1
|
Askari M, Mirzaei E, Navapour L, Karimpour M, Rejali L, Sarirchi S, Nazemalhosseini-Mojarad E, Nobili S, Cava C, Sadeghi A, Fatemi N. Integrative Bioinformatics Analysis: Unraveling Variant Signatures and Single-Nucleotide Polymorphism Markers Associated with 5-FU-Based Chemotherapy Resistance in Colorectal Cancer Patients. J Gastrointest Cancer 2024; 55:1607-1619. [PMID: 39240276 DOI: 10.1007/s12029-024-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Drug resistance in colorectal cancer (CRC) is modulated by multiple molecular factors, which can be ascertained through genetic investigation. Single nucleotide polymorphisms (SNPs) within key genes have the potential to impair the efficacy of chemotherapeutic agents such as 5-fluorouracil (5-FU). Therefore, the identification of SNPs linked to drug resistance can significantly contribute to the advancement of tailored therapeutic approaches and the enhancement of treatment outcomes in patients with CRC. MATERIAL AND METHOD To identify dysregulated genes in 5-FU-based chemotherapy responder or non-responder CRC patients, a meta-analysis was performed. Next, the protein-protein interaction (PPI) network of the identified genes was analyzed using the STRING database. The most significant module was chosen for further analysis. In addition, a literature review was conducted to identify drug resistance-related genes. Enrichment analysis was conducted to validate the main module genes and the genes identified from the literature review. The associations between SNPs and drug resistance were investigated, and the consequences of missense variants were assessed using in silico tools. RESULT The meta-analysis identified 796 dysregulated genes. Then, to conduct PPI analysis and enrichment analysis, we were able to discover 23 genes that are intricately involved in the cell cycle pathway. Consequently, these 23 genes were chosen for SNP analysis. By using the dbSNP database and ANNOVAR, we successfully detected and labeled SNPs in these specific genes. Additionally, after careful exclusion of SNPs with allele frequencies below 0.01, we evaluated 6 SNPs from the HDAC1, MCM2, CDK1, BUB1B, CDC14B, and CCNE1 genes using 8 bioinformatics tools. Therefore, these SNPs were identified as potentially harmful by multiple computational tools. Specifically, rs199958833 in CDK1 (Val124Gly) was predicted to be damaging by all tools used. Our analysis strongly indicates that this specific SNP could negatively affect the stability and functionality of the CDK1 protein. CONCLUSION Based on our current understanding, the evaluation of CDK1 polymorphisms in the context of drug resistance in CRC has yet to be undertaken. In this investigation, we showed that rs199958833 variant in the CDK1 gene may favor resistance to 5-FU-based chemotherapy. However, these findings need validation in an independent cohort of patients.
Collapse
Affiliation(s)
- Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Sarirchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6-50139, Florence, Italy
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Han K, Chen Y, Sun X, Wen L, Wu Y, Chen S, Wei L, Yu J, Zeng T, Jiang L, Tan L. Combining serum CDK1 with tumor markers for the diagnosis of small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03722-y. [PMID: 39397200 DOI: 10.1007/s12094-024-03722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE An investigation of the diagnostic and clinical value of cell cycle-dependent kinase 1 (CDK1) in small cell lung cancer (SCLC). METHODS A large tertiary hospital in Jiangxi Province enrolled 80 SCLC cases, 105 cases of non-small cell lung cancer (NSCLC), 114 cases of pulmonary nodule (PN) and 60 control cases from December 2022 to December 2023. ELISA was used to measure CDK1 levels in serum. The expression levers of neuron-specific enolase (NSE), Pro gastrin-releasing peptide (ProGRP), squamous cell carcinoma antigen (SCCA), carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199) and cytokeratin 19 fragment (YFRA21-1) were detected by electrochemiluminescence immunoassay. RESULTS ①CDK1, ProGRP, NSE, and CA199 expressions were significantly higher in the SCLC group compared to the NSCLC, PN and Control groups (P < 0.01). ②Spearman correlation analysis showed that serum levels of CDK1, NSE, and ProGRP were associated with clinical staging and lymph node metastasis in SCLC patients (P < 0.05). ③The serum levels of CDK1, NSE, and ProGRP in patients with extensive-disease (ED) SCLC were higher than those in patients with limited-disease (LD) SCLC (P < 0.05), and the serum levels of CDK1, NSE, and ProGRP in SCLC patients with lymph node metastasis were higher than those without lymph node metastasis (P < 0.05). ④Compared with the NSCLC group, the AUC of subjects diagnosed with SCLC by CDK1 was the largest and the sensitivity was the highest, 0.831 and 72.50%, the specificity of ProGRP in diagnosing SCLC is the highest, at 95.20% (P < 0.01). Compared with the PN group, CDK1 had the highest AUC, sensitivity, and specificity in diagnosing SCLC, with values of 0.93%, 88.80%, and 94.70%, respectively (P < 0.01). ⑤The combination of CDK1, ProGRP and NSE had the highest AUC and sensitivity of 0.903 and 86.30% for the diagnosis of SCLC (P < 0.01). CONCLUSION CDK1 not only plays an important role in assisting the diagnosis of SCLC but also in the differential diagnosis between SCLC and NSCLC. The combination of CDK1 and NSE and ProGRP can significantly improve the diagnostic performance and provide new ideas for the clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Kexin Han
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yinyi Chen
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xinlu Sun
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lili Wen
- Laboratory, Department of Nanchang Ninth Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Yang Wu
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Simei Chen
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liping Wei
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jianlin Yu
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Zeng
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lei Jiang
- Jiangxi Long March Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Liming Tan
- Department of Laboratory Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Zhao C, He Y, Shi H, Han C, Zhu X, Wang C, Wang B, Liu J, Shi Y, Hua D. Investigating the molecular mechanism of vitexin targeting CDK1 to inhibit colon cancer cell proliferation via GEO chip data mining, computer simulation, and biological activity verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03341-y. [PMID: 39145810 DOI: 10.1007/s00210-024-03341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024]
Abstract
The objective of this study is to explore the antiproliferative activity of the traditional Chinese medicine monomer vitexin on colon cancer HCT-116 cells and its underlying mechanism. The in vitro antiproliferative activity of vitexin on colon cancer HCT-116 cells was evaluated using the CCK-8 assay. Potential drug targets for colon cancer were identified through GEO chip data mining, and molecular docking using Schrödinger software was conducted. Molecular dynamics simulations were employed to deeply analyze the interaction between candidate compounds and target proteins. Flow cytometry was employed to examine the cell cycle. The impact of vitexin on the expression of CDK1/cyclinB proteins in HCT-116 cells was assessed through Western blot analysis, immunofluorescence, and CDK inhibition assay. Vitexin exhibited inhibitory effects on colon cancer HCT-116 cells, with a half inhibitory concentration (IC50) value of 203.27 ± 9.85 μmol/L. The analysis of differential gene expression in GEO and TCGA datasets, along with the GENECARD dataset of related disease genes, identified 91 disease targets, including "CDK1." Vitexin induced cell cycle arrest in the G2/M phase of HCT-116 cells. Molecular docking revealed a strong interaction between Vitexin and CDK1 (Docking score - 9.497), with molecular dynamics simulations confirming the stability of the Vitexin-CDK1 complex and comparable inhibitory effects to Flavopiridol. Vitexin can inhibit the expression of CDK1/cyclin B proteins in HCT-116 cells, with an IC50 of 58.06 ± 3.07 μmol/L. Vitexin may inhibit colon cancer HCT-116 cell proliferation by suppressing CDK1/cyclin B expression, leading to cell cycle arrest in the G2/M phase.
Collapse
Affiliation(s)
- Chenying Zhao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yifan He
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Hailong Shi
- School of Basic Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Chaojun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China.
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Ou WT, Wan QX, Wu YB, Sun X, Li YL, Tang D, Zhang J, Li SS, Wang NY, Liu ZL, Wu JJ. Long Noncoding RNA PSMB8-AS1 Mediates the Tobacco-Carcinogen-Induced Transformation of a Human Bronchial Epithelial Cell Line by Regulating Cell Cycle. Chem Res Toxicol 2024; 37:957-967. [PMID: 38771128 DOI: 10.1021/acs.chemrestox.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Ou
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qiu-Xian Wan
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi-Bo Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xuan Sun
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yan-Li Li
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Dan Tang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jian Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Sheng-Sheng Li
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Nuo-Yan Wang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhuo-Lin Liu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jian-Jun Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, P. R. China
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
5
|
Priyamvada P, Ramaiah S. Potential Signature Therapeutic Biomarkers TOP2A, MAD2L1, and CDK1 in Colorectal Cancer: A Systems Biomedicine-Based Approach. Biochem Genet 2024; 62:2166-2194. [PMID: 37884851 DOI: 10.1007/s10528-023-10544-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Colorectal cancer is the third deadliest and fourth most diagnosed cancer. It is heterogeneously driven by varied mutations and mutagens, and thus, it is challenging for targeted therapy. The rapid advancement of high-throughput technology presents considerable opportunities for discovering new colon cancer biomarkers. In the present study, we have explored and identified the biomarkers based on molecular interactions. We curated cancer datasets that were not micro-dissected and performed gene expression analysis. The protein-protein interactions were curated, and a network was constructed for the up-regulated genes. The hub genes were analyzed using 12 different topological parameters. The correlation analysis selected TOP2A, CDK1, CCNB1, AURKA, and MAD2L1 as hub genes. Further, survival analysis was performed to determine the effectiveness of the hub gene on the patient's survival rate. Our findings explore various transcription factors such as E2F4, FOXM1, E2F6, MAX, and SIN3A, along with kinases CSNK2A1, MAPK14, CDK1, CDK4, and CDK2, as potential molecular signatures and aid researchers in understanding the pathophysiological mechanisms underlying CRC development and thus providing novel therapeutic and diagnostic recourse. Furthermore, investigating miRNAs, we focused on hsa-miR-215-5p, hsa-miR-192-5p, and hsa-miR-193b-3p due to their observed impact on a diverse set of colorectal cancer genes. Thereby, the current approach brings into light CRC- related genes at the RNA and protein levels that can potentially act as novel biomarkers opening doors to diagnostic and treatment purposes.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Manoochehrabadi S, Talebi M, Pashaiefar H, Ghafouri-Fard S, Vaezi M, Omrani MD, Ahmadvand M. Upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in patients with primary non-M3 AML is associated with a worse prognosis. Blood Res 2024; 59:4. [PMID: 38485838 PMCID: PMC10903518 DOI: 10.1007/s44313-024-00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 03/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy with an unfavorable outcome. The present research aimed to identify novel biological targets for AML diagnosis and treatment. In this study, we performed an in-silico method to identify antisense RNAs (AS-RNAs) and their related co-expression genes. GSE68172 was selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to find DEGs. Antisense RNAs were selected from all the genes that had significant expression and a survival plot was drawn for them in the GEPIA database, FOXD2-AS1 was chosen for further investigation based on predetermined criteria (logFC ≥|1| and P < 0.05) and its noteworthy association between elevated expression level and a marked reduction in the overall survival (OS) in patients diagnosed with AML. The GEPIA database was utilized to investigate FOXD2-AS1-related co-expression and similar genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene ontology (GO) function analysis of the mentioned gene lists were performed using the DAVID database. The protein-protein interaction (PPI) network was then constructed using the STRING database. Hub genes were screened using Cytoscape software. Pearson correlation analysis was conducted using the GEPIA database to explore the relationship between FOXD2-AS1 and the hub genes. The transcription of the selected coding and non-coding genes, including FOXD2-AS1, CDC45, CDC20, CDK1, and CCNB1, was validated in 150 samples, including 100 primary AML non-M3 blood samples and 50 granulocyte colony stimulating factor (G-CSF)-mobilized healthy donors, using quantitative Real-Time PCR (qRT-PCR). qRT-PCR results displayed significant upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples compared to healthy blood samples (P = 0.0032, P = 0.0078, and P = 0.0117, respectively). The expression levels of CDC20 and CCNB1 were not statistically different between the two sets of samples (P = 0.8315 and P = 0.2788, respectively). We identified that AML patients with upregulation of FOXD2-AS1, CDK1, and CDC45 had shorter overall survival (OS) and Relapse-free survival (RFS) compared those with low expression of FOXD2-AS1, CDK1, and CDC45. Furthermore, the receiver operating characteristic (ROC) curve showed the potential biomarkers of lnc -FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples. This research proposed that the dysregulation of lnc-FOXD2-AS1, CDC45, and CDK1 can contribute to both disease state and diagnosis as well as treatment. The present study proposes the future evolution of the functional role of lnc-FOXD2-AS1, CDC45, and CDK1 in AML development.
Collapse
Affiliation(s)
- Saba Manoochehrabadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Indacochea A, Guitart T, Boada A, Peg V, Quer A, Laayouni H, Condal L, Espinosa P, Manzano JL, Gebauer F. CSDE1 Intracellular Distribution as a Biomarker of Melanoma Prognosis. Int J Mol Sci 2024; 25:2319. [PMID: 38396995 PMCID: PMC10889260 DOI: 10.3390/ijms25042319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients. Contrary to expectations for an oncoprotein, we observed a global decrease in CSDE1 levels with increasing malignancy. However, the CSDE1 cytoplasmic/nuclear ratio exhibited a positive correlation with adverse clinical features of primary tumors and emerged as a robust indicator of progression free survival in cutaneous melanoma, highlighting the potential of CSDE1 as a biomarker of prognosis. Our findings provide a novel feature for prognosis assessment and highlight the intricacies of RNA-binding protein dynamics in cancer progression.
Collapse
Affiliation(s)
- Alberto Indacochea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Ariadna Quer
- Pathology Department, Hospital Universitari Germans Trias I Pujol, Institut d’Investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain;
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, C/Wellington 30, 08006 Barcelona, Spain
| | - Laura Condal
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Pablo Espinosa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Jose Luis Manzano
- Medical Oncology Department, Catalonian Institute of Oncology, (ICO), Hospital Germans Trias I Pujol, 08916 Badalona, Spain;
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
8
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
9
|
Massacci G, Perfetto L, Sacco F. The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br J Cancer 2023; 129:1707-1716. [PMID: 37898722 PMCID: PMC10667339 DOI: 10.1038/s41416-023-02468-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
The Cyclin-dependent kinase 1, as a serine/threonine protein kinase, is more than a cell cycle regulator as it was originally identified. During the last decade, it has been shown to carry out versatile functions during the last decade. From cell cycle control to gene expression regulation and apoptosis, CDK1 is intimately involved in many cellular events that are vital for cell survival. Here, we provide a comprehensive catalogue of the CDK1 upstream regulators and substrates, describing how this kinase is implicated in the control of key 'cell cycle-unrelated' biological processes. Finally, we describe how deregulation of CDK1 expression and activation has been closely associated with cancer progression and drug resistance.
Collapse
Affiliation(s)
- Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Livia Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
10
|
Martínez-Val A, Fort K, Koenig C, Van der Hoeven L, Franciosa G, Moehring T, Ishihama Y, Chen YJ, Makarov A, Xuan Y, Olsen JV. Hybrid-DIA: intelligent data acquisition integrates targeted and discovery proteomics to analyze phospho-signaling in single spheroids. Nat Commun 2023; 14:3599. [PMID: 37328457 PMCID: PMC10276052 DOI: 10.1038/s41467-023-39347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Achieving sufficient coverage of regulatory phosphorylation sites by mass spectrometry (MS)-based phosphoproteomics for signaling pathway reconstitution is challenging, especially when analyzing tiny sample amounts. To address this, we present a hybrid data-independent acquisition (DIA) strategy (hybrid-DIA) that combines targeted and discovery proteomics through an Application Programming Interface (API) to dynamically intercalate DIA scans with accurate triggering of multiplexed tandem mass spectrometry (MSx) scans of predefined (phospho)peptide targets. By spiking-in heavy stable isotope labeled phosphopeptide standards covering seven major signaling pathways, we benchmark hybrid-DIA against state-of-the-art targeted MS methods (i.e., SureQuant) using EGF-stimulated HeLa cells and find the quantitative accuracy and sensitivity to be comparable while hybrid-DIA also profiles the global phosphoproteome. To demonstrate the robustness, sensitivity, and biomedical potential of hybrid-DIA, we profile chemotherapeutic agents in single colon carcinoma multicellular spheroids and evaluate the phospho-signaling difference of cancer cells in 2D vs 3D culture.
Collapse
Affiliation(s)
- Ana Martínez-Val
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kyle Fort
- Thermo Fisher Scientific, Bremen, Germany
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leander Van der Hoeven
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Yue Xuan
- Thermo Fisher Scientific, Bremen, Germany.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Cui Y, Cheng Y, Huang W, Liu J, Zhang X, Bu M, Li X. A novel T-cell proliferation-associated gene predicts prognosis and reveals immune infiltration in patients with oral squamous cell carcinoma. Arch Oral Biol 2023; 152:105719. [PMID: 37178584 DOI: 10.1016/j.archoralbio.2023.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a highly malignant tumour, and the prediction of its prognosis remains challenging. The prognostic value of T-lymphocyte proliferation regulators in OSCC remains to be explored. DESIGN We integrated mRNA expression profiles and relevant clinical information of OSCC patients from The Cancer Genome Atlas database. The expression and function of T-lymphocyte proliferation regulators and their relationship with overall survival (OS) were analysed. The T-lymphocyte proliferation regulator signature was screened using univariate Cox regression and least absolute shrinkage and selection operator coefficients and used to construct models for prognosis and staging prediction as well as for immune infiltration analysis. Final validation was performed using single-cell sequencing database and immunohistochemical staining. RESULTS Most T-lymphocyte proliferation regulators in the TCGA cohort exhibited different expression levels between OSCC and paracancerous tissues. A prognostic model constructed using the T-lymphocyte proliferation regulator signature (RAN, CDK1, and CDK2) was used to categorise patients into high- and low-risk groups. The OS was significantly lower in the high-risk group than the low-risk group (p < 0.01). The predictive ability of the T-lymphocyte proliferation regulator signature was validated by receiver operating characteristic curve analysis. Immune infiltration analysis revealed different immune statuses in both groups. CONCLUSIONS We established a new T-lymphocyte proliferation regulator signature that can predict the prognosis of OSCC. The results of this study will contribute to studies of T-cell proliferation and the immune microenvironment in OSCC to improve prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Yiming Cheng
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Wei Huang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Jianping Liu
- Department of Oral and Maxillofacial Surgery, Shinshu University School of Medicine, Matsumoto 3900821, Japan
| | - Xiaoyan Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Mingyang Bu
- Department of Oral Prophylaxis, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China.
| |
Collapse
|
12
|
Zhou C, Zhu S, Li H. miR-195-5p Targets CDK1 To Regulate New DNA Synthesis and Inhibit the Proliferation of Hepatocellular Carcinoma Cells. Appl Biochem Biotechnol 2023; 195:3477-3490. [PMID: 36607481 DOI: 10.1007/s12010-022-04279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
In cell biological functions and viability, cyclin-dependent kinase 1 (CDK1) takes an essential part. miR-195-5p is pivotal in pathogenesis and development of hepatocellular carcinoma (HCC). But in HCC, whether there is a connection between CDK1 and miR-195-5p remains an unanswered question. In view of this, this study focuses on exploring the mechanism of miR-195-5p/CDK1 in the progression of HCC. The bioinformatics method was applied to predict target mRNA and upstream miRNAs, and further analyzes the signal enrichment pathway of target mRNA. We utilized qRT-PCR and Western blot for detecting expression of genes, as well as their corresponding protein levels. Cell cycle was assayed through flow cytometry. As for the examination of DNA replication, the EDU staining was employed. Cell proliferation was determined via plate colony formation assay. The combined application of bioinformatics analysis and dual-luciferase gene assay assisted in figuring out the binding relationship between miR-195-5p and CDK1. DNA damage was marked by immunofluorescence staining. CDK1 was overexpressed in HCC cells, and enriched in cell cycle and DNA replication pathway. Silencing CDK1 modulated cell cycle of HCC cells and inhibited DNA replication and proliferation. In HCC cells, miR-195-5p targeted and reduced CDK1 expression, inhibited the G1 phase-to-S phase transition, induced DNA damage response, and inhibited DNA replication and proliferation. miR-195-5p targeted CDK1 and repressed synthesis of new DNA in HCC cells, thus restraining HCC cell proliferation.
Collapse
Affiliation(s)
- Chunhui Zhou
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kai Fu District Changsha City, Hunan Province, 410008, China
| | - Sujuan Zhu
- The Tumor Hospital of SUMC, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong Province, 515000, China
| | - Haiping Li
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kai Fu District Changsha City, Hunan Province, 410008, China.
| |
Collapse
|
13
|
Zhao M, Fu L, Xu P, Wang T, Li P. Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Kanglaite Injection Against Triple-Negative Breast Cancer. Drug Des Devel Ther 2023; 17:901-917. [PMID: 36998242 PMCID: PMC10043292 DOI: 10.2147/dddt.s397969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose Kanglaite injection (KLTi), made of Coix seed oil, has been shown to be effective in the treatment of numerous cancers. However, the anticancer mechanism requires further exploration. This study aimed to investigate the underlying anticancer mechanisms of KLTi in triple-negative breast cancer (TNBC) cells. Methods Public databases were searched for active compounds in KLTi, their potential targets and TNBC-related targets. KLTi's core targets and signaling pathways were determined through compound-target network, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was carried out to predict the binding activity between active ingredients and key targets. In vitro experiments were conducted to further validate the predictions of network pharmacology. Results Fourteen active components of KLTi were screened from the database. Fifty-three candidate therapeutic targets were selected, and bioinformatics analysis was performed to identify the top two active compounds and three core targets. GO and KEGG enrichment analyses indicated that KLTi exerts therapeutic effects on TNBC through the cell cycle pathway. Molecular docking results showed that the main compounds of KLTi exhibited good binding activity to key target proteins. Results from in vitro experiments showed that KLTi inhibited proliferation and migration of TNBC cell lines 231 and 468, induced apoptosis, blocked cells in the G2/M phase, downregulated the mRNA expression of seven G2/M phase-related genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), and checkpoint kinase 1 (CHEK1), cell division cycle 25A (CDC25A), cell division cycle 25B (CDC25B), maternal embryonic leucine zipper kinase (MELK), and aurora kinase A (AURKA), as well as downregulated CDK1 protein expression and up-regulated protein expression of Phospho-CDK1. Conclusion By utilizing network pharmacology, molecular docking, and in vitro experiments, KLTi was confirmed to have anti-TNBC effects by arresting cell cycle and inhibiting CDK1 dephosphorylation.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Lijuan Fu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
14
|
He J, Gao R, Yang J, Li F, Fu Y, Cui J, Liu X, Huang K, Guo Q, Zhou Z, Wei W. NCAPD2 promotes breast cancer progression through E2F1 transcriptional regulation of CDK1. Cancer Sci 2023; 114:896-907. [PMID: 35348268 PMCID: PMC9986070 DOI: 10.1111/cas.15347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is a serious threat to women's health worldwide. Non-SMC condensin I complex subunit D2 (NCAPD2) is a regulatory subunit of the coagulin I complex, which is mainly involved in chromosome coagulation and separation. The clinical significance, biological behavior, and potential molecular mechanism of NCAPD2 in BC were investigated in this study. We found that NCAPD2 was frequently overexpressed in BC, and it had clinical significance in predicting the prognosis of BC patients. Moreover, loss-of-function assays demonstrated that NCAPD2 knockdown restrained the progression of BC by inhibiting proliferation and migration and enhancing apoptosis in vitro. It was further confirmed that the downregulation of NCAPD2 inhibited tumor growth in vivo. NCAPD2 promoted the progression of BC through the extracellular signal-regulated kinase 5 (ERK5) signaling pathway. Additionally, NCAPD2 could transcriptionally activate CDK1 by interacting with E2F transcription factor 1 (E2F1) in MDA-MB-231 cells. Overexpression of CDK1 alleviated the inhibitory effects of NCAPD2 knockdown in BC cells. In summary, the NCAPD2/E2F1/CDK1 axis may play a role in promoting the progression of BC, which may provide a blueprint for molecular therapy.
Collapse
Affiliation(s)
- Jinsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Rui Gao
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianbo Yang
- Department of The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Department of Otolaryngology, The Immunotherapy Research Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Feng Li
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yang Fu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Junwei Cui
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoling Liu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kanghua Huang
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiuyi Guo
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zihan Zhou
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Wei
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Chen J, Li M, Liu Y, Guan T, Yang X, Wen Y, Zhu Y, Xiao Z, Shen X, Zhang H, Tang H, Liu T. PIN1 and CDK1 cooperatively govern pVHL stability and suppressive functions. Cell Death Differ 2023; 30:1082-1095. [PMID: 36813923 PMCID: PMC10070344 DOI: 10.1038/s41418-023-01128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.
Collapse
Affiliation(s)
- Jiayi Chen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Tangming Guan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yalei Wen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutic Sciences, Guizhou Medical University, University Town, Guiyang City and Guian New District, Guiyang, 550025, P. R. China
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, P. R. China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, P. R. China. .,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, P. R. China.
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China. .,The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
| |
Collapse
|
16
|
Zhang X, Hong S, Yang J, Liu J, Wang Y, Peng J, Wang H, Hong L. Purvalanol A induces apoptosis and reverses cisplatin resistance in ovarian cancer. Anticancer Drugs 2023; 34:29-43. [PMID: 35946506 PMCID: PMC9760476 DOI: 10.1097/cad.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Cisplatin (DDP) resistance limits therapeutic efficacy in patients diagnosed with ovarian cancer. Purvalanol A (Pur) is a novel cyclin-dependent kinase (CDK) inhibitor that has been demonstrated to induce apoptosis in various cancer cells. The present study investigated the effect of the combination treatment of Pur and DDP, and the potential anticancer mechanisms in epithelial ovarian cancer (EOC) cells in vitro and in vivo . We found that Pur enhanced the anti-tumor efficacy of cisplatin in EOC cells. The combination of Pur and DDP had more significant effects on apoptosis induction in EOC cells compared with the individual-treatment groups and the control group. We further demonstrated that the combination of Pur and DDP may trigger apoptosis and autophagy in EOC cells by inducing reactive oxygen species (ROS). And the ROS/Akt/mammalian target of rapamycin signaling pathway as a potential mechanism for the initiation of autophagy induced by combination therapy. Similar results were observed in vivo . These results demonstrated that Pur sensitized the response of EOC cells to cisplatin in vitro and in vivo , reversing the resistance to cisplatin in ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiang Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jingchun Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| |
Collapse
|
17
|
Zhang Z, Wang X, Nie P, Qin Y, Shi J, Xu S. DEPDC1B promotes development of cholangiocarcinoma through enhancing the stability of CDK1 and regulating malignant phenotypes. Front Oncol 2022; 12:842205. [PMID: 36568241 PMCID: PMC9769124 DOI: 10.3389/fonc.2022.842205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary tumor of the hepatobiliary system. At present, the therapeutic efficiency of cholangiocarcinoma is fairly low and the prognosis is poor. The root cause is that the molecular mechanism of the occurrence and development of CCA is largely unclear. This work intended to clarify the role of DEP domain-containing protein 1B (DEPDC1B) in the progress of CCA through cellular biology research strategies and further clarify the molecular mechanism of CCA. Clinical tissue-related detection showed that the expression level of DEPDC1B in tumor tissues was significantly higher than that in normal tissues and was positively correlated with tumor grade. Knockdown of the endogenous DEPDC1B of CCA cells can significantly inhibit cell proliferation and migration, while promoting cell apoptosis and blocking the cell cycle. DEPDC1B overexpression induced the opposite effects. Studies in animal models also showed that the downregulation of DEPDC1B can reduce the tumorigenicity of CCA cells. In addition, through gene profiling analysis and molecular biology studies, we found that CDK1 may be an important downstream mediator of DEPDC1B, the protein stability of which was significantly decreased through the ubiquitin-proteasome system in DEPDC1B knockdown cells. Moreover, knockdown of CDK1 can weaken the promotion of CCA caused by DEPDC1B overexpression. In summary, our research showed that DEPDC1B plays an important role in the development of CCA and its targeted inhibition may become one of the important methods to inhibit the progress of CCA.
Collapse
Affiliation(s)
- Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peihua Nie
- Department of Ophthalmology and Otorhinolaryngology, Shandong Provincial Third hospital, Jinan, Shandong, China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junping Shi
- Medical Department, OrigiMed, Shanghai, China
| | - Shifeng Xu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
19
|
Urh K, Zidar N, Boštjančič E. Bioinformatics Analysis of RNA-seq Data Reveals Genes Related to Cancer Stem Cells in Colorectal Cancerogenesis. Int J Mol Sci 2022; 23:ijms232113252. [PMID: 36362041 PMCID: PMC9654446 DOI: 10.3390/ijms232113252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSC) play one of the crucial roles in the pathogenesis of various cancers, including colorectal cancer (CRC). Although great efforts have been made regarding our understanding of the cancerogenesis of CRC, CSC involvement in CRC development is still poorly understood. Using bioinformatics and RNA-seq data of normal mucosa, colorectal adenoma, and carcinoma (n = 106) from GEO and TCGA, we identified candidate CSC genes and analyzed pathway enrichment analysis (PEI) and protein–protein interaction analysis (PPI). Identified CSC-related genes were validated using qPCR and tissue samples from 47 patients with adenoma, adenoma with early carcinoma, and carcinoma without and with lymph node metastasis and were compared to normal mucosa. Six CSC-related genes were identified: ANLN, CDK1, ECT2, PDGFD, TNC, and TNXB. ANLN, CDK1, ECT2, and TNC were differentially expressed between adenoma and adenoma with early carcinoma. TNC was differentially expressed in CRC without lymph node metastases whereas ANLN, CDK1, and PDGFD were differentially expressed in CRC with lymph node metastases compared to normal mucosa. ANLN and PDGFD were differentially expressed between carcinoma without and with lymph node metastasis. Our study identified and validated CSC-related genes that might be involved in early stages of CRC development (ANLN, CDK1, ECT2, TNC) and in development of metastasis (ANLN, PDGFD).
Collapse
|
20
|
Exploring Potential Biomarkers, Ferroptosis Mechanisms, and Therapeutic Targets Associated with Cutaneous Squamous Cell Carcinoma via Integrated Transcriptomic Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3524022. [PMID: 36247089 PMCID: PMC9553755 DOI: 10.1155/2022/3524022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the leading cause of death in patients with nonmelanoma skin cancers (NMSC). However, the unclear pathogenesis of cSCC limits the application of molecular targeted therapy. Methods Three microarray datasets (GSE2503, GSE45164, and GSE66359) were downloaded from the Gene Expression Omnibus (GEO). After identifying the differentially expressed genes (DEGs) in tumor and nontumor tissues, five kinds of analyses, namely, functional annotation, protein-protein interaction (PPI) network, hub gene selection, TF-miRNA-mRNA regulatory network analysis, and ferroptosis mechanism, were performed. Results A total of 146 DEGs were identified with significant differences, including 113 upregulated genes and 33 downregulated genes. The enriched functions and pathways of the DEGs included microtubule-based movement, ATP binding, cell cycle, P53 signaling pathway, oocyte meiosis, and PLK1 signaling events. Nine hub genes were identified (CDK1, AURKA, RRM2, CENPE, CCNB1, KIAA0101, ZWINT, TOP2A, and ASPM). Finally, RRM2, AURKA, and SAT1 were identified as significant ferroptosis-related genes in cSCC. The differential expression of these genes has been verified in two other independent datasets. Conclusions By integrated bioinformatic analysis, the hub genes identified in this study elucidated the molecular mechanism of the pathogenesis and progression of cSCC and are expected to become future biomarkers or therapeutic targets.
Collapse
|
21
|
OZİSİK H, OZDİL B, OZDEMİR M, SİPAHİ M, ERDOĞAN M, CETİNKALP S, OZGEN G, SAYGİLİ F, OKTAY G, AKTUG H. Anaplastik tiroid kanseri hücre hattının morfolojik analizi. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: Thyroid follicular cell derived cancers are classified into three groups such as papillary thyroid cancer (85%), follicular thyroid cancer (12%) and anaplastic (undifferentiated) thyroid cancer (ATC) (3%). ATCs have very rapid course, poor treatment outcomes and they are very aggressive. The aim of current study was to assess the analysis of the morphological differences of ATC cell line with the normal thyroid cell line (NTC).
Materials and Methods: NTH and ATC cells were examined with haematoxylin and eosin, the nucleus: cytoplasm (N:C) ratios were detected, and cell cycles were investigated. These cell lines were compared according to their N:C ratio and their abundance in cell cycle phases.
Results: The N:C ratio was higher in ATC than NTC. Both cell groups were mostly found in G0/G1 phase (68.4; 82.8) and have statistical difference in both G0/G1 and S phases.
Conclusion: The rapid course and the rarity of ATC are significant barriers for clinical trials. Cultured cell lines are very important to explore the behaviour in the biology of ATC cells (such as the cell cycle), to understand the course of the disease, and to find an effective target for treatment.
Collapse
Affiliation(s)
- Hatice OZİSİK
- Ege University, Faculty of Medicine, Department of Endocrinology and Metabolism
| | - Berrin OZDİL
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| | - Merve OZDEMİR
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| | - Murat SİPAHİ
- DOKUZ EYLUL UNIVERSITY, INSTITUTE OF HEALTH SCIENCES, BIOCHEMISTRY (MEDICINE) (DR)
| | - Mehmet ERDOĞAN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI
| | - Sevki CETİNKALP
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI
| | - Gokhan OZGEN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI
| | - Fusun SAYGİLİ
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, İÇ HASTALIKLARI ANABİLİM DALI
| | - Gulgun OKTAY
- DOKUZ EYLÜL ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI, KLİNİK BİYOKİMYA BİLİM DALI
| | - Huseyin AKTUG
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, HİSTOLOJİ VE EMBRİYOLOJİ ANABİLİM DALI
| |
Collapse
|
22
|
Chen Y, Si H, Bao B, Li S, Teng D, Yan Y, Hu S, Xu Y, Du X. Integrated analysis of intestinal microbiota and host gene expression in colorectal cancer patients. J Med Microbiol 2022; 71. [PMID: 36136380 DOI: 10.1099/jmm.0.001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction. Colorectal cancer (CRC) is one of the most common cancers and poses heavy burden on global health. The relationship between mucosal microbiome composition and colorectal gene expression are rarely studied. In this study, we integrated transcriptome data with microbiome data to investigate the relationship between them in colorectal cancer patients.Gap statement. Previous studies have identified the contribution of gut microbiota and DEGs to the pathogenesis of CRC, but the relationship between mucosal microbiome composition and colorectal gene expression are rarely studied.Aim. In this study, we integrated transcriptome data with microbiome data to investigate the relationship between mucosal microbiome composition and colorectal gene expression.Methodology. First, three independent CRC gene expression profiles (GSE184093, GSE156355 and GSE146587) from Gene Expression Omnibus (GEO) were used to identify differentially expressed genes (DEGs). Second, another dataset (GSE163366) was used to analyse gut mucosal microbiome differential abundance. GO (Gene Ontology) function and KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway enrichment analyses of the DEGs were performed. Protein-protein interactions (PPIs) of the DEGs were constructed. The Spearman correlation analysis was computed between host DEGs and gut microbiome abundance data.Results. A total of 1036 upregulated DEGs and 1194 downregulated DEGs between noncancerous tissues and cancerous tissues were identified based on the analysis. One significant module with a score 37.65 was selected out via MCODE including 41 upregulated DEGs, which are were mostly enriched in two pathways, including microtubule binding and tubulin binding. In particular, significant negative correlations are prevalent between Fusobacterium and the 41 DEGs with the correlation ranging between -0.54 and -0.35, and there commonly exist significant positive correlations between Blautia and the 41 DEGs with the correlation ranging between 0.42 and 0.54, indicating that Fusobacterium and Blautia are two of the most important microbes interacting with the gene regulation.Conclusion. Our results demonstrate significant correlation between some gut microbes and DEGs, providing a comprehensive bioinformatics analysis of them for future investigation into the molecular mechanisms and biomarkers.
Collapse
Affiliation(s)
- Yuhui Chen
- Chinese PLA medical school, Beijing, Haidian 100853, PR China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Baoshi Bao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Songyan Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Da Teng
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Shidong Hu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Yingxin Xu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Haidian, Beijing, 100853, PR China
| |
Collapse
|
23
|
Azeez HJ, Neri F, Hosseinpour Feizi MA, Babaei E. Transcriptome Profiling of HCT-116 Colorectal Cancer Cells with RNA Sequencing Reveals Novel Targets for Polyphenol Nano Curcumin. Molecules 2022; 27:molecules27113470. [PMID: 35684411 PMCID: PMC9182402 DOI: 10.3390/molecules27113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. The gemini nanoparticle formulation of polyphenolic curcumin significantly inhibits the viability of cancer cells. However, the molecular mechanisms and pathways underlying its toxicity in colon cancer are unclear. Here, we aimed to uncover the possible novel targets of gemini curcumin (Gemini-Cur) on colorectal cancer and related cellular pathways. After confirming the cytotoxic effect of Gemini-Cur by MTT and apoptotic assays, RNA sequencing was employed to identify differentially expressed genes (DEGs) in HCT-116 cells. On a total of 3892 DEGs (padj < 0.01), 442 genes showed a log2 FC >|2| (including 244 upregulated and 198 downregulated). Gene ontology (GO) enrichment analysis was performed. Protein−protein interaction (PPI) and gene-pathway networks were constructed by using STRING and Cytoscape. The pathway analysis showed that Gemini-Cur predominantly modulates pathways related to the cell cycle. The gene network analysis revealed five central genes, namely GADD45G, ATF3, BUB1B, CCNA2 and CDK1. Real-time PCR and Western blotting analysis confirmed the significant modulation of these genes in Gemini-Cur-treated compared to non-treated cells. In conclusion, RNA sequencing revealed novel potential targets of curcumin on cancer cells. Further studies are required to elucidate the molecular mechanism of action of Gemini-Cur regarding the modulation of the expression of hub genes.
Collapse
Affiliation(s)
- Hewa Jalal Azeez
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Francesco Neri
- Life Sciences and Systems Biology Department, University of Torino, 10124 Torino, Italy; (F.N.); (M.A.H.F.)
| | | | - Esmaeil Babaei
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Correspondence: ; Tel.: +98-912-217-9167
| |
Collapse
|
24
|
Li W, Feng SS, Wu H, Deng J, Zhou WY, Jia MX, Shi Y, Ma L, Zeng XX, Zuberi Z, Fu D, Liu X, Chen Z. Comprehensive Analysis of CDK1-Associated ceRNA Network Revealing the Key Pathways LINC00460/LINC00525-Hsa-Mir-338-FAM111/ZWINT as Prognostic Biomarkers in Lung Adenocarcinoma Combined with Experiments. Cells 2022; 11:cells11071220. [PMID: 35406786 PMCID: PMC8997540 DOI: 10.3390/cells11071220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide, and effective biomarkers are still lacking for early detection and prognosis prediction. Here, based on gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA), 806 long non-coding RNAs (lncRNAs), 122 microRNAs (miRNAs) and 1269 mRNAs associated with CDK1 were identified. The regulatory axis of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT was determined according to the correlation between gene expression and patient prognosis. The abnormal up-regulation of FAM111B/ZWINT in LUAD was related to hypomethylation. Furthermore, immune infiltration analysis suggested FAM111B/ZWINT could affect the development and prognosis of cancer by regulating the LUAD immune microenvironment. EMT feature analysis suggested that FAM111B/ZWINT promoted tumor spread through the EMT process. Functional analysis showed FAM111B/ZWINT was involved in cell cycle events such as DNA replication and chromosome separation. We analyzed the HERB and GSCALite databases to identify potential target medicines that may play a role in the treatment of LUAD. Finally, the expression of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT axis was verified in LUAD cells by RT-qPCR, and these results were consistent with bioinformatics analysis. Overall, we constructed a CDK1-related ceRNA network and revealed the LINC00460/LINC00525-hsa-mir-338-FAM111/ZWINT pathways as potential diagnostic biomarkers or therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Hao Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Jing Deng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Wang-Yan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China;
| | - Ming-Xi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Xiao-Xi Zeng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam P.O. Box 2958, Tanzania;
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| | - Zhu Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| |
Collapse
|
25
|
Han J, Jeon S, Kim MK, Jeong W, Yoo JJ, Kang HW. In vitrobreast cancer model with patient-specific morphological features for personalized medicine. Biofabrication 2022; 14. [PMID: 35334470 DOI: 10.1088/1758-5090/ac6127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
In vitro cancer models that can simulate patient-specific drug responses for personalized medicine have attracted significant attention. However, the technologies used to produce such models can only recapitulate the morphological heterogeneity of human cancer tissue. Here, we developed a novel 3D technique to bioprint an in vitro breast cancer model with patient-specific morphological features. This model can precisely mimic the cellular microstructures of heterogeneous cancer tissues and produce drug responses similar to those of human cancers. We established a bioprinting process for generating cancer cell aggregates with ductal and solid tissue microstructures that reflected the morphology of breast cancer tissues, and applied it to develop breast cancer models. The genotypic and phenotypic characteristics of the ductal and solid cancer aggregates bioprinted with human breast cancer cells (MCF7, SKBR3, MDA-MB-231) were respectively similar to those of early and advanced cancers. The bioprinted solid cancer cell aggregates showed significantly higher hypoxia (>8 times) and mesenchymal (>2-4 times) marker expressions, invasion activity (>15 times), and drug resistance than the bioprinted ductal aggregates. Co-printing the ductal and solid aggregates produced heterogeneous breast cancer tissue models that recapitulated three different stages of breast cancer tissue morphology. The bioprinted cancer tissue models representing advanced cancer were more and less resistant, respectively, to the anthracycline antibiotic doxorubicin and the hypoxia-activated prodrug tirapazamine; these were analogous to the results in human cancer. The present findings showed that cancer cell aggregates can mimic the pathological micromorphology of human breast cancer tissue and they can be bioprinted to produce breast cancer tissue in vitro that can morphologically represent the clinical stage of cancer in individual patients.
Collapse
Affiliation(s)
- Jonghyeuk Han
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, Ulsan, 44919, Korea (the Republic of)
| | - Seunggyu Jeon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, Ulsan, 44919, Korea (the Republic of)
| | - Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, Ulsan, 44919, Korea (the Republic of)
| | - Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, Ulsan, 44919, Korea (the Republic of)
| | - James J Yoo
- Regenerative Medicine, Wake Forest University, Medical Center Boulevard, NC 27157-1093, USA, Winston-Salem, North Carolina, 27109, UNITED STATES
| | - Hyun-Wook Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, 44919, Korea (the Republic of)
| |
Collapse
|
26
|
Dogra P, Ramírez JR, Butner JD, Peláez MJ, Chung C, Hooda-Nehra A, Pasqualini R, Arap W, Cristini V, Calin GA, Ozpolat B, Wang Z. Translational Modeling Identifies Synergy between Nanoparticle-Delivered miRNA-22 and Standard-of-Care Drugs in Triple-Negative Breast Cancer. Pharm Res 2022; 39:511-528. [PMID: 35294699 PMCID: PMC8986735 DOI: 10.1007/s11095-022-03176-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
Abstract
Purpose Downregulation of miRNA-22 in triple-negative breast cancer (TNBC) is associated with upregulation of eukaryotic elongation 2 factor kinase (eEF2K) protein, which regulates tumor growth, chemoresistance, and tumor immunosurveillance. Moreover, exogenous administration of miRNA-22, loaded in nanoparticles to prevent degradation and improve tumor delivery (termed miRNA-22 nanotherapy), to suppress eEF2K production has shown potential as an investigational therapeutic agent in vivo. Methods To evaluate the translational potential of miRNA-22 nanotherapy, we developed a multiscale mechanistic model, calibrated to published in vivo data and extrapolated to the human scale, to describe and quantify the pharmacokinetics and pharmacodynamics of miRNA-22 in virtual patient populations. Results Our analysis revealed the dose-response relationship, suggested optimal treatment frequency for miRNA-22 nanotherapy, and highlighted key determinants of therapy response, from which combination with immune checkpoint inhibitors was identified as a candidate strategy for improving treatment outcomes. More importantly, drug synergy was identified between miRNA-22 and standard-of-care drugs against TNBC, providing a basis for rational therapeutic combinations for improved response Conclusions The present study highlights the translational potential of miRNA-22 nanotherapy for TNBC in combination with standard-of-care drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03176-3.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Maria J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Anupama Hooda-Nehra
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Radiation Oncology, Division of Cancer Biology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77230, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, 10065, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA.
| |
Collapse
|
27
|
Thoma OM, Neurath MF, Waldner MJ. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front Pharmacol 2021; 12:757120. [PMID: 35002699 PMCID: PMC8733931 DOI: 10.3389/fphar.2021.757120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than ten CDKs have been described. Their direct interaction with cyclins allow progression through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While CDK activation is important in cell renewal, its aberrant expression can lead to the development of malignant tumor cells. Dysregulations in CDK pathways are often encountered in various types of cancer, including all gastrointestinal (GI) tract tumors. This prompted the development of CDK inhibitors as novel therapies for cancer. Currently, CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in colorectal cancer, with a special focus on the CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Liu R, Jiang Z, Kong W, Zheng S, Dai T, Wang G. A Novel Nine-Gene Signature Associated With Immune Infiltration for Predicting Prognosis in Hepatocellular Carcinoma. Front Genet 2021; 12:730732. [PMID: 34917126 PMCID: PMC8669621 DOI: 10.3389/fgene.2021.730732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its prognosis remains unsatisfactory. The identification of new and effective markers is helpful for better predicting the prognosis of patients with HCC and for conducting individualized management. The oncogene Aurora kinase A (AURKA) is involved in a variety of tumors; however, its role in liver cancer is poorly understood. The aim of this study was to establish AURKA-related gene signatures for predicting the prognosis of patients with HCC. Methods: We first analyzed the expression of AURKA in liver cancer and its prognostic significance in different data sets. Subsequently, we selected genes with prognostic value related to AURKA and constructed a gene signature based on them. The predictive ability of the gene signature was tested using the HCC cohort development and verification data sets. A nomogram was constructed by integrating the risk score and clinicopathological characteristics. Finally, the influence of the gene signature on the immune microenvironment in HCC was comprehensively analyzed. Results: We found that AURKA was highly expressed in HCC, and it exhibited prognostic value. We selected eight AURKA-related genes with prognostic value through the protein-protein interaction network and successfully constructed a gene signature. The nine-gene signature could effectively stratify the risk of patients with HCC and demonstrated a good ability in predicting survival. The nomogram showed good discrimination and consistency of risk scores. In addition, the high-risk group showed a higher percentage of immune cell infiltration (i.e., macrophages, myeloid dendritic cells, neutrophils, and CD4+T cells). Moreover, the immune checkpoints SIGLEC15, TIGIT, CD274, HAVCR2, and PDCD1LG2 were also higher in the high-risk group versus the low-risk group. Conclusions: This gene signature may be useful prognostic markers and therapeutic targets in patients with HCC.
Collapse
Affiliation(s)
- Rongqiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ZeKun Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihao Kong
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shiyang Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianxing Dai
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoying Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Kong S, Liu J, Zhang B, Lv F, Yu Y, Qin T. MicroRNA-337-3p impedes breast cancer progression by targeting cyclin-dependent kinase 1. Oncol Lett 2021; 23:15. [PMID: 34820014 PMCID: PMC8607341 DOI: 10.3892/ol.2021.13133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) function as key regulators in breast cancer (BC). The present study aimed to verify the function and molecular regulation of miR-337-3p in BC cells. Bioinformatics analysis was performed to screen key genes and miRNAs associated with BC. Reverse transcription-quantitative PCR and western blot analyses were performed to detect RNA and protein expression levels. Cell Counting Kit-8, BrdU and cell adhesion assays, and flow cytometric analysis were performed to assess the biological behaviors of BC cells. The dual-luciferase reporter, RNA pull-down assays, and Pearson's correlation analysis were performed to determine the association between miRNAs and mRNAs. Bioinformatics analysis revealed that miR-337-3p and cyclin-dependent kinase 1 (CDK1) acted as key regulators in BC. In addition, miR-337-3p was expressed at low levels in BC cells and tissues, which suppressed BC progression. CDK1 expression was upregulated in BC cells and tissues, which was associated with increased cell proliferation and adhesion, as well as decreased apoptosis in BC. Notably, miR-337-3p targeted CDK1 to inhibit BC cell progression. Taken together, the results of the present study suggest that miR-337-3p plays a tumor-suppressive role in BC by targeting CDK1.
Collapse
Affiliation(s)
- Shuxin Kong
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianyang Liu
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, Henan 450001, P.R. China
| | - Bin Zhang
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Feng Lv
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yang Yu
- Department of Breast Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Tao Qin
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
30
|
Circ_0084443 Inhibits Wound Healing Via Repressing Keratinocyte Migration Through Targeting the miR-17-3p/FOXO4 Axis. Biochem Genet 2021; 60:1236-1252. [PMID: 34837127 DOI: 10.1007/s10528-021-10157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Keratinocyte migration is a crucial process during skin wound healing, and circular RNAs are associated with keratinocyte migration. The purpose of our study was to clarify the role of circ_0084443 in wound healing. The levels of circ_0084443, microRNA (miR)-17-3p, and forkhead box protein O4 (FOXO4) were examined by quantitative reverse transcription-PCR. Cell migration was detected via wound scratch assay or transwell assay. The protein expression was measured using western blot. The binding analysis between miR-17-3p and circ_0084443 or FOXO4 was determined by dual-luciferase reporter assay and RNA Immunoprecipitation assay. TGF-β1 decreased the levels of circ_0084443 and FOXO4 while increased the miR-17-3p expression in keratinocytes by a concentration-dependent manner. Circ_0084443 acted as a miR-17-3p sponge and circ_0084443 overexpression alleviated TGF-β1-induced migration of keratinocytes by sponging miR-17-3p. FOXO4 was a target for miR-17-3p. The downregulation of miR-17-3p suppressed cell migration in TGF-β1-induced cells by increasing the FOXO4 level. Circ_0084443 positively regulated the FOXO4 expression by sponging miR-17-3p. Circ_0084443 suppressed the TGFβ signaling pathway by affecting the miR-17-3p/FOXO4 axis. These results exhibited that circ_0084443 suppressed the TGF-β1-induced keratinocyte migration by regulating the miR-17-3p/FOXO4 axis, suggesting the application potential of circ_0084443 in wound-healing-related diseases.
Collapse
|
31
|
Dorel M, Klinger B, Mari T, Toedling J, Blanc E, Messerschmidt C, Nadler-Holly M, Ziehm M, Sieber A, Hertwig F, Beule D, Eggert A, Schulte JH, Selbach M, Blüthgen N. Neuroblastoma signalling models unveil combination therapies targeting feedback-mediated resistance. PLoS Comput Biol 2021; 17:e1009515. [PMID: 34735429 PMCID: PMC8604339 DOI: 10.1371/journal.pcbi.1009515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/19/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and via the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospho-proteomic profiling confirmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies. Our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Mathurin Dorel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bertram Klinger
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tommaso Mari
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Joern Toedling
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Blanc
- Berlin Institute of Health, Berlin, Germany
| | | | | | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anja Sieber
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Angelika Eggert
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric, Division of Oncology and Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Integrative Research Institute for the Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
32
|
Dogra P, Ramirez JR, Butner JD, Pelaez MJ, Cristini V, Wang Z. A Multiscale Model to Identify Limiting Factors in Nanoparticle-Based miRNA Delivery for Tumor Inhibition . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4230-4233. [PMID: 34892157 PMCID: PMC8712117 DOI: 10.1109/embc46164.2021.9630862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MicroRNA-based gene therapy for cancer treatment via nanoparticles (NPs) requires navigation of multiple physical and physiological barriers in order to efficiently deliver the miRNAs to the cancer cell cytoplasm. We here present a mathematical model to investigate the variability associated with tumor, NP, and miRNA characteristics, and identify the limiting factors in miRNA delivery to tumors. Through global parameter analysis, the miRNA release rate from NPs and NP degradability were found to have the most significant impact on cytosolic accumulation of miRNAs. These NP properties can be fine-tuned in order to optimize the delivery system for enhancing the efficacy of miRNA-based therapy.Clinical Relevance-Understanding the effect of nanoparticle, tumor, and miRNA characteristics in governing the efficacy of miRNA-based cancer therapy will support its clinical translation.
Collapse
|
33
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
34
|
Lin KY, Su TC, Yeh CM, Chao WR, Sung WW. High Expression of MTA1 Predicts Unfavorable Survival in Patients With Oral Squamous Cell Carcinoma. In Vivo 2021; 35:2363-2368. [PMID: 34182519 PMCID: PMC8286510 DOI: 10.21873/invivo.12513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM Metastasis-associated protein 1 (MTA1) plays a role in ATP-dependent nucleosome disruption activity and histone deacetylase activity and may indicate DNA methylation activity. MTA1 may also be involved in the progression of oral squamous cell carcinoma (OSCC). PATIENTS AND METHODS MTA1 immunoreactivity was analyzed using immunohistochemical (IHC) staining analysis in specimens from 281 OSCC patients. Kaplan-Meier analysis was used to determine the prognostic value of MTA1 for overall survival. RESULTS High MTA1 expression was significantly associated with female gender and lymph node metastasis. Multivariate analyses showed the independent prognostic role of high MTA1 expression in patients with OSCC of poorer mean survival. CONCLUSION MTA1 expression, detected by IHC staining, could be an independent prognostic marker for patients of OSCC.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Wan-Ru Chao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Pathology, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.;
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
35
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|
36
|
Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021; 15:39. [PMID: 34187556 PMCID: PMC8243535 DOI: 10.1186/s40246-021-00341-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. Methods GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. Results In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. Conclusions The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
Collapse
|
37
|
Sebastian JA, Moore MJ, Berndl ESL, Kolios MC. An image-based flow cytometric approach to the assessment of the nucleus-to-cytoplasm ratio. PLoS One 2021; 16:e0253439. [PMID: 34166419 PMCID: PMC8224973 DOI: 10.1371/journal.pone.0253439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The nucleus-to-cytoplasm ratio (N:C) can be used as one metric in histology for grading certain types of tumor malignancy. Current N:C assessment techniques are time-consuming and low throughput. Thus, in high-throughput clinical contexts, there is a need for a technique that can assess cell malignancy rapidly. In this study, we assess the N:C ratio of four different malignant cell lines (OCI-AML-5-blood cancer, CAKI-2-kidney cancer, HT-29-colon cancer, SK-BR-3-breast cancer) and a non-malignant cell line (MCF-10A -breast epithelium) using an imaging flow cytometer (IFC). Cells were stained with the DRAQ-5 nuclear dye to stain the cell nucleus. An Amnis ImageStreamX® IFC acquired brightfield/fluorescence images of cells and their nuclei, respectively. Masking and gating techniques were used to obtain the cell and nucleus diameters for 5284 OCI-AML-5 cells, 1096 CAKI-2 cells, 6302 HT-29 cells, 3159 SK-BR-3 cells, and 1109 MCF-10A cells. The N:C ratio was calculated as the ratio of the nucleus diameter to the total cell diameter. The average cell and nucleus diameters from IFC were 12.3 ± 1.2 μm and 9.0 ± 1.1 μm for OCI-AML5 cells, 24.5 ± 2.6 μm and 15.6 ± 2.1 μm for CAKI-2 cells, 16.2 ± 1.8 μm and 11.2 ± 1.3 μm for HT-29 cells, 18.0 ± 3.7 μm and 12.5 ± 2.1 μm for SK-BR-3 cells, and 19.4 ± 2.2 μm and 10.1 ± 1.8 μm for MCF-10A cells. Here we show a general N:C ratio of ~0.6-0.7 across varying malignant cell lines and a N:C ratio of ~0.5 for a non-malignant cell line. This study demonstrates the use of IFC to assess the N:C ratio of cancerous and non-cancerous cells, and the promise of its use in clinically relevant high-throughput detection scenarios to supplement current workflows used for cancer cell grading.
Collapse
Affiliation(s)
- Joseph A. Sebastian
- Department of Physics, Ryerson University, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
| | - Michael J. Moore
- Department of Physics, Ryerson University, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
| | - Elizabeth S. L. Berndl
- Department of Physics, Ryerson University, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael’s Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
38
|
Khedkar HN, Wang YC, Yadav VK, Srivastava P, Lawal B, Mokgautsi N, Sumitra MR, Wu ATH, Huang HS. In-Silico Evaluation of Genetic Alterations in Ovarian Carcinoma and Therapeutic Efficacy of NSC777201, as a Novel Multi-Target Agent for TTK, NEK2, and CDK1. Int J Mol Sci 2021; 22:ijms22115895. [PMID: 34072728 PMCID: PMC8198179 DOI: 10.3390/ijms22115895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease’s pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Harshita Nivrutti Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Prateeti Srivastava
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (V.K.Y.); (P.S.)
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Academia Sinica, Taipei 11031, Taiwan; (H.N.K.); (B.L.); (N.M.); (M.R.S.)
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- National Defense Medical Center, School of Pharmacy, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.)
| |
Collapse
|
39
|
Lv C, Gao Y, Yao J, Li Y, Lou Q, Zhang M, Tian Q, Yang Y, Sun D. High Iodine Induces the Proliferation of Papillary and Anaplastic Thyroid Cancer Cells via AKT/Wee1/CDK1 Axis. Front Oncol 2021; 11:622085. [PMID: 33796458 PMCID: PMC8008130 DOI: 10.3389/fonc.2021.622085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
High iodine can alter the proliferative activity of thyroid cancer cells, but the underlying mechanism has not been fully elucidated. Here, the role of high iodine in the proliferation of thyroid cancer cells was studied. In this study, we demonstrated that high iodine induced the proliferation of BCPAP and 8305C cells via accelerating cell cycle progression. The transcriptome analysis showed that there were 295 differentially expressed genes (DEGs) in BCPAP and 8305C cells induced by high iodine, among which CDK1 expression associated with the proliferation of thyroid cancer cells induced by high iodine. Moreover, the western blot analysis revealed that cells exposed to high iodine enhanced the phosphorylation activation of AKT and the expression of phospho-Wee1 (Ser642), while decreasing the expression of phospho-CDK1 (Tyr15). Importantly, the inhibition of AKT phosphorylation revered the expression of CDK1 induced by high iodine and arrested the cell cycle in the G1 phase, decreasing the proliferation of thyroid cancer cells induced by high iodine. Taken together, these findings suggested that high iodine induced the proliferation of thyroid cancer cells through AKT-mediated Wee1/CDK1 axis, which provided new insights into the regulation of proliferation of thyroid cancer cells by iodine.
Collapse
Affiliation(s)
- Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Qiushi Tian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China.,Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin, China
| |
Collapse
|
40
|
Ying X, Che X, Wang J, Zou G, Yu Q, Zhang X. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer. J Cancer 2021; 12:2206-2215. [PMID: 33758599 PMCID: PMC7974891 DOI: 10.7150/jca.51139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Endometrial cancer (EC) is one of the most common and prevalent gynecologic malignancies worldwide. The aim of this study was to identify a novel therapeutic target for endometrioid endometrial cancer. Materials and Methods: Bioinformatic analysis was performed and CDK1 was screen out as one of the hub genes in the pathogenesis of EC. Immunohistochemistry was used to verify the expression of CDK1 in endometrial cancer tissue. Cell viability and colony formation were used to study the effects of CDK1 on the proliferation and colony formation of endometrial cancer cells in vitro. Apoptosis and cell cycle assays were used to elucidate the mechanism of CDK1 affecting cell proliferation. Tumor xenograft transplantation assay was performed to show the effects of CDK1 on the growth of endometrial cancer cells in vivo. Results: CDK1 was over expressed in endometrioid endometrial cancer, and accumulation of cytoplasmic CDK1 was associated with histological grade of EC. CDK1 promoted endometrial cancer cell growth and colony formation in vitro. The inhibition of CDK1 activity induced cell apoptosis and caused G2/M phase arrest of cell cycle in endometrial cancer cells. The inhibition of CDK1 activity also inhibited endometrial cancer growth in xenograft models. Conclusion: CDK1 was involved in the pathogenesis of endometrioid endometrial cancer and provided a novel therapeutic target for endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Xue Ying
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xuan Che
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006.,Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang, P.R. China, 314000
| | - Jianzhang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Gen Zou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Qin Yu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xinmei Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| |
Collapse
|
41
|
Cisplatin effect on digital cytomorphometric and bioinformatic tumor cell characteristics in rat ovarian cancer model-a preliminary study. Pharmacol Rep 2021; 73:642-649. [PMID: 33604796 DOI: 10.1007/s43440-020-00199-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ovarian cancer is one of the most common diseases of the female reproductive system. The aim of this study was the investigation of the antitumor cisplatin effect on ascitic fluid tumor cells in the ovarian cancer experimental model by digital cytomorphometry and cell bioinformatic analysis. METHODS Female Wistar rats were inoculated by ovarian cancer strain. After ovarian cancer transplantation rats were divided into two groups: control group-without cisplatin treatment, the experimental group-under cisplatin treatment. The ascitic fluid was taken on the 9-th day after tumor cell inoculation. Digital cytomorphometric and cytobioinformatic analysis were used to study ascitic fluid cancer cell morphofunctional changes under cisplatin treatment. RESULTS Digital cytomorphometric characteristics of rat ovarian cancer ascitic cells were obtained. Tumor cells were classified into four groups according to their geometric size: small, medium, large, "gigantic". The algorithm and the computer program based on tumor cell morphometric characteristics were created to calculate such cell bioinformatic characteristic as information redundancy coefficient R. Three parameters were determined as the criteria of cisplatin effect on cancer cells: cell number, nuclear/cytoplasmic ratio, R-value. CONCLUSIONS Data obtained suggest that cisplatin reduces the total cell number, the nuclear/cytoplasmic ratio and R-value thus indicates a decrease in cellular resistance and adaptive potential. The digital cytomorphometry and bioinformatics could be recommended as a testing system in the experimental or clinical study.
Collapse
|
42
|
Liu HM, Tan HY, Lin Y, Xu BN, Zhao WH, Xie YA. MicroRNA-1271-5p inhibits cell proliferation and enhances radiosensitivity by targeting CDK1 in hepatocellular carcinoma. J Biochem 2021; 167:513-524. [PMID: 32275316 DOI: 10.1093/jb/mvz114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
This study aims to determine whether miR-1271-5p inhibits cell proliferation and enhances the radiosensitivity by targeting cyclin-dependent kinase 1 (CDK1) in hepatocellular carcinoma (HCC). Its expression levels in the HCC cell lines were significantly lower than those in normal human liver cell line. Bioinformatics analysis indicated CDK1 was a potential target of miR-1271-5p. Dual-Luciferase Reporter Assay confirmed that CDK1 is a direct target gene of miR-1271-5p. With overexpression of miR-1271-5p in SMMC-7721 and HuH-7 cells, cell proliferation was decreased, radiosensitivity was enhanced, cell cycle distribution was altered and the growth of transplanted tumours in nude mice was significantly reduced. miR-1271-5p overexpression enhanced radiosensitivity, which could be reduced by CDK1 overexpression. Overall, our findings suggested that miR-1271-5p inhibits cell proliferation and enhances the radiosensitivity of HCC cell lines by targeting CDK1.
Collapse
Affiliation(s)
- Hong-Mei Liu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China.,Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Hua-Yan Tan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yue Lin
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Bei-Ning Xu
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Wen-Hua Zhao
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yu-An Xie
- Research Department, Affiliated Cancer Hospital of Guangxi Medical University and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China.,The Maternal & Health Hospital, The Children's Hospital, The Obstetrics & Gynecology Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
43
|
Tiwari S, Kajdacsy-Balla A, Whiteley J, Cheng G, Hewitt SM, Bhargava R. INFORM: INFrared-based ORganizational Measurements of tumor and its microenvironment to predict patient survival. SCIENCE ADVANCES 2021; 7:7/6/eabb8292. [PMID: 33536203 PMCID: PMC7857685 DOI: 10.1126/sciadv.abb8292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/11/2020] [Indexed: 05/14/2023]
Abstract
The structure and organization of a tumor and its microenvironment are often associated with cancer outcomes due to spatially varying molecular composition and signaling. A persistent challenge is to use this physical and chemical spatial organization to understand cancer progression. Here, we present a high-definition infrared imaging-based organizational measurement framework (INFORM) that leverages intrinsic chemical contrast of tissue to label unique components of the tumor and its microenvironment. Using objective and automated computational methods, further, we determine organization characteristics important for prediction. We show that the tumor spatial organization assessed with this framework is predictive of overall survival in colon cancer that adds to capability from clinical variables such as stage and grade, approximately doubling the risk of death in high-risk individuals. Our results open an all-digital avenue for measuring and studying the association between tumor spatial organization and disease progression.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Whiteley
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Departments of Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Chen P, Mamillapalli R, Habata S, Taylor HS. Endometriosis Cell Proliferation Induced by Bone Marrow Mesenchymal Stem Cells. Reprod Sci 2021; 28:426-434. [PMID: 32812213 DOI: 10.1007/s43032-020-00294-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Endometriosis is an estrogen-dependent gynecological disorder that affects 10% of reproductive-aged women and causes pelvic pain and infertility. Bone marrow-derived stem cells (BMDCs) are known to engraft endometriosis in association with lesion growth; however, they do not undergo significant clonal expansion. The indirect effects of BMDCs on endometriosis growth and cell proliferation are not well characterized. Here, we demonstrate that BMDCs' co-culture increased endometrial stromal cell proliferation. In vitro studies using endometrial cells showed that BMDCs increased cell proliferation and activation of CDK1 in both an endometriosis cell line and primary endometrial stromal cells from women with endometriosis, however not in normal endometrial cells. In vivo studies using a mouse model of endometriosis showed increased CDK1+ expression associated with engrafted GFP + BMDCs. These results suggest that endometrial cell proliferation is induced by stem cell-derived trophic factors leading to the growth of endometriotic lesions. Targeting the specific signaling molecules secreted by BMDC may lead to novel therapeutic strategies for controlling cell proliferation in endometriosis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Obstetrics and Gynecology Department, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Shutaro Habata
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
45
|
Yeh CM, Lee YJ, Ko PY, Lin YM, Sung WW. High Expression of KLF10 Is Associated with Favorable Survival in Patients with Oral Squamous Cell Carcinoma. ACTA ACUST UNITED AC 2020; 57:medicina57010017. [PMID: 33379261 PMCID: PMC7824494 DOI: 10.3390/medicina57010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/02/2022]
Abstract
Background and Objectives: Krüppel-like transcription factor 10 (KLF10) plays a vital role in regulating cell proliferation, including the anti-proliferative process, activation of apoptosis, and differentiation control. KLF10 may also act as a protective factor against oral cancer. We studied the impact of KLF10 expression on the clinical outcomes of oral cancer patients to identify its role as a prognostic factor in oral cancer. Materials and Methods: KLF10 immunoreactivity was analyzed by immunohistochemical (IHC) stain analysis in 286 cancer specimens from primary oral cancer patients. The prognostic value of KLF10 on overall survival was determined by Kaplan–Meier analysis and the Cox proportional hazard model. Results: High KLF10 expression was significantly associated with male gender and betel quid chewing. The 5-year survival rate was greater for patients with high KLF10 expression than for those with low KLF10 expression (62.5% vs. 51.3%, respectively; p = 0.005), and multivariate analyses showed that high KLF10 expression was the only independent factor correlated with greater overall patient survival. The significant correlation between high KLF10 expression and a higher 5-year survival rate was observed in certain subgroups of clinical parameters, including female gender, non-smokers, cancer stage T1, and cancer stage N0. Conclusions: KLF10 expression, detected by IHC staining, could be an independent prognostic marker for oral cancer patients.
Collapse
Affiliation(s)
- Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Pathology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Po-Yun Ko
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, MacKay Memorial Hospital, Taipei 10491, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: (Y.-M.L.); or (W.-W.S.); Tel.: +886-4-723-8595 (Y.-M.L.); +886-4-2473-9595 (ext. 10646) (W.-W.S.)
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-M.L.); or (W.-W.S.); Tel.: +886-4-723-8595 (Y.-M.L.); +886-4-2473-9595 (ext. 10646) (W.-W.S.)
| |
Collapse
|
46
|
Kandel ME, He YR, Lee YJ, Chen THY, Sullivan KM, Aydin O, Saif MTA, Kong H, Sobh N, Popescu G. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat Commun 2020; 11:6256. [PMID: 33288761 PMCID: PMC7721808 DOI: 10.1038/s41467-020-20062-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its specificity, fluorescence microscopy has become a quintessential imaging tool in cell biology. However, photobleaching, phototoxicity, and related artifacts continue to limit fluorescence microscopy's utility. Recently, it has been shown that artificial intelligence (AI) can transform one form of contrast into another. We present phase imaging with computational specificity (PICS), a combination of quantitative phase imaging and AI, which provides information about unlabeled live cells with high specificity. Our imaging system allows for automatic training, while inference is built into the acquisition software and runs in real-time. Applying the computed fluorescence maps back to the quantitative phase imaging (QPI) data, we measured the growth of both nuclei and cytoplasm independently, over many days, without loss of viability. Using a QPI method that suppresses multiple scattering, we measured the dry mass content of individual cell nuclei within spheroids. In its current implementation, PICS offers a versatile quantitative technique for continuous simultaneous monitoring of individual cellular components in biological applications where long-term label-free imaging is desirable.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuchen R He
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young Jae Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taylor Hsuan-Yu Chen
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Taher A Saif
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nahil Sobh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Gabriel Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
47
|
Zhang X, Ma H, Zou Q, Wu J. Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Front Cell Dev Biol 2020; 8:620164. [PMID: 33365314 PMCID: PMC7750425 DOI: 10.3389/fcell.2020.620164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the expression of cyclin-dependent kinase 1 (CDK1) in gastric cancer (GC), evaluate its relationship with the clinicopathological features and prognosis of GC, and analyze the advantage of CDK1 as a potential independent prognostic factor for GC. METHODS The Cancer Genome Atlas (TCGA) data and corresponding clinical features of GC were collected. First, the aim gene was selected by combining five topological analysis methods, where the gene expression in paracancerous and GC tissues was analyzed by Limma package and Wilcox test. Second, the correlation between gene expression and clinical features was analyzed by logistic regression. Finally, the survival analysis was carried out by using the Kaplan-Meier. The gene prognostic value was evaluated by univariate and multivariate Cox analyses, and the gene potential biological function was explored by gene set enrichment analysis (GSEA). RESULTS CDK1 was selected as one of the most important genes associated with GC. The expression level of CDK1 in GC tissues was significantly higher than that in paracancerous tissues, which was significantly correlated with pathological stage and grade. The survival rate of the CDK1 high expression group was significantly lower than that of the low expression group. CDK1 expression was significantly correlated with overall survival (OS). CDK1 expression was mainly involved in prostate cancer, small cell lung cancer, and GC and was enriched in the WNT signaling pathway and T cell receptor signaling pathway. CONCLUSION CDK1 may serve as an independent prognostic factor for GC. It is also expected to be a new target for molecular targeted therapy of GC.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Hua Ma
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
48
|
Zhu Y, Li K, Zhang J, Wang L, Sheng L, Yan L. Inhibition of CDK1 Reverses the Resistance of 5-Fu in Colorectal Cancer. Cancer Manag Res 2020; 12:11271-11283. [PMID: 33177877 PMCID: PMC7649235 DOI: 10.2147/cmar.s255895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Although the survival rate of colorectal cancer (CRC) patients can be improved by surgery, radiotherapy, and chemotherapy, the resistance to 5-fluorouracil (5-Fu) affects the effect of chemotherapy and the prognosis of patients. An increasing number of studies showed that 5-Fu resistance was the main reason for the failure of colorectal cancer treatment. The poor prognosis of colorectal cancer greatly harms people’s health. This study aimed to clarify the correlation between cyclin-dependent kinase 1 (CDK1) and 5-Fu-induced tumor resistance. Materials and Methods Cell proliferation and invasion experiments showed that down-regulation of CDK1 inhibited fluorouracil-resistant CRC cell proliferation. The expression level of CDK1 was detected in 5-Fu-resistant CRC cells in vitro. Tumor growth was inhibited by down-regulation of CDK1 in tumor xenograft mouse models. Results We found that CDK1 was highly expressed in tumor tissues, especially in fluorouracil-resistant tissues. We also confirmed that the differential expression of 5-Fu in tumor tissues was related to tumor site, lymph node metastasis and stage. CDK1 promoted migration, invasion and inhibited apoptosis in 5-Fu-resistant CRC cells. Down-regulation of CDK1 inhibited fluorouracil-resistant CRC cell proliferation and tumorigenesis in vivo. Conclusion High expression of CDK1 may lead to poor clinical prognosis, and inhibition of CDK1 enhances 5-Fu sensitivity in CRC. Our research suggested that CDK1 may be used to predict 5-Fu efficacy and as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Kai Li
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Jieling Zhang
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Lili Sheng
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Liang Yan
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
49
|
Zhang Y, Chen C, Yu T, Chen T. Proteomic Analysis of Protein Ubiquitination Events in Human Primary and Metastatic Colon Adenocarcinoma Tissues. Front Oncol 2020; 10:1684. [PMID: 33014840 PMCID: PMC7511592 DOI: 10.3389/fonc.2020.01684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination is essential for multiple physiological processes through regulating the stability or function of target proteins and has been found to play critical roles in human cancers. However, the protein ubiquitination profile of human metastatic colon adenocarcinoma tissue has not been elucidated yet. In this study, a proprietary ubiquitin branch (K-ε-GG) antibody-based label-free quantitative proteomics and bioinformatics were performed to identify the global protein ubiquitination profile between human primary (Colon) and metastatic colon adenocarcinoma (Meta) tissues. A total of 375 ubiquitination sites from 341 proteins were identified as differentially modificated (| Fold change| > 1.5, p < 0.05) in Meta group compared with the Colon group. Among them, 132 ubiquitination sites from 127 proteins were upregulated and 243 ubiquitination sites from 214 proteins were downregulated in Meta group. Fifteen ubiquitination motifs were found. Furthermore, GO and KEGG pathway analysis indicated that proteins with altered ubiquitination in Meta group were enriched in pathways highly related to cancer metastasis, such as RNA transport and cell cycle. We speculate that the altered ubiquitination of CDK1 may be a pro-metastatic factor in colon adenocarcinoma. This study provides novel scientific evidences to elucidate the biological functions of protein ubiquitination in human colon adenocarcinoma and insights into its potential mechanisms of colon cancer metastasis, which would be helpful to discover novel biomarkers and therapeutic targets for effective treatment of colon cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cong Chen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Lin YM, Chen ML, Chen CL, Yeh CM, Sung WW. Overexpression of EIF5A2 Predicts Poor Prognosis in Patients with Oral Squamous Cell Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10070436. [PMID: 32605067 PMCID: PMC7400414 DOI: 10.3390/diagnostics10070436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common epithelial malignancy affecting the oral cavity, and it is especially significant in Asian countries. Patients diagnosed with OSCC have an unfavorable prognosis and additional prognostic markers would help improve therapeutic strategies. We sought to investigate the association between eukaryotic translation initiation factor 5A2 (EIF5A2) and epithelial–mesenchymal transition (EMT) markers as well as the prognostic significance of EIF5A2 in OSCC. The expression of EIF5A2 and EMT markers was measured through the immunohistochemical staining of specimens from 272 patients with OSCC. In addition, the correlation between different clinicopathological factors and EIF5A2 expression was analyzed. The prognostic role of EIF5A2 was then analyzed via Kaplan–Meier analysis and Cox proportional hazard models. Among the 272 patients, high EIF5A2 expression was significantly associated with an advanced N value (p = 0.008). High tumor expression of EIF5A2 was prone to the expression of low E-cadherin and high beta-catenin (p = 0.046 and p = 0.020, respectively). Patients with high EIF5A2 expression had unfavorable five-year survival rates as compared with those with low expression (49.7% and 67.3%, respectively). The prognostic role of EIF5A2 was further confirmed through multivariate analysis (hazard ratio = 1.714, 95% confidence interval: 1.134–2.590, p = 0.011). High EIF5A2 expression is associated with an advanced N value and EMT markers and may serve as a marker for an unfavorable prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-M.L.); (M.-L.C.); (C.-L.C.)
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Mei-Ling Chen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-M.L.); (M.-L.C.); (C.-L.C.)
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Chia-Lo Chen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-M.L.); (M.-L.C.); (C.-L.C.)
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-M.L.); (M.-L.C.); (C.-L.C.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24739595 (ext.*10646)
| |
Collapse
|