapse
|
18
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
19
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
20
|
Jiao Z, Pan Y, Chen F. The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Mol Diagn Ther 2023; 27:349-369. [PMID: 36991275 DOI: 10.1007/s40291-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer is the most common malignant tumor globally as of 2020 and remains the second leading cause of cancer-related death among female individuals worldwide. Metabolic reprogramming is well recognized as a hallmark of malignancy owing to the rewiring of multiple biological processes, notably, glycolysis, oxidative phosphorylation, pentose phosphate pathway, as well as lipid metabolism, which support the demands for the relentless growth of tumor cells and allows distant metastasis of cancer cells. Breast cancer cells are well documented to reprogram their metabolism via mutations or inactivation of intrinsic factors such as c-Myc, TP53, hypoxia-inducible factor, and the PI3K/AKT/mTOR pathway or crosstalk with the surrounding tumor microenvironments, including hypoxia, extracellular acidification and interaction with immune cells, cancer-associated fibroblasts, and adipocytes. Furthermore, altered metabolism contributes to acquired or inherent therapeutic resistance. Therefore, there is an urgent need to understand the metabolic plasticity underlying breast cancer progression as well as to dictate metabolic reprogramming that accounts for the resistance to standard of care. This review aims to illustrate the altered metabolism in breast cancer and its underlying mechanisms, as well as metabolic interventions in breast cancer treatment, with the intention to provide strategies for developing novel therapeutic treatments for breast cancer.
Collapse
Affiliation(s)
- Zhuoya Jiao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
21
|
Wang F, Ma S, Chen P, Han Y, Liu Z, Wang X, Sun C, Yu Z. Imaging the metabolic reprograming of fatty acid synthesis pathway enables new diagnostic and therapeutic opportunity for breast cancer. Cancer Cell Int 2023; 23:83. [PMID: 37120513 PMCID: PMC10149015 DOI: 10.1186/s12935-023-02908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Reprogrammed metabolic network is a key hallmark of cancer. Profiling cancer metabolic alterations with spatial signatures not only provides clues for understanding cancer biochemical heterogeneity, but also helps to decipher the possible roles of metabolic reprogramming in cancer development. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to characterize the expressions of fatty acids in breast cancer tissues. Specific immunofluorescence staining was further carried out to investigate the expressions of fatty acid synthesis-related enzymes. RESULTS The distributions of 23 fatty acids in breast cancer tissues have been mapped, and the levels of most fatty acids in cancer tissues are significantly higher than those in adjacent normal tissues. Two metabolic enzymes, fatty acid synthase (FASN) and acetyl CoA carboxylase (ACC), which being involved in the de novo synthesis of fatty acid were found to be up-regulated in breast cancer. Targeting the up-regulation of FASN and ACC is an effective approach to limiting the growth, proliferation, and metastasis of breast cancer cells. CONCLUSIONS These spatially resolved findings enhance our understanding of cancer metabolic reprogramming and give an insight into the exploration of metabolic vulnerabilities for better cancer treatment.
Collapse
Affiliation(s)
- Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shuangshuang Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Panpan Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhaoyun Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
22
|
Munkácsy G, Santarpia L, Győrffy B. Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24086945. [PMID: 37108109 PMCID: PMC10138520 DOI: 10.3390/ijms24086945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell-cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Oncology Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
| |
Collapse
|
23
|
Yu C, Wang N, Chen X, Jiang Y, Luan Y, Qin W, He W. A photodynamic-mediated glutamine metabolic intervention nanodrug for triple negative breast cancer therapy. Mater Today Bio 2023; 19:100577. [PMID: 36846308 PMCID: PMC9950525 DOI: 10.1016/j.mtbio.2023.100577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
"Glutamine addiction" is a unique feature of triple negative breast cancer (TNBC), which has a higher demand for glutamine and is more susceptible to glutamine depletion. Glutamine can be hydrolyzed to glutamate by glutaminase (GLS) for synthesis of glutathione (GSH), which is an important downstream of glutamine metabolic pathways in accelerating TNBC proliferation. Consequently, glutamine metabolic intervention suggests potential therapeutic effects against TNBC. However, the effects of GLS inhibitors are hindered by glutamine resistance and their own instability and insolubility. Therefore, it is of great interest to harmonize glutamine metabolic intervention for an amplified TNBC therapy. Unfortunately, such nanoplatform has not been realized. Herein, we reported a self-assembly nanoplatform (BCH NPs) with a core of the GLS inhibitor Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and photosensitizer Chlorin e6 (Ce6) and a shell of human serum albumin (HSA), enabling effective harmonization of glutamine metabolic intervention for TNBC therapy. BPTES inhibited the activity of GLS to block the glutamine metabolic pathways, thereby inhibiting the production of GSH to amplify the photodynamic effect of Ce6. While Ce6 not only directly killed tumor cells by producing excessive reactive oxygen species (ROS), but also deplete GSH to destroy redox balance, thus enhancing the effects of BPTES when glutamine resistance occurred. BCH NPs effectively eradicated TNBC tumor and suppressed tumor metastasis with favorable biocompatibility. Our work provides a new insight for photodynamic-mediated glutamine metabolic intervention against TNBC.
Collapse
Affiliation(s)
- Cancan Yu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ningning Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiangwu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yue Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wen Qin
- Shandong University Hospital, Cheeloo College of Medicine, Shandong, University, Jinan 250012, China,Corresponding author. Wen Qin
| | - Wenxiu He
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China,Corresponding author. Wenxiu He School of Pharmaceutical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| |
Collapse
|
24
|
Premaratne A, Ho C, Basu S, Khan AF, Bawa-Khalfe T, Lin CY. Liver X Receptor Inverse Agonist GAC0001E5 Impedes Glutaminolysis and Disrupts Redox Homeostasis in Breast Cancer Cells. Biomolecules 2023; 13:biom13020345. [PMID: 36830714 PMCID: PMC9953168 DOI: 10.3390/biom13020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors which regulate the expression of lipid and cholesterol metabolism genes. Moreover, LXRs and their ligands have been shown to inhibit tumor growth in a variety of cancers. We have previously identified the small molecule compound GAC0001E5 (1E5) as an LXR inverse agonist and a potent inhibitor of pancreatic cancer cells. Transcriptomic and metabolomic studies showed that 1E5 disrupts glutamine metabolism, an essential metabolic pathway commonly reprogrammed during malignant transformation, including in breast cancers. To determine the role of LXRs and potential application of 1E5 in breast cancer, we examined LXR expression in publicly available clinical samples, and found that LXR expression is elevated in breast tumors as compared to normal tissues. In luminal A, endocrine therapy-resistant, and triple-negative breast cancer cells, 1E5 exhibited LXR inverse agonist and "degrader" activity and strongly inhibited cell proliferation and colony formation. Treatments with 1E5 downregulated the transcription of key glutaminolysis genes, and, correspondingly, biochemical assays indicated that 1E5 lowered intracellular glutamate and glutathione levels and increased reactive oxygen species. These results indicate that novel LXR ligand 1E5 is an inhibitor of glutamine metabolism and redox homeostasis in breast cancers and suggest that modulating LXR activity and expression in tumor cells is a promising strategy for targeting metabolic reprogramming in breast cancer therapeutics.
Collapse
|
25
|
Schoeppe R, Babl N, Decking SM, Schönhammer G, Siegmund A, Bruss C, Dettmer K, Oefner PJ, Frick L, Weigert A, Jantsch J, Herr W, Rehli M, Renner K, Kreutz M. Glutamine synthetase expression rescues human dendritic cell survival in a glutamine-deprived environment. Front Oncol 2023; 13:1120194. [PMID: 36741028 PMCID: PMC9894315 DOI: 10.3389/fonc.2023.1120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function. Methods Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses. Results The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate. Discussion Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages.
Collapse
Affiliation(s)
- Robert Schoeppe
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department for Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Siegmund
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Gynecology and Obstetrics, University Hospital Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Linus Frick
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Anna Weigert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department for Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| |
Collapse
|
26
|
Sun XB, Liu WW, Wang B, Yang ZP, Tang HZ, Lu S, Wang YY, Qu JX, Rao BQ. Correlations between serum lipid and Ki-67 levels in different breast cancer molecular subcategories. Oncol Lett 2022; 25:53. [PMID: 36644143 PMCID: PMC9827470 DOI: 10.3892/ol.2022.13639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has the highest incidence rate among all cancer types worldwide, seriously threatening women's health. The present retrospective study explored differences in serum lipid contents in different breast cancer (BC) subcategories and their correlation with Ki-67 expression levels in patients with invasive BC with the aim of identifying novel diagnostic and prognostic indicators for personalized BC treatment. The study included 170 patients diagnosed with BC who were diagnosed with invasive BC by postoperative pathological examination. Data on patient age, body mass index and menopausal status were collected, in addition to estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2) and antigen Ki-67 expression levels and pathological tumor type. Preoperative circulating lipid levels, specifically the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and apolipoproteins A1 (ApoA1) and B (ApoB) were also obtained. Molecular subcategories of BC were grouped based on their immunohistochemistry. Differences in serum lipid levels between the groups were assessed, and correlations between serum lipid and Ki-67 expression levels were explored. While TC, LDL-C, HDL-C and ApoA1 levels differed significantly among molecular subcategories. TG and ApoB levels did not. Circulating TC and LDL-C levels were considerably higher in patients with triple-negative BC (TNBC) and HER2-positive [hormone receptor (HR)-negative] BC than in those with luminal A and B (HER2-negative) BC. Serum HDL-C levels were significantly diminished in the TNBC and HER2-positive (HR-negative) groups compared with the luminal A and B (HER2-negative) groups. ApoA1 levels were significantly reduced in cases of TNBC and HER2-positive (HR-negative) BC compared with luminal A and B BC. Ki-67 expression levels were positively correlated with circulating TC and LDL-C levels and inversely correlated with circulating HDL-C and ApoA1 levels but exhibited no correlation with serum ApoB and TG levels. The results indicate that elevated TC and LDL-C levels and diminished HDL-C and ApoA1 levels were high-risk factors in patients with TNBC and HER2-positive (HR-negative) BC, but not patients with luminal subcategories of BC. Abnormal serum lipid levels were correlated with Ki-67 expression levels, with elevated circulating TC and LDL-C levels and reduced circulating HDL-C and ApoA1 levels indicating a poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Xi-Bo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| | - Wen-Wen Liu
- The Second Department of General Surgery, Shanxian Central Hospital, He'ze, Shandong 274300, P.R. China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Zhen-Peng Yang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Hua-Zhen Tang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Yu-Ying Wang
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Jin-Xiu Qu
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Ben-Qiang Rao
- Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, P.R. China,Correspondence to: Professor Ben-Qiang Rao, Department of Gastrointestinal Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, 115 Yangfangdian, Haidian, Beijing 100038, P.R. China, E-mail:
| |
Collapse
|
27
|
Poddar A, Rao SR, Prithviraj P, Kannourakis G, Jayachandran A. Crosstalk between Immune Checkpoint Modulators, Metabolic Reprogramming and Cellular Plasticity in Triple-Negative Breast Cancer. Curr Oncol 2022; 29:6847-6863. [PMID: 36290817 PMCID: PMC9601266 DOI: 10.3390/curroncol29100540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is one of the major causes of mortality in women worldwide. Accounting for 15-20% of all breast cancer diagnoses, the triple-negative breast cancer (TNBC) subtype presents with an aggressive clinical course, heightened metastatic potential and the poorest short-term prognosis. TNBC does not respond to hormonal therapy, only partially responds to radio- and chemotherapy, and has limited targeted therapy options, thus underlining the critical need for better therapeutic treatments. Although immunotherapy based on immune checkpoint inhibition is emerging as a promising treatment option for TNBC patients, activation of cellular plasticity programs such as metabolic reprogramming (MR) and epithelial-to-mesenchymal transition (EMT) causes immunotherapy to fail. In this report, we review the role of MR and EMT in immune checkpoint dysregulation in TNBCs and specifically shed light on development of novel combination treatment modalities for this challenging disease. We highlight the clinical relevance of crosstalk between MR, EMT, and immune checkpoints in TNBCs.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC 3800, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sushma R. Rao
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- School of Science, Psychology and Sports, Federation University Australia, Ballarat, VIC 3350, Australia
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| |
Collapse
|
28
|
Quek LE, van Geldermalsen M, Guan YF, Wahi K, Mayoh C, Balaban S, Pang A, Wang Q, Cowley MJ, Brown KK, Turner N, Hoy AJ, Holst J. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene 2022; 41:4066-4078. [PMID: 35851845 PMCID: PMC9391225 DOI: 10.1038/s41388-022-02408-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
Abstract
Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.
Collapse
Affiliation(s)
- Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia.
| | - Michelle van Geldermalsen
- Origins of Cancer Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Yi Fang Guan
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Kanu Wahi
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Seher Balaban
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Angel Pang
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Qian Wang
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Kristin K Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- School of Medical Sciences and School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
29
|
Choi JS, Yoon D, Han K, Koo JS, Kim S, Kim MJ. Impact of intratumoral heterogeneity on the metabolic profiling of breast cancer tissue using high-resolution magic angle spinning magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2022; 35:e4682. [PMID: 34959254 DOI: 10.1002/nbm.4682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) is a useful metabolic profiling technique for human tissue. However, the impact of intratumoral heterogeneity on the metabolite levels of breast cancers is not yet established. The purpose of this prospective study was to investigate whether the tumor cell fraction of core needle biopsy (CNB) specimens of breast cancers affect metabolic profiles assessed with HR-MAS MRS. From June 2015 to December 2016, 46 patients with 47 breast cancers were enrolled. HR-MAS MRS was used for the metabolic profiling of 285 CNB specimens from the 47 cancers. Multiple CNB samples (range 2-8) for the HR-MAS MRS experiment were obtained from surgical specimens under ultrasound guidance following surgical removal of the tumor. Tumor cell fraction was expressed as a percentage of the tumor cell volume relative to the total tumor volume contained in each CNB sample. Metabolite quantification levels were compared according to primary tumor characteristics using the t-test. Multivariate analyses were performed including primary tumor characteristics and tumor cell percentages as variables. Correlations between tumor cell percentage and metabolite levels in the CNB specimens were assessed according to the immunohistochemical status of the primary tumor. In univariate analysis, levels of choline-containing compounds, glutamate, glutamine, glycine, serine, and taurine were correlated with primary tumor characteristics. In multivariate analysis, most metabolite levels were not affected by tumor cell percentage. Tumor cell percentage showed poor correlation with metabolite levels in hormone receptor-positive cancer and triple-negative cancer, and poor to fair correlation with metabolite levels in HER2-positive cancer. This study showed that differences in the tumor cell fraction of CNB samples do not affect predictions on the primary cancer from which the samples are obtained.
Collapse
Affiliation(s)
- Ji Soo Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Min Jung Kim
- Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
López-Camacho E, Trilla-Fuertes L, Gámez-Pozo A, Dapía I, López-Vacas R, Zapater-Moros A, Lumbreras-Herrera MI, Arias P, Zamora P, Vara JÁF, Espinosa E. Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer. Biomed Pharmacother 2022; 149:112844. [PMID: 35339109 DOI: 10.1016/j.biopha.2022.112844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022] Open
Abstract
The triple-negative breast cancer (TNBC) subtype comprises approximately 15% of all breast cancers and is associated with poor long-term outcomes. Classical chemotherapy remains the standard of treatment, with toxicity and resistance being major limitations. TNBC is a high metabolic group, and antimetabolic drugs are effective in inhibiting TNBC cell growth. We analyzed the combined effect of chemotherapy and antimetabolic drug combinations in MDA-MB-231, MDA-MB-468 and HCC1143 human TNBC cell lines. Cells were treated with each drug or with drug combinations at a range of concentrations to establish the half-maximal inhibitory concentrations (IC50). The dose-effects of each drug or drug combination were calculated, and the synergistic or antagonistic effects of drug combinations were defined. Chemotherapy and antimetabolic drugs exhibited growth inhibitory effects on TNBC cell lines. Antimetabolic drugs targeting the glycolysis pathway had a synergistic effect with chemotherapy drugs, and antiglycolysis drug combinations also had a synergistic effect. The use of these drug combinations could lead to new therapeutic strategies that reduce chemotherapy drug doses, decreasing their toxic effect, or that maintain the doses but enhance their efficacy by their synergistic effect with other drugs.
Collapse
Affiliation(s)
- Elena López-Camacho
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain; Biomedica Molecular Medicine SL, Madrid, Spain
| | | | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain; Biomedica Molecular Medicine SL, Madrid, Spain
| | - Irene Dapía
- Pharmacogenetics Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Autonomous University of Madrid, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases-CIBERER, ISCIII, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Andrea Zapater-Moros
- Biomedica Molecular Medicine SL, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | | | - Pedro Arias
- Pharmacogenetics Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Autonomous University of Madrid, Madrid, Spain; Biomedical Research Networking Center on Rare Diseases-CIBERER, ISCIII, Madrid, Spain
| | - Pilar Zamora
- Medical Oncology Service, La Paz University Hospital, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Enrique Espinosa
- Medical Oncology Service, La Paz University Hospital, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.
| |
Collapse
|
31
|
How previous treatment changes the metabolomic profile in patients with metastatic breast cancer. Arch Gynecol Obstet 2022; 306:2115-2122. [PMID: 35467121 PMCID: PMC9633507 DOI: 10.1007/s00404-022-06558-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 01/29/2023]
Abstract
Purpose Metabolites are in the spotlight of attention as promising novel breast cancer biomarkers. However, no study has been conducted concerning changes in the metabolomics profile of metastatic breast cancer patients according to previous therapy. Methods We performed a retrospective, single-center, nonrandomized, partially blinded, treatment-based study. Metastatic breast cancer (MBC) patients were enrolled between 03/2010 and 09/2016 at the beginning of a new systemic therapy. The endogenous metabolites in the plasma samples were analyzed using the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences AG, Innsbruck) a targeted, quality and quantitative-controlled metabolomics approach. The statistical analysis was performed using R package, version 3.3.1. ANOVA was used to statistically assess age differences within groups. Furthermore, we analyzed the CTC status of the patients using the CellSearch™ assay. Results We included 178 patients in our study. Upon dividing the study population according to therapy before study inclusion, we found the following: 4 patients had received no therapy, 165 chemotherapy, and 135 anti-hormonal therapy, 30 with anti-Her2 therapy and 38 had received treatment with bevacizumab. Two metabolites were found to be significantly different, depending on the further therapy of the patients: methionine and serine. Whereas methionine levels were higher in the blood of patients who received an anti-Her2-therapy, serine was lower in patients with endocrine therapy only. Conclusion We identified two metabolites for which concentrations differed significantly depending on previous therapies, which could help to choose the next therapy in patients who have already received numerous different treatments.
Collapse
|
32
|
Magnetic Resonance Imaging (MRI) and MR Spectroscopic Methods in Understanding Breast Cancer Biology and Metabolism. Metabolites 2022; 12:metabo12040295. [PMID: 35448482 PMCID: PMC9030399 DOI: 10.3390/metabo12040295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
A common malignancy that affects women is breast cancer. It is the second leading cause of cancer-related death among women. Metabolic reprogramming occurs during cancer growth, invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of techniques have shown potential for illustrating physiological and molecular processes changes before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H) MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood, urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies can provide information on more metabolites than what is seen by in vivo MRS, thus providing a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed enormous potential in the development of new therapeutic approaches. Recently, multiparametric MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in the diagnosis and therapeutic monitoring of breast cancer.
Collapse
|
33
|
Chamaraux-Tran TN, Muller M, Pottecher J, Diemunsch PA, Tomasetto C, Namer IJ, Dali-Youcef N. Metabolomic Impact of Lidocaine on a Triple Negative Breast Cancer Cell Line. Front Pharmacol 2022; 13:821779. [PMID: 35273500 PMCID: PMC8902240 DOI: 10.3389/fphar.2022.821779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Metabolomics and onco-anesthesia are two emerging research fields in oncology. Metabolomics (metabolites analysis) is a new diagnostic and prognostic tool that can also be used for predicting the therapeutic or toxic responses to anticancer treatments. Onco-anesthesia studies assess the impact of anesthesia on disease-free and overall survival after cancer surgery. It has been shown that local anesthetics (LA), particularly lidocaine (LIDO), exert antitumor properties both in vitro and in vivo and may alter the biologic fingerprints of cancer cells. As LA are known to impair mitochondrial bioenergetics and byproducts, the aim of the present study was to assess the impact of LIDO on metabolomic profile of a breast cancer cell line. Methods: Breast cancer MDA-MB-231 cells were exposed for 4 h to 0.5 mM LIDO or vehicle (n = 4). The metabolomic fingerprint was characterized by high resolution magic angle spinning NMR spectroscopy (HRMAS). The multivariate technique using the Algorithm to Determine Expected Metabolite Level Alteration (ADEMA) (Cicek et al., PLoS Comput. Biol., 2013, 9, e1002859), based on mutual information to identify expected metabolite level changes with respect to a specific condition, was used to determine the metabolites variations caused by LIDO. Results: LIDO modulates cell metabolites levels. Several pathways, including glutaminolysis, choline, phosphocholine and total choline syntheses were significantly downregulated in the LIDO group. Discussion: This is the first study assessing the impact of LIDO on metabolomic fingerprint of breast cancer cells. Among pathways downregulated by LIDO, many metabolites are reported to be associated with adverse prognosis when present at a high titer in breast cancer patients. These results fit with the antitumor properties of LIDO and suggest its impact on metabolomics profile of cancer cells. These effects of LIDO are of clinical significance because it is widely used for local anesthesia with cutaneous infiltration during percutaneous tumor biopsy. Future in vitro and preclinical studies are necessary to assess whether metabolomics analysis requires modification of local anesthetic techniques during tumor biopsy.
Collapse
Affiliation(s)
- Thiên-Nga Chamaraux-Tran
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,ER 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Marie Muller
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Julien Pottecher
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,ER 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Pierre A Diemunsch
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Izzie-Jacques Namer
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France.,MNMS-Platform, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Service de Médecine Nucléaire et d'Imagerie Moléculaire, Institut de Cancérologie Strasbourg Europe, Strasbourg, France.,ICube, Université de Strasbourg/CNRS, UMR 7357, Strasbourg, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France.,Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'hôpital, Strasbourg, France
| |
Collapse
|
34
|
Junior RP, Sonehara NM, Jardim-Perassi BV, Pal A, Asad Y, Almeida Chuffa LG, Chammas R, Raynaud FI, Zuccari DAPC. Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice. Sci Rep 2022; 12:1008. [PMID: 35046467 PMCID: PMC8770691 DOI: 10.1038/s41598-022-04994-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Collapse
Affiliation(s)
- Rubens Paula Junior
- Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.
| | | | | | - Akos Pal
- The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- The Institute of Cancer Research, London, UK
| | | | - Roger Chammas
- Instituto Do Câncer Do Estado de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
35
|
E Costa RK, Rodrigues CT, H Campos JC, Paradela LS, Dias MM, Novaes da Silva B, de Valega Negrao CVZ, Gonçalves KDA, Ascenção CFR, Adamoski D, Mercaldi GF, Bastos ACS, Batista FAH, Figueira AC, Cordeiro AT, Ambrosio ALB, Guido RVC, Dias SMG. High-Throughput Screening Reveals New Glutaminase Inhibitor Molecules. ACS Pharmacol Transl Sci 2021; 4:1849-1866. [PMID: 34927015 DOI: 10.1021/acsptsci.1c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/29/2022]
Abstract
The glutaminase (GLS) enzyme hydrolyzes glutamine into glutamate, an important anaplerotic source for the tricarboxylic acid cycle in rapidly growing cancer cells under the Warburg effect. Glutamine-derived α-ketoglutarate is also an important cofactor of chromatin-modifying enzymes, and through epigenetic changes, it keeps cancer cells in an undifferentiated state. Moreover, glutamate is an important neurotransmitter, and deregulated glutaminase activity in the nervous system underlies several neurological disorders. Given the proven importance of glutaminase for critical diseases, we describe the development of a new coupled enzyme-based fluorescent glutaminase activity assay formatted for 384-well plates for high-throughput screening (HTS) of glutaminase inhibitors. We applied the new methodology to screen a ∼30,000-compound library to search for GLS inhibitors. The HTS assay identified 11 glutaminase inhibitors as hits that were characterized by in silico, biochemical, and glutaminase-based cellular assays. A structure-activity relationship study on the most promising hit (C9) allowed the discovery of a derivative, C9.22, with enhanced in vitro and cellular glutaminase-inhibiting activity. In summary, we discovered a new glutaminase inhibitor with an innovative structural scaffold and described the molecular determinants of its activity.
Collapse
Affiliation(s)
- Renna K E Costa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas-UNICAMP, 13083-970 Campinas-SP, Brazil
| | - Camila T Rodrigues
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), 13563-120 Sao Carlos-SP, Brazil
| | - Jean C H Campos
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Luciana S Paradela
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas-UNICAMP, 13083-970 Campinas-SP, Brazil
| | - Marilia M Dias
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Bianca Novaes da Silva
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Cyro von Zuben de Valega Negrao
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas-UNICAMP, 13083-970 Campinas-SP, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Carolline F R Ascenção
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas-UNICAMP, 13083-970 Campinas-SP, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas-UNICAMP, 13083-970 Campinas-SP, Brazil
| | - Gustavo Fernando Mercaldi
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Alliny C S Bastos
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Fernanda A H Batista
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Ana Carolina Figueira
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Andre L B Ambrosio
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), 13563-120 Sao Carlos-SP, Brazil
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas-SP, Brazil
| |
Collapse
|
36
|
Impact of the Pd 2Spm (Spermine) Complex on the Metabolism of Triple-Negative Breast Cancer Tumors of a Xenograft Mouse Model. Int J Mol Sci 2021; 22:ijms221910775. [PMID: 34639114 PMCID: PMC8509401 DOI: 10.3390/ijms221910775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.
Collapse
|
37
|
Fukano M, Park M, Deblois G. Metabolic Flexibility Is a Determinant of Breast Cancer Heterogeneity and Progression. Cancers (Basel) 2021; 13:4699. [PMID: 34572926 PMCID: PMC8467722 DOI: 10.3390/cancers13184699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer progression is characterized by changes in cellular metabolism that contribute to enhanced tumour growth and adaptation to microenvironmental stresses. Metabolic changes within breast tumours are still poorly understood and are not as yet exploited for therapeutic intervention, in part due to a high level of metabolic heterogeneity within tumours. The metabolic profiles of breast cancer cells are flexible, providing dynamic switches in metabolic states to accommodate nutrient and energy demands and further aggravating the challenges of targeting metabolic dependencies in cancer. In this review, we discuss the intrinsic and extrinsic factors that contribute to metabolic heterogeneity of breast tumours. Next, we examine how metabolic flexibility, which contributes to the metabolic heterogeneity of breast tumours, can alter epigenetic landscapes and increase a variety of pro-tumorigenic functions. Finally, we highlight the difficulties in pharmacologically targeting the metabolic adaptations of breast tumours and provide an overview of possible strategies to sensitize heterogeneous breast tumours to the targeting of metabolic vulnerabilities.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Morag Park
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
38
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
39
|
Kuo WL, Tseng LL, Chang CC, Chen CJ, Cheng ML, Cheng HH, Wu MJ, Chen YL, Chang RT, Tang HY, Hsu YC, Lin WJ, Kao CY, Hsieh WP, Kung HJ, Wang WC. Prognostic Significance of O-GlcNAc and PKM2 in Hormone Receptor-Positive and HER2-Nonenriched Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11081460. [PMID: 34441396 PMCID: PMC8392504 DOI: 10.3390/diagnostics11081460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Predictive metabolic biomarkers for the recurrent luminal breast cancer (BC) with hormone receptor (HR)-positive and human epidermal growth factor receptor type 2 (HER2)-negative are lacking. High levels of O-GlcNAcylation (O-GlcNAc) and pyruvate kinase isoenzyme M2 (PKM2) are associated with malignancy in BC; however, the association with the recurrence risk remains unclear. We first conduct survival analysis by using the METABRIC dataset to assess the correlation of PKM2 expression with BC clinical outcomes. Next, patients with HR+/HER2- luminal BC were recruited for PKM2/O-GlcNAc testing. Logistic regression and receiver operating characteristic curve analysis were performed to evaluate the 10-year DFS predicted outcome. Survival analysis of the METABRIC dataset revealed that high expression of PKM2 was significantly associated with worse overall survival in luminal BC. The high expression of O-GlcNAc or PKM2 was a significant independent marker for poor 10-year DFS using immunohistochemical analysis. The PKM2 or O-GlcNAc status was a significant predictor of DFS, with the combination of PKM2–O-GlcNAc status and T stage greatly enhancing the predictive outcome potential. In summary, O-GlcNAc, PKM2, and T stage serve as good prognostic discriminators in HR+/HER2− luminal BC.
Collapse
Affiliation(s)
- Wen-Ling Kuo
- Division of Breast Surgery, General Surgery, Department of Surgery, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan City 33305, Taiwan;
| | - Lin-Lu Tseng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu City 30013, Taiwan; (L.-L.T.); (H.-H.C.); (M.-J.W.); (Y.-L.C.)
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 11031, Taiwan; (C.-C.C.); (R.-T.C.)
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City 40705, Taiwan; (C.-J.C.); (Y.-C.H.)
- School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu City 30013, Taiwan; (L.-L.T.); (H.-H.C.); (M.-J.W.); (Y.-L.C.)
| | - Meng-Jen Wu
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu City 30013, Taiwan; (L.-L.T.); (H.-H.C.); (M.-J.W.); (Y.-L.C.)
| | - Yu-Lun Chen
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu City 30013, Taiwan; (L.-L.T.); (H.-H.C.); (M.-J.W.); (Y.-L.C.)
| | - Ruei-Ting Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 11031, Taiwan; (C.-C.C.); (R.-T.C.)
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Yong-Chen Hsu
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung City 40705, Taiwan; (C.-J.C.); (Y.-C.H.)
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Miaoli County 35053, Taiwan; (W.-J.L.); (C.-Y.K.)
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Miaoli County 35053, Taiwan; (W.-J.L.); (C.-Y.K.)
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing Hua University, Hsinchu City 30013, Taiwan;
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu City 30013, Taiwan; (L.-L.T.); (H.-H.C.); (M.-J.W.); (Y.-L.C.)
- Correspondence: ; Tel.: +886-35742766
| |
Collapse
|
40
|
Vignoli A, Risi E, McCartney A, Migliaccio I, Moretti E, Malorni L, Luchinat C, Biganzoli L, Tenori L. Precision Oncology via NMR-Based Metabolomics: A Review on Breast Cancer. Int J Mol Sci 2021; 22:ijms22094687. [PMID: 33925233 PMCID: PMC8124948 DOI: 10.3390/ijms22094687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal therapy for the right patient by considering each patient’s unique disease and individual health status. In the last years, it has become evident that breast cancer is an extremely heterogeneous disease, and therefore, patients need to be appropriately stratified to maximize survival and quality of life. Gene-expression tools have already positively assisted clinical decision making by estimating the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these approaches need refinement to further reduce the proportion of patients potentially exposed to unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for cancer research and has provided significant results in BC, in particular for prognostic and stratification purposes. In this review, we give an update on the status of NMR-based metabolomic studies for the biochemical characterization and stratification of breast cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine).
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Emanuela Risi
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Amelia McCartney
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
- School of Clinical Sciences, Monash University, Melbourne 3800, Australia
| | - Ilenia Migliaccio
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Erica Moretti
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Luca Malorni
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
- Correspondence: ; Tel.: +39-055-457-4296
| | - Laura Biganzoli
- Department of Medical Oncology, New Hospital of Prato S. Stefano, 59100 Prato, Italy; (E.R.); (A.M.); (I.M.); (E.M.); (L.M.); (L.B.)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
41
|
Metabolomic Study on the Therapeutic Effect of the Jianpi Yangzheng Xiaozheng Decoction on Gastric Cancer Treated with Chemotherapy Based on GC-TOFMS Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8832996. [PMID: 33790982 PMCID: PMC7994103 DOI: 10.1155/2021/8832996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Objective This study aimed to find new biomarkers of prognosis and metabolomic therapy for gastric carcinoma (GC) treated with chemotherapy and investigate the metabolic mechanism of the Jianpi Yangzheng Xiaozheng (JPYZXZ) decoction in the treatment of GC. Methods First, 36 patients with GC were randomly assigned to the treatment (chemotherapy plus JPYZXZ) and control (chemotherapy alone) groups. The clinical efficacy, side effects, and quality of life of patients in the two groups were evaluated after treatment. Then, the serum samples taken from 16 randomly selected patients (eight treatment cases and eight control cases with no evident pattern characters) and eight healthy volunteers were tested to identify the differential metabolite under the gas chromatography-time-of-fight mass spectrometry platform. The relevant metabolic pathways of differential substances were analyzed using multidimensional statistical analysis. Results JPYZXZ combined with chemotherapy resulted in a lower risk of leucopenia, thrombocytopenia, and gastrointestinal reaction (P < 0.05). Additionally, patients in the treatment group showed a higher Karnofsky (KPS) scale (P < 0.05). Compared with healthy persons, patients with GC were found to have 26 significant differential metabolites after chemotherapy; these metabolites are mainly involved in 12 metabolic pathways, such as valine, leucine, and isoleucine biosynthesis. JPYZXZ primarily influences the pentose phosphate pathway; glutathione metabolism; glyoxylate and dicarboxylate metabolism; porphyrin and chlorophyll metabolism; and glycine, serine, and threonine metabolism of patients with GC treated with chemotherapy. Conclusions The metabolic characteristics of patients with GC after chemotherapy are mainly various amino acid metabolic defects, especially L-glutamine, L-leucine, L-alloisoleucine, and L-valine. These defects lead to a series of problems, such as decreased tolerance and effectiveness of chemotherapy, increased side effects, decreased immunity, and shortened survival time. In addition, the remarkable upregulation of the gluconolactone level in patients with GC suggests the high proliferative activity of GC cells. Thus, gluconolactone may be used as a potential prognostic and diagnostic evaluation index. Moreover, JPYZXZ can reduce the incidence of ADRs and improve the life quality of patients by the correction of L-glutamine, L-leucine, L-alloisoleucine, and L-valine metabolism deficiency. In addition, gluconolactone metabolism is inhibited by JPYZXZ. Such inhibition may be one of the antitumor mechanisms of JPYZXZ.
Collapse
|
42
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
43
|
The Harmonious Interplay of Amino Acid and Monocarboxylate Transporters Induces the Robustness of Cancer Cells. Metabolites 2021; 11:metabo11010027. [PMID: 33401672 PMCID: PMC7823946 DOI: 10.3390/metabo11010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence that metabolic reprogramming contributes to the acquisition and maintenance of robustness associated with malignancy. The fine regulation of expression levels of amino acid and monocarboxylate transporters enables cancer cells to exhibit the metabolic reprogramming that is responsible for therapeutic resistance. Amino acid transporters characterized by xCT (SLC7A11), ASCT2 (SLC1A5), and LAT1 (SLC7A5) function in the uptake and export of amino acids such as cystine and glutamine, thereby regulating glutathione synthesis, autophagy, and glutaminolysis. CD44 variant, a cancer stem-like cell marker, stabilizes the xCT antiporter at the cellular membrane, and tumor cells positive for xCT and/or ASCT2 are susceptible to sulfasalazine, a system Xc(-) inhibitor. Inhibiting the interaction between LAT1 and CD98 heavy chain prevents activation of the mammalian target of rapamycin (mTOR) complex 1 by glutamine and leucine. mTOR signaling regulated by LAT1 is a sensor of dynamic alterations in the nutrient tumor microenvironment. LAT1 is overexpressed in various malignancies and positively correlated with poor clinical outcome. Metabolic reprogramming of glutamine occurs often in cancer cells and manifests as ASCT2-mediated glutamine addiction. Monocarboxylate transporters (MCTs) mediate metabolic symbiosis, by which lactate in cancer cells under hypoxia is exported through MCT4 and imported by MCT1 in less hypoxic regions, where it is used as an oxidative metabolite. Differential expression patterns of transporters cause functional intratumoral heterogeneity leading to the therapeutic resistance. Therefore, metabolic reprogramming based on these transporters may be a promising therapeutic target. This review highlights the pathological function and therapeutic targets of transporters including xCT, ASCT2, LAT1, and MCT.
Collapse
|
44
|
Functional Metabolomics and Chemoproteomics Approaches Reveal Novel Metabolic Targets for Anticancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:131-147. [PMID: 33791979 DOI: 10.1007/978-3-030-51652-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells exhibit different metabolic patterns compared to their normal counterparts. Although the reprogrammed metabolism has been indicated as strong biomarkers of cancer initiation and progression, increasing evidences suggest that metabolic alteration tuned by oncogenic drivers contributes to the occurrence and development of cancers rather than just being a hallmark of cancer. With this notion, targeting cancer metabolism holds promise as a novel anticancer strategy and is embracing its renaissance during the past two decades. Herein we have summarized the most recent developments in omics technology, including both metabolomics and proteomics, and how the combined use of these analytical tools significantly impacts this field by comprehensively and systematically recording the metabolic changes in cancer and hence reveals potential therapeutic targets that function by modulating the disrupted metabolic pathways.
Collapse
|
45
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
46
|
Bispo D, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Hormone-Independent Mouse Mammary Adenocarcinomas with Different Metastatic Potential Exhibit Different Metabolic Signatures. Biomolecules 2020; 10:E1242. [PMID: 32867141 PMCID: PMC7563858 DOI: 10.3390/biom10091242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The metabolic characteristics of metastatic and non-metastatic breast carcinomas remain poorly studied. In this work, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was used to compare two medroxyprogesterone acetate (MPA)-induced mammary carcinomas lines with different metastatic abilities. Different metabolic signatures distinguished the non-metastatic (59-2-HI) and the metastatic (C7-2-HI) lines, with glucose, amino acid metabolism, nucleotide metabolism and lipid metabolism as the major affected pathways. Non-metastatic tumours appeared to be characterised by: (a) reduced glycolysis and tricarboxylic acid cycle (TCA) activities, possibly resulting in slower NADH biosynthesis and reduced mitochondrial transport chain activity and ATP synthesis; (b) glutamate accumulation possibly related to reduced glutathione activity and reduced mTORC1 activity; and (c) a clear shift to lower phosphoscholine/glycerophosphocholine ratios and sphingomyelin levels. Within each tumour line, metabolic profiles also differed significantly between tumours (i.e., mice). Metastatic tumours exhibited marked inter-tumour changes in polar compounds, some suggesting different glycolytic capacities. Such tumours also showed larger intra-tumour variations in metabolites involved in nucleotide and cholesterol/fatty acid metabolism, in tandem with less changes in TCA and phospholipid metabolism, compared to non-metastatic tumours. This study shows the valuable contribution of untargeted NMR metabolomics to characterise tumour metabolism, thus opening enticing opportunities to find metabolic markers related to metastatic ability in endocrine breast cancer.
Collapse
Affiliation(s)
- Daniela Bispo
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Victoria Fabris
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Caroline A. Lamb
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Claudia Lanari
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Luisa A. Helguero
- iBIMED—Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal;
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
47
|
Metabolic Signatures of Tumor Responses to Doxorubicin Elucidated by Metabolic Profiling in Ovo. Metabolites 2020; 10:metabo10070268. [PMID: 32605263 PMCID: PMC7408021 DOI: 10.3390/metabo10070268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dysregulated cancer metabolism is associated with acquired resistance to chemotherapeutic treatment and contributes to the activation of cancer survival mechanisms. However, which metabolic pathways are activated following treatment often remains elusive. The combination of chicken embryo tumor models (in ovo) with metabolomics phenotyping could offer a robust platform for drug testing. Here, we assess the potential of this approach in the treatment of an in ovo triple negative breast cancer with doxorubicin. METHODS MB-MDA-231 cells were grafted in ovo. The resulting tumors were then treated with doxorubicin or dimethyl sulfoxide (DMSO) for six days. Tumors were collected and analyzed using a global untargeted metabolomics and comprehensive lipidomics. RESULTS We observed a significant suppression of tumor growth in the doxorubicin treated group. The metabolic profiles of doxorubicin and DMSO-treated tumors were clearly separated in a principle component analysis. Inhibition of glycolysis, nucleotide synthesis, and glycerophospholipid metabolism appear to be triggered by doxorubicin treatment, which could explain the observed suppressed tumor growth. In addition, metabolic cancer survival mechanisms could be supported by an acceleration of antioxidative pathways. CONCLUSIONS Metabolomics in combination with in ovo tumor models provide a robust platform for drug testing to reveal tumor specific treatment targets such as the antioxidative tumor capacity.
Collapse
|
48
|
El Ansari R, Alfarsi L, Craze ML, Masisi BK, Ellis IO, Rakha EA, Green AR. The solute carrier SLC7A8 is a marker of favourable prognosis in ER-positive low proliferative invasive breast cancer. Breast Cancer Res Treat 2020; 181:1-12. [PMID: 32200487 PMCID: PMC7182634 DOI: 10.1007/s10549-020-05586-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/29/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Breast cancer (BC) is a heterogeneous disease consisting of various subtypes, with different prognostic and therapeutic outcomes. The amino acid transporter, SLC7A8, is overexpressed in oestrogen receptor-positive BC. However, the consequence of this overexpression, in terms of disease prognosis, is still obscure. This study aimed to evaluate the biological and prognostic value of SLC7A8 in BC with emphasis on the intrinsic molecular subtypes. METHODS SLC7A8 was assessed at the genomic, using METABRIC data (n = 1980), and proteomic, using immunohistochemistry and TMA (n = 1562), levels in well-characterised primary BC cohorts. SLC7A8 expression was examined with clinicopathological parameters, molecular subtypes, and patient outcome. RESULTS SLC7A8 mRNA and SLC7A8 protein expression were strongly associated with good prognostic features, including small tumour size, low tumour grade, and good Nottingham Prognostic Index (NPI) (all P < 0.05). Expression of SLC7A8 mRNA was higher in luminal tumours compared to other subtypes (P < 0.001). High expression of SLC7A8 mRNA and SLC7A8 protein was associated with good patient outcome (P ≤ 0.001) but only in the low proliferative ER+/luminal A tumours (P = 0.01). In multivariate analysis, SLC7A8 mRNA and SLC7A8 protein were independent factors for longer breast cancer specific survival (P = 0.01 and P = 0.03), respectively. CONCLUSION SLC7A8 appears to play a role in BC and is a marker for favourable prognosis in the most predominant, ER+ low proliferative/luminal A, BC subtype. Functional assessment is necessary to reveal the specific role played by SLC7A8 in ER+ BC.
Collapse
MESH Headings
- Aged
- Amino Acid Transport System y+/metabolism
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/surgery
- Cell Proliferation/physiology
- Female
- Follow-Up Studies
- Fusion Regulatory Protein 1, Light Chains/metabolism
- Humans
- Neoplasm Invasiveness
- Prognosis
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Department of Pathology, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Lutfi Alfarsi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Madeleine L Craze
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Brendah K Masisi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Histopathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Histopathology, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
49
|
Trilla-Fuertes L, Gámez-Pozo A, López-Camacho E, Prado-Vázquez G, Zapater-Moros A, López-Vacas R, Arevalillo JM, Díaz-Almirón M, Navarro H, Maín P, Espinosa E, Zamora P, Fresno Vara JÁ. Computational models applied to metabolomics data hints at the relevance of glutamine metabolism in breast cancer. BMC Cancer 2020; 20:307. [PMID: 32293335 PMCID: PMC7265650 DOI: 10.1186/s12885-020-06764-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/19/2020] [Indexed: 01/25/2023] Open
Abstract
Background Metabolomics has a great potential in the development of new biomarkers in cancer and it has experiment recent technical advances. Methods In this study, metabolomics and gene expression data from 67 localized (stage I to IIIB) breast cancer tumor samples were analyzed, using (1) probabilistic graphical models to define associations using quantitative data without other a priori information; and (2) Flux Balance Analysis and flux activities to characterize differences in metabolic pathways. Results On the one hand, both analyses highlighted the importance of glutamine in breast cancer. Moreover, cell experiments showed that treating breast cancer cells with drugs targeting glutamine metabolism significantly affects cell viability. On the other hand, these computational methods suggested some hypotheses and have demonstrated their utility in the analysis of metabolomics data and in associating metabolomics with patient’s clinical outcome. Conclusions Computational analyses applied to metabolomics data suggested that glutamine metabolism is a relevant process in breast cancer. Cell experiments confirmed this hypothesis. In addition, these computational analyses allow associating metabolomics data with patient prognosis.
Collapse
Affiliation(s)
| | - Angelo Gámez-Pozo
- Biomedica Molecular Medicine SL, C/ Faraday, 7, 28049, Madrid, Spain.,Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Elena López-Camacho
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | | | - Andrea Zapater-Moros
- Biomedica Molecular Medicine SL, C/ Faraday, 7, 28049, Madrid, Spain.,Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Jorge M Arevalillo
- Department of Statistics, Operational Research and Numerical Analysis, National University of Distance Education (UNED), Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Mariana Díaz-Almirón
- Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Hilario Navarro
- Department of Statistics, Operational Research and Numerical Analysis, National University of Distance Education (UNED), Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Paloma Maín
- Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid, Plaza de las Ciencias, 3, 28040, Madrid, Spain
| | - Enrique Espinosa
- Medical Oncology Service, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Pilar Zamora
- Medical Oncology Service, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
50
|
Niedolistek M, Fudalej MM, Sobiborowicz A, Liszcz A, Budzik MP, Sobieraj M, Patera J, Czerw A, Religioni U, Sobol M, Deptała A, Badowska-Kozakiewicz AM. Immunohistochemical evaluation of osteopontin expression in triple-negative breast cancer. Arch Med Sci 2020; 20:436-443. [PMID: 38757015 PMCID: PMC11094834 DOI: 10.5114/aoms.2020.93695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/27/2019] [Indexed: 05/18/2024] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is associated with lack of expression of estrogen and progesterone receptors and HER2 and is the subgroup of breast cancers with the worst prognosis. Osteopontin is a phosphorylated glycoprotein whose overexpression may occur in pathological states such as cancers. The main purpose of our study was to evaluate the immunohistochemical expression of osteopontin in connection with the analysis of recognized clinical and pathological prognostic factors in primary sites of TNBC with and without lymph node metastases. Material and methods The immunohistochemical evaluation of osteopontin expression in 35 women with TNBC, chosen from a group of 726 patients, was performed. The material came from the excisional biopsies of primary breast cancers and total mastectomies. Results All patients showed expression of osteopontin, in most cases the expression of osteopontin rated at [+] (57.1%) and [++] (42.9%). Our study analyzed the relationship between the expression of osteopontin and traditional prognostic markers, such as the tumor grade, size, and lymph node involvement. We found a strong relationship only between the expression of osteopontin and the presence of lymph node metastases (p ≤ 0.0001). 93% of patients for whom the expression of osteopontin was determined at [++] had metastasis to lymph nodes and, for comparison, only 15% of women for whom the expression of osteopontin was rated at [+] showed the presence of metastases in the lymphatic nodes. Conclusions There is a correlation between osteopontin expression and the presence of lymph node metastases in TNBC, suggesting that osteopontin plays an important role in the invasiveness of TNBC.
Collapse
Affiliation(s)
- Magdalena Niedolistek
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Marta M. Fudalej
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Sobiborowicz
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Anna Liszcz
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Michał P. Budzik
- Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Sobieraj
- Students’ Scientific Organization of Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Patera
- Department of Pathomorphology, Military Institute of Health Services, Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Religioni
- Collegium of Business Administration, Warsaw School of Economics, Warsaw, Poland
| | - Maria Sobol
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|