1
|
Panyajai P, Viriyaadhammaa N, Chiampanichayakul S, Sakamoto Y, Okonogi S, Moroishi T, Anuchapreeda S. Anticancer and cancer preventive activities of shogaol and curcumin from Zingiberaceae family plants in KG-1a leukemic stem cells. BMC Complement Med Ther 2025; 25:87. [PMID: 40022126 PMCID: PMC11869560 DOI: 10.1186/s12906-025-04829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Leukemic stem cells (LSCs) present a significant challenge in the treatment of leukemia in patients because they exhibit a drug-resistant phenotype, making them difficult to eliminate. Searching for a new anticancer drug is crucial for improving leukemia treatment. Plants from the Zingiberaceae family are frequently used in traditional medicines due to their safety and accessibility. This study explores the anticancer activity, cancer preventive properties, and apoptosis inducing mechanisms of active compounds derived from these plants. METHODS Ten crude ethanolic extracts from each plant of the Zingiberaceae family were obtained using maceration techniques. The cytotoxicity of all extracts anticancer was assessed in comparison to anticancer drugs (cyclophosphamide, cytarabine, doxorubicin, and idarubicin) using MTT assay on cancer cell lines (KG-1a, K562, A549, MCF-7, and HeLa) and peripheral blood mononuclear cells (PBMCs). Cancer prevention properties of the effective extracts and their active compounds were evaluated by measuring the levels of tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and nitric oxide (NO) using commercial kits. Cell cycle and cell death analyses were conducted using flow cytometry. Moreover, the effects of effective extracts and their active compounds on WT1 and CD34 expressions, as well as the apoptosis mechanism induced by the active compounds in KG-1a cells, were determined by Western blotting. RESULTS The cytotoxicity tests revealed that crude ethanolic extracts from Curcuma longa, C. zedoaria, and Zingiber officinale exhibited effective cytotoxicity against cancer cell lines while demonstrating lower impact on PBMCs. The active compounds of C. longa and C. zedoaria are curcuminoids, while those in Z. officinale are shogaol and gingerol. Notably, the IC20 values of curcuminoids and shogaol exhibited cancer prevention properties and reduced WT1 protein expression, thereby inhibiting cell proliferation. Furthermore, shogaol and curcumin demonstrated the ability to arrest the cell cycle at the G2/M phase and induce apoptosis through the Akt pathway. CONCLUSION These findings highlight shogaol and curcumin as promising compounds for leukemia treatment.
Collapse
Affiliation(s)
- Pawaret Panyajai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natsima Viriyaadhammaa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yasuhisa Sakamoto
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Yang Z, Liu H, Song Y, Gao N, Gao P, Hui Y, Li Y, Fan T. Luteolin enhances drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in paclitaxel‑resistant esophageal squamous cell carcinoma. Int J Mol Med 2024; 54:77. [PMID: 38994756 PMCID: PMC11265837 DOI: 10.3892/ijmm.2024.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem‑like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti‑tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)‑resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit‑8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT‑related proteins and stem cell markers after sphere formation. Parental cells and drug‑resistant cells were screened by high‑throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX‑resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug‑resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX‑resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX‑resistant ESCC and could be a promising agent for the treatment of PTX‑resistant ESCC cancers.
Collapse
Affiliation(s)
- Zhenzhen Yang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450003, P.R. China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yinsen Song
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450003, P.R. China
| | - Na Gao
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450003, P.R. China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pan Gao
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450003, P.R. China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yiran Hui
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, Guangdong 518107, P.R. China
| | - Yueheng Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
3
|
Lee YS, Chen X, Widiyanto TW, Orihara K, Shibata H, Kajiwara S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front Cell Infect Microbiol 2022; 12:944611. [PMID: 36237434 PMCID: PMC9551236 DOI: 10.3389/fcimb.2022.944611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a pathogenic yeast that causes candidiasis in immunocompromised patients. The overuse of antifungal drugs has led to the development of resistance to such drugs by this fungus, which is a major challenge in antifungal chemotherapy. One approach to this problem involves the utilization of new natural products as an alternative source of antifungals. Curcumin, one such natural product, has been widely studied as a drug candidate and is reported to exhibit antifungal activity against C. albicans. Although studies of the mechanism of curcumin against human cancer cells have shown that it inhibits heat shock protein 90 (Hsp90), little is known about its function against C. albicans. In this paper, using a doxycycline-mediated HSP90 strain and an HSP90-overexpressing strain of C. albicans, we demonstrated that the curcumin triggered a decrease in Hsp90 by affecting it at the post-transcriptional level. This also led to the downregulation of HOG1 and CDR1, resulting in a reduction of the stress response and efflux pump activity of C. albicans. However, the inhibition of HSP90 by curcumin was not due to the inhibition of transcription factors HSF1 or AHR1. We also found that curcumin can not only decrease the transcriptional expression of CDR1, but also inhibit the efflux pump activity of Cdr1. Hence, we conclude that disruption of HSP90 by curcumin could impair cell growth, stress responses and efflux pump activity of C. albicans.
Collapse
Affiliation(s)
- Yean Sheng Lee
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Koszałka P, Stasiłojć G, Miękus-Purwin N, Niedźwiecki M, Purwin M, Grabowski S, Bączek T. The Cooperative Anti-Neoplastic Activity of Polyphenolic Phytochemicals on Human T-Cell Acute Lymphoblastic Leukemia Cell Line MOLT-4 In Vitro. Int J Mol Sci 2022; 23:ijms23094753. [PMID: 35563141 PMCID: PMC9099961 DOI: 10.3390/ijms23094753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/01/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting pediatric patients. ALL treatment regimens with cytostatics manifest substantial toxicity and have reached the maximum of well-tolerated doses. One potential approach for improving treatment efficiency could be supplementation of the current regimen with naturally occurring phytochemicals with anti-cancer properties. Nutraceuticals such as quercetin, curcumin, resveratrol, and genistein have been studied in anti-cancer therapy, but their application is limited by their low bioavailability. However, their cooperative activity could potentially increase their efficiency at low, bioavailable doses. We studied their cooperative effect on the viability of a human ALL MOLT-4 cell line in vitro at the concentration considered to be in the bioavailable range in vivo. To analyze their potential side effect on the viability of non-tumor cells, we evaluated their toxicity on a normal human foreskin fibroblast cell line (BJ). In both cell lines, we also measured specific indicators of cell death, changes in cell membrane permeability (CMP), and mitochondrial membrane potential (MMP). Even at a low bioavailable concentration, genistein and curcumin decreased MOLT-4 viability, and their combination had a significant interactive effect. While resveratrol and quercetin did not affect MOLT-4 viability, together they enhanced the effect of the genistein/curcumin mix, significantly inhibiting MOLT-4 population growth in vitro. Moreover, the analyzed phytochemicals and their combinations did not affect the BJ cell line. In both cell lines, they induced a decrease in MMP and correlating CMP changes, but in non-tumor cells, both metabolic activity and cell membrane continuity were restored in time. (4) Conclusions: The results indicate that the interactive activity of analyzed phytochemicals can induce an anti-cancer effect on ALL cells without a significant effect on non-tumor cells. It implies that the application of the combinations of phytochemicals an anti-cancer treatment supplement could be worth further investigation regardless of their low bioavailability.
Collapse
Affiliation(s)
- Patrycja Koszałka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Grzegorz Stasiłojć
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki Street 1, 80-211 Gdańsk, Poland; (P.K.); (G.S.)
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki Street 7, 80-211 Gdańsk, Poland;
| | - Maciej Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
| | - Szymon Grabowski
- GetResponse Cares Foundation, Arkońska Street 6/A3, 80-387 Gdańsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera Street 107, 80-416 Gdańsk, Poland; (N.M.-P.); (M.P.)
- Correspondence:
| |
Collapse
|
5
|
Comparative Analysis of Proteomic of Curcumin Reversing Multidrug Resistance in HCT-8/VCR Cells. JOURNAL OF ONCOLOGY 2022; 2022:3605436. [PMID: 35509845 PMCID: PMC9061040 DOI: 10.1155/2022/3605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
To further explore the mechanisms of curcumin reversing multidrug resistance (MDR) in HCT8/VCR cells. Here, we employed comparative analysis of proteomic of essential proteins of human colon carcinoma HCT8/VCR cells with or without treatment of curcumin by separating and quantifying the essential protein posttranslational modification through radical-free two-dimensional polyacrylamide gel electrophoresis with strong reductant. The reverse impact of curcumin on multidrug resistance of HCT8/VCR and HCT8/VCR cells was evaluated using MTT assay. After adding curcumin 25 μM for 72 h, by 2-DE and mass spectrometry, twenty proteins were certified with changed expression levels. Three protein sites were upregulated and seventeen protein sites were downregulated in curcumin-treated HCT-8/VCR. Verification analyses were conducted using RT-PCR and Western blotting for downregulated proteins including GSTP1 and PRDX6. The proteins might have a direct or indirect contact with multidrug resistance. The finding of the research would provide novel sights for systematically comprehending the mechanisms of the reversal impacts of curcumin on MDR in HCT8/VCR cells and contribute to the recognition and application of new markers in clinical practice.
Collapse
|
6
|
Wang C, Huang L, Li R, Wang Y, Wu X, Shang D. Synergistic Therapy of Doxorubicin with Cationic Anticancer Peptide L-K6 Reverses Multidrug Resistance in MCF-7/ADR Cancer Cells In Vitro via P-glycoprotein Inhibition. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10253-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Xu H, Li Y, Paxton JW, Wu Z. Co-Delivery Using pH-Sensitive Liposomes to Pancreatic Cancer Cells: the Effects of Curcumin on Cellular Concentration and Pharmacokinetics of Gemcitabine. Pharm Res 2021; 38:1209-1219. [PMID: 34189639 DOI: 10.1007/s11095-021-03072-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE PEGylated pH-sensitive liposomes (PSL) dual-loaded with gemcitabine and curcumin were investigated for the potential application in gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) treatment. Curcumin was employed as an inhibitor of the efflux transporter, multidrug resistance protein 5 (MRP5) in PDAC cells. METHODS Liposomes were prepared with gemcitabine in the core and curcumin in the bilayers. The effects of curcumin on pH-sensitivity and 'endosome escape' of PSL with different PEGylation were investigated using a calcein self-quench assay. The effects of curcumin on intracellular gemcitabine concentrations, and cytotoxicity to a MIA PaCa-2 PDAC cell line was evaluated. The pharmacokinetics were investigated in rats following intravenous injection. RESULTS The addition of curcumin to the PSL bilayers (0.2-1 mol%)slightly decreased the pH-sensitivity of PSL, but to a less extent than PEGylation (0-5 mol%). Co-treatment with curcumin increased gemcitabine cellular accumulation in a concentration-dependent manner, and resulted in synergistic cytotoxicity towards MIA PaCa-2cells.Both these effects were augmented by the use of PSL, particularly when the two drugs were co-loaded in PSL. In rats, the dual-drug loaded PSL produced significantly reduced (p < 0.05) plasma clearance (CL) and volume of distribution (Vd) for both drugs, alongside 3 to 4-fold increases in the area-under-the-concentration-time curves compared to the free drugs. Additionally, curcumin slightly increase the plasma concentrations of gemcitabine possibly also via the MRP5 inhibition effect. CONCLUSION Co-delivery of curcumin with gemcitabine using PSL not only increased the intracellular gemcitabine concentration thus cytotoxicity to MIA PaCa-2 cells but also significantly improved the pharmacokinetic profiles for both drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Hongtao Xu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yan Li
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Auckland University of Technology, Auckland, New Zealand
| | - James W Paxton
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020096. [PMID: 31991669 PMCID: PMC7076516 DOI: 10.3390/pharmaceutics12020096] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is a critical hindrance to the success of cancer chemotherapy. The main thing responsible for MDR phenotypes are plasma-membranes associated with adenosine triphosphate (ATP) Binding Cassette (ABC) drug efflux transporters, such as the P-glycoprotein (Pgp) transporter that has the broadest spectrum of substrates. Curcumin (CURC) is a Pgp inhibitor, but it is poorly soluble and bioavailable. To overcome these limitations, we validated the efficacy and safety of CURC, loaded in biocompatible solid lipid nanoparticles (SLNs), with or without chitosan coating, with the goal of increasing the stability, homogeneous water dispersibility, and cellular uptake. Both CURC-loaded SLNs were 5–10-fold more effective than free CURC in increasing the intracellular retention and toxicity of doxorubicin in Pgp-expressing triple negative breast cancer (TNBC). The effect was due to the decrease of intracellular reactive oxygen species, consequent inhibition of the Akt/IKKα-β/NF-kB axis, and reduced transcriptional activation of the Pgp promoter by p65/p50 NF-kB. CURC-loaded SLNs also effectively rescued the sensitivity to doxorubicin against drug-resistant TNBC tumors, without signs of systemic toxicity. These results suggest that the combination therapy, based on CURC-loaded SLNs and doxorubicin, is an effective and safe approach to overcome the Pgp-mediated chemoresistance in TNBC.
Collapse
|
11
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu ST, Yu DS. The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol Lett 2019; 18:6869-6876. [PMID: 31807190 DOI: 10.3892/ol.2019.11023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/10/2019] [Indexed: 01/16/2023] Open
Abstract
Gemcitabine (GCB), which functions via the inhibition of DNA synthesis, is commonly used in the treatment of bladder cancer; however, its response rate is not satisfactory due to the development of drug resistance. The potential for phytochemicals to reverse drug resistance in bladder cancer tumor cells was evaluated. A human bladder cancer cell line, T24, was cultured, and GCB-resistant cells (T24-GCB) were also established. The acquired resistance of T24-GCB to GCB was measured using an MTT assay. The gene expression of ATP-binding cassette (ABC) transporter protein family members was analyzed using reverse transcription-quantitative PCR analysis, and western blotting was performed to verify ABC family protein, cytoplasmic thymidine kinase (TK) and poly (ADP-ribose) polymerase (PARP) expression on whole cell lysates. Subsequently, resveratrol and curcumin were used to evaluate their modulation potential in decreasing the drug resistance of T24-GCB cells to GCB using MTT and migration assays. T24-GCB cells have increased drug resistance ability, with an 18.75-fold higher ID50 value compared with native T24 cells (105 vs. 5.6 nM). T24-GCB cells also exhibit increased cross resistance to mitomycin C and paclitaxel. The mRNA expression of ABCC2 in T24-GCB cells increased compared with that in native T24 cells. Via western blot analysis, it was determined that the expression of ABCC2 protein was also increased in T24-GCB cells. Conversely, the expression of ABCB1, ABCG2, deoxycytidine kinase (DCK), TK1 and TK2 decreased. Following curcumin and resveratrol treatment alone or combined with GCB, additive cytotoxic enhancement was observed, and the migratory abilities of T24-GCB cells were significantly decreased. Western blot analysis revealed that ABCC2 protein expression increased, and DCK, TK1 and TK2 expression decreased following co-treatment of T24-GCB cells with GCB + curcumin or resveratrol compared with GCB alone. Of note, there was a marked increase in cleaved-PARP expression in T24-GCB cells treated with a combination of GCB + curcumin or resveratrol. Both curcumin and resveratrol could reverse the drug resistance of T24-GCB cells in an additive pattern though PARP enhancement without changes in ABCC2 and DCK, TK1 and TK2 expression.
Collapse
Affiliation(s)
- Chun-Jung Cho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Ching-Wei Yang
- Department of Urology, Cheng-Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Lun Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Cheng-Ping Yu
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| | - Dah-Shyong Yu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
13
|
Panyajai P, Tima S, Chiampanichayakul S, Anuchapreeda S. Dietary Turmeric Bisdemethoxycurcumin Suppresses Wilms’ Tumor 1 and CD34 Protein Expressions in KG-1a Leukemic Stem Cells. Nutr Cancer 2019; 71:1189-1200. [DOI: 10.1080/01635581.2019.1598565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pawaret Panyajai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
16
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
17
|
Dewanjee S, Dua TK, Bhattacharjee N, Das A, Gangopadhyay M, Khanra R, Joardar S, Riaz M, Feo VD, Zia-Ul-Haq M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017; 22:molecules22060871. [PMID: 28587082 PMCID: PMC6152721 DOI: 10.3390/molecules22060871] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) is regarded as one of the bottlenecks of successful clinical treatment for numerous chemotherapeutic agents. Multiple key regulators are alleged to be responsible for MDR and making the treatment regimens ineffective. In this review, we discuss MDR in relation to P-glycoprotein (P-gp) and its down-regulation by natural bioactive molecules. P-gp, a unique ATP-dependent membrane transport protein, is one of those key regulators which are present in the lining of the colon, endothelial cells of the blood brain barrier (BBB), bile duct, adrenal gland, kidney tubules, small intestine, pancreatic ducts and in many other tissues like heart, lungs, spleen, skeletal muscles, etc. Due to its diverse tissue distribution, P-gp is a novel protective barrier to stop the intake of xenobiotics into the human body. Over-expression of P-gp leads to decreased intracellular accretion of many chemotherapeutic agents thus assisting in the development of MDR. Eventually, the effectiveness of these drugs is decreased. P-gp inhibitors act by altering intracellular ATP levels which are the source of energy and/or by affecting membrane contours to increase permeability. However, the use of synthetic inhibitors is known to cause serious toxicities. For this reason, the search for more potent and less toxic P-gp inhibitors of natural origin is underway. The present review aims to recapitulate the research findings on bioactive constituents of natural origin with P-gp inhibition characteristics. Natural bioactive constituents with P-gp modulating effects offer great potential for semi-synthetic modification to produce new scaffolds which could serve as valuable investigative tools to recognize the function of complex ABC transporters apart from evading the systemic toxicities shown by synthetic counterparts. Despite the many published scientific findings encompassing P-gp inhibitors, however, this article stand alones because it provides a vivid picture to the readers pertaining to Pgp inhibitors obtained from natural sources coupled with their mode of action and structures. It provides first-hand information to the scientists working in the field of drug discovery to further synthesise and discover new P-gp inhibitors with less toxicity and more efficacies.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Anup Das
- Department of Pharmaceutical Technology, ADAMAS University, Barasat, Kolkata 700126, India.
| | | | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Swarnalata Joardar
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan.
| | - Vincenzo De Feo
- Department of Pharmacy, Salerno University, Fisciano 84084, Salerno, Italy.
| | - Muhammad Zia-Ul-Haq
- Environment Science Department, Lahore College for Women University, Jail Road, Lahore 54600, Pakistan.
| |
Collapse
|
18
|
Zhang Q, Feng Y, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci 2017; 74:777-801. [PMID: 27622244 PMCID: PMC11107623 DOI: 10.1007/s00018-016-2362-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
Chemotherapy is one of the most effective and broadly used approaches for cancer management and many modern regimes can eliminate the bulk of the cancer cells. However, recurrence and metastasis still remain a major obstacle leading to the failure of systemic cancer treatments. Therefore, to improve the long-term eradication of cancer, the cellular and molecular pathways that provide targets which play crucial roles in drug resistance should be identified and characterised. Multidrug resistance (MDR) and the existence of tumor-initiating cells, also referred to as cancer stem cells (CSCs), are two major contributors to the failure of chemotherapy. MDR describes cancer cells that become resistant to structurally and functionally unrelated anti-cancer agents. CSCs are a small population of cells within cancer cells with the capacity of self-renewal, tumor metastasis, and cell differentiation. CSCs are also believed to be associated with chemoresistance. Thus, MDR and CSCs are the greatest challenges for cancer chemotherapy. A significant effort has been made to identify agents that specifically target MDR cells and CSCs. Consequently, some agents derived from nature have been developed with a view that they may overcome MDR and/or target CSCs. In this review, natural products-targeting MDR cancer cells and CSCs are summarized and clustered by their targets in different signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Yunjiang Feng
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia.
| |
Collapse
|
19
|
Sun X, Luo Y, Huang L, Yu BY, Tian J. A peptide-decorated and curcumin-loaded mesoporous silica nanomedicine for effectively overcoming multidrug resistance in cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra01128h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A robust peptide-functionalized mesoporous silica nanomedicine loading with curcumin and doxorubicin (DOX/CUR@MSN-Pep) has been successfully constructed to effectively overcome multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Xian Sun
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Yingping Luo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Liwei Huang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
20
|
Lopes-Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives. Pharmaceuticals (Basel) 2016; 9:E71. [PMID: 27834897 PMCID: PMC5198046 DOI: 10.3390/ph9040071] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp) is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression). However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.
Collapse
Affiliation(s)
- Vanessa Lopes-Rodrigues
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, 4200-465 Porto, Portugal.
- ICBAS-UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS-UP, 4099-003 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal.
| | - M Helena Vasconcelos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, 4200-465 Porto, Portugal.
- Laboratory of Microbiology, Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
21
|
Abstract
Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin's anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death.
Collapse
|
22
|
Abstract
Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.
Collapse
|
23
|
Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep 2016; 6:28773. [PMID: 27349797 PMCID: PMC4923879 DOI: 10.1038/srep28773] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Abstract
As one main active compound of curcuminoids, Bisdemethoxycurcumin (BDMC) possesses several biological activities, such as anti-inflammation and anti-cancer activities. However, the detailed mechanism of BDMC’s anti-metastasis activity in ovarian cancer has not been clearly elucidated yet. In the present study, cell proliferation, wound healing motility, cell adhesion and invasion with or without BDMC were determined. In addition, western blot was used to examine proteins expressions. The lucigenin-enhanced luminescence was introduced to assess cellular oxidative stress. The luciferase reporter gene assay was introduced to evaluate the transcriptional activity of NF-κB. Finally, BDMC significantly inhibited the adhesion, migration, invasion and metastasis of SKOV-3 cells. Moreover, BDMC inhibited expressions of several degradation-associated proteins, such as matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), CD147, urokinase plasminogen activator (uPA), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), whereas increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), in a dose-dependent manner. In addition, BDMC reduced generation of cellular superoxide in a dose-dependent manner. Furthermore, BDMC inhibited the phosphorylation levels of NF-κB p65 and IκB-α, and consequently reduced NF-κB-driven luciferase expression. Collectively, BDMC serves as a therapeutic medicine to suppress ovarian cancer, perhaps via inhibiting cellular oxidative stress and subsequently inactivating NF-κB pathway.
Collapse
|
24
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|
25
|
Mapoung S, Pitchakarn P, Yodkeeree S, Ovatlarnporn C, Sakorn N, Limtrakul P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem Biol Interact 2015; 244:140-8. [PMID: 26689174 DOI: 10.1016/j.cbi.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023]
Abstract
Curcumin analogs were synthesized and their multi-drug resistance (MDR) reversing properties were determined in human MDR leukemic (K562/Adr) cells. Four analogs, 1,7-bis-(3,4-dimethoxy-phenyl)-hepta-1,6-diene-3,5-dione (1J), 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A), 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) and 2,6-bis-(3,4-dimethoxy-benzylidene)-cyclohexanone (2J) markedly increased the sensitivity of K562/Adr cells to paclitaxel (PTX) for 8-, 2-, 8- and 16- folds, respectively and vinblastine (Vin) for 5-, 3-, 12- and 30- folds, respectively. The accumulation of P-gp substrates, Calcein-AM, Rhodamine 123 and Doxorubicin, was significantly increased by 1J (up to 6-, 11- and 22- folds, respectively) and 2J (up to 7-, 12- and 17- folds, respectively). Besides 2A, 2F and 2J dramatically decreased P-gp expression in K562/Adr cells. These results could be summarized in the following way. Analog 1J inhibited only P-gp function, while 2A and 2F inhibited only P-gp expression. Interestingly, 2J exerts inhibition of both P-gp function and expression. The combination index (CI) of combination between 2J and PTX (0.09) or Vin (0.06) in K562/Adr cells indicated strong synergistic effects, which likely due to its MDR reversing activity. Moreover, these analogs showed less cytotoxicity to peripheral mononuclear cells (human) and red blood cells (human and rat) suggesting the safety of analogs for further animal and clinical studies.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Natee Sakorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.
| |
Collapse
|
26
|
Mohammadi F, Sahihi M, Bordbar AK. Multispectroscopic and molecular modeling studies on the interaction of two curcuminoids with β-lactoglobulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 140:274-282. [PMID: 25615681 DOI: 10.1016/j.saa.2014.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
This study demonstrates the binding properties of bisdemethoxycurcumin (BDMC) and diacetylbisdemethoxycurcumin (DABC) as bioactive curcuminoids with bovine β-lactoglobulin (BLG) variant B using fluorescence and circular dichroism (CD) spectroscopy; molecular docking, and molecular dynamics simulation methods. The estimated binding constants for BLG-BDMC and BLG-DABC complexes were (8.99±0.10)×10(4) M(-1) and (1.87±0.10)×10(2) M(-1), respectively. The distances between BLG and these curcuminoids were obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of BDMC and DABC to the protein surface cleft of protein by formation of four and one hydrogen bonds, respectively. Finally, molecular dynamics simulation results represent the conformational changes of BLG due to its interaction with BDMC. Also, the profiles of atomic fluctuations signified the rigidity of ligand binding site during the simulation.
Collapse
Affiliation(s)
- F Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - M Sahihi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - A Khalegh Bordbar
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
27
|
Ding W, Hou X, Cong S, Zhang Y, Chen M, Lei J, Meng Y, Li X, Li G. Co-delivery of honokiol, a constituent of Magnolia species, in a self-microemulsifying drug delivery system for improved oral transport of lipophilic sirolimus. Drug Deliv 2015; 23:2513-2523. [DOI: 10.3109/10717544.2015.1020119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Weiming Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China and
| | - Xucheng Hou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China and
| | - Shuangchen Cong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yuanyuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Mengmeng Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jiongxi Lei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yansha Meng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Xinru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guiling Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China and
| |
Collapse
|
28
|
Smith AJ, Oertle J, Prato D. Multiple Actions of Curcumin Including Anticancer, Anti-Inflammatory, Antimicrobial and Enhancement via Cyclodextrin. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.63029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Tuorkey MJ. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv Med Appl Sci 2014; 6:139-46. [PMID: 25598986 DOI: 10.1556/imas.6.2014.4.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/29/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
There is no doubt that diet could effectively improve health and halt cancers. Dietary phytochemical compounds and their derivatives represent a cornucopia of effectively anticancer compounds. This review discusses existing data on the anticancer activities of curcumin, and then offers possible explanations for and mechanisms of its cancer-preventive action. This review also offers insights into the molecular mechanism and targets through which curcumin modulates cell cycle, apoptotic signals, anti-apoptotic proteins, miRNAs, Wnt/beta-catenin signaling, protein kinases, nuclear factor-κB, proteasome activation, epigenetic regulation including DNA methylation and histone modification. Finally, this review provides explanations for how curcumin reverses the multi-drug resistance (MDR) of cancer cells.
Collapse
|
30
|
CHEN FANGYUAN, CAO LANFANG, WAN HAIXIA, ZHANG MINYUE, CAI JIAYI, SHEN LIJING, ZHONG JIHUA, ZHONG HUA. Quercetin enhances adriamycin cytotoxicity through induction of apoptosis and regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase/c-Jun N-terminal kinase signaling in multidrug-resistant leukemia K562 cells. Mol Med Rep 2014; 11:341-8. [DOI: 10.3892/mmr.2014.2734] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
31
|
Panahi Y, Saadat A, Beiraghdar F, Hosseini Nouzari SM, Jalalian HR, Sahebkar A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Chen P, Liu Y, Sun Y, Chen C, Qi Y, Zhang Y. AZT and emodin exhibit synergistic growth-inhibitory effects on K562/ADM cells by inducing S phase cell cycle arrest and suppressing MDR1 mRNA/p-gp protein expression. PHARMACEUTICAL BIOLOGY 2013; 51:1586-1591. [PMID: 24004004 DOI: 10.3109/13880209.2013.803257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Previous studies have demonstrated that both 3'-azido-3'-deoxythymidine (AZT) and emodin, a traditional chemotherapy agent, can inhibit the growth of many types of cancer cells. OBJECTIVE This study aimed to evaluate the effect of AZT and emodin on adriamycin-resistant human chronic myelogenous leukemia (K562/ADM) cells, determine the expression of multidrug resistance 1 (MDR1) mRNA/p-glycoprotein (p-gp) protein, a protein known to induce resistance to anticancer agents, and to elucidate the underlying molecular mechanisms. MATERIALS AND METHODS K562/ADM cells were treated with AZT (10-160 μM) or emodin (5-80 μM) for 24, 48 and 72 h and cell viability was measured using the MTT assay. The effect of AZT (16.5, 33 and 66 μM) and emodin (6.1, 17.6 and 33.2 μM) on K562/ADM cell cycle distribution was determined by flow cytometry, and MDR1 mRNA/p-gp protein expression was determined by real time RT-PCR and western blotting. RESULTS The growth suppression of emodin was dramatically enhanced by AZT in K562/ADM cells. The IC50 of AZT and emodin was lower than that of emodin alone. All examined combinations of AZT and emodin yielded a synergetic effect (CI < 1). Furthermore, AZT and emodin altered the cell cycle distribution and led to an accumulation of cells in S phase. Meanwhile, the expression of MDR1 mRNA/p-gp protein was markedly decreased. DISCUSSION AND CONCLUSION These results show a synergistic growth-inhibitory effect of AZT and emodin in K562/ADM cells, which is achieved through S phase arrest. MDR1 might ultimately be responsible for these phenomena.
Collapse
Affiliation(s)
- Peng Chen
- School of Life Science, Lanzhou University , Lanzhou , China
| | | | | | | | | | | |
Collapse
|
33
|
Ophiobolin-O reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in adriamycin-resistant human breast carcinoma (MCF-7/ADR) cells. Mar Drugs 2013; 11:4570-84. [PMID: 24240979 PMCID: PMC3853746 DOI: 10.3390/md11114570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 12/24/2022] Open
Abstract
Multidrug-resistance is a major obstacle facing cancer chemotherapy. This paper demonstrates that novel compound Ophiobolin-O reverses MCF-7/ADR resistance to adriamycin (ADM). The IC50 of ADM treated MCF-7 cells was 2.02 ± 0.05 µM and 74.00 ± 0.18 µM treated MCF-7/ADR cells, about 37-fold, compared to the former. However, 0.1 µM Ophiobolin-O (less than 20% inhibition concentration) combined with ADM caused the decreased IC50 of ADM to 6.67 ± 0.98 µM, indicating it reversed ADM resistance of MCF-7/ADR cells (11-fold). Furthermore, Ophiobolin-O increased ADM-induced mitochondrial pathway apoptosis and G2/M phase arrest, which is partly due to the elevation level of ROS in MCF-7/ADR cells. As we described in this paper, the reversal effect of Ophiobolin-O may be due to the reduction of resistance-related protein P-Glycoprotein (P-gp, also known as MDR1) through inhibiting the activity of the multidrug resistance 1 (MDR1) gene promoter, which makes MCF-7/ADR cells more sensitive to ADM treatment. Assays in nude mice also showed that the combination of ADM and Ophiobolin-O significantly improved the effect of ADM.
Collapse
|
34
|
Hwang BM, Noh EM, Kim JS, Kim JM, You YO, Hwang JK, Kwon KB, Lee YR. Curcumin inhibits UVB-induced matrix metalloproteinase-1/3 expression by suppressing the MAPK-p38/JNK pathways in human dermal fibroblasts. Exp Dermatol 2013; 22:371-4. [PMID: 23614750 DOI: 10.1111/exd.12137] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 11/27/2022]
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from turmeric (Curcuma longa), which is commonly used as a spice. Recent studies have shown that curcumin has a wide range of pharmacological activities, including anticarcinogenic, antioxidant, anti-inflammatory and antiangiogenic activities. However, the antiphotoageing effects of curcumin have yet to be characterized. In this study, we investigated the inhibitory effects of curcumin on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot analysis revealed that curcumin inhibited ultraviolet (UV) B-induced MMP-1 and MMP-3 expression. Furthermore, curcumin significantly blocked UVB-induced reactive oxygen species generation in fibroblasts. Curcumin treatment significantly blocked the UVB-induced activation of nuclear factor (NF)-κB and activator protein (AP)-1. Additionally, curcumin strongly repressed the UVB-induced phosphorylation of p38 and c-Jun N-terminal kinase. Curcumin prevented UVB-induced MMP expression through mitogen-activated protein kinase/NF-κB inhibition and AP-1 activation. In conclusion, curcumin may be useful for preventing and treating skin photoageing.
Collapse
|
35
|
Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. Eur J Pharm Sci 2013; 49:800-4. [DOI: 10.1016/j.ejps.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
|
36
|
Limtrakul P, Khantamat O, Pintha K. Inhibition of P-Glycoprotein Function and Expression by Kaempferol and Quercetin. J Chemother 2013; 17:86-95. [PMID: 15828450 DOI: 10.1179/joc.2005.17.1.86] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The 170 kDa plasma membrane P-glycoprotein (Pgp) causes the efflux of chemotherapeutic drugs from cells and is believed to be an important mechanism in multidrug resistance (MDR) in human cancer. This study demonstrates that some putative flavonoids, i.e., flavonols (quercetin and kaempferol) and isoflavones (genistein and daidzein) markedly increase the sensitivity of the multidrug-resistant human cervical carcinoma KB-V1 cells (high Pgp expression) to vinblastine and paclitaxel dose-dependently, and also decrease the relative resistance of these anti-cancer-drugs in KB-V1 cells. None of the flavonoids had a significant effect on vinblastine and paclitaxel cytotoxicity in wildtype drug-sensitive KB-3-1 cells (lacking Pgp). These flavonoids also caused an increase in intracellular accumulation, and reduced the efflux of Rh123 and 3[H]vinblastine in KB-V1 cells, but not in KB-3-1 cells. The flavonols increased the inhibitory effectiveness of Pgp activity in MDR KB-V1 cells more than isoflavones. Only treatment with flavonols up to 48 h was able to significantly decrease the Pgp expression in a dose-dependent manner in KB-V1 cells. These findings provide evidence that flavonols reduced Pgp expression and function resulting in the inhibition of Pgp activity, but isoflavones modulated intracellular drug levels by inhibiting Pgp function with no effect on Pgp expression. Among the flavonoids tested, flavonols, particularly kaempferol, exhibit the most potent MDR reversing property in KB-V1 cells.
Collapse
Affiliation(s)
- P Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | |
Collapse
|
37
|
Belcaro G, Hosoi M, Pellegrini L, Appendino G, Ippolito E, Ricci A, Ledda A, Dugall M, Cesarone MR, Maione C, Ciammaichella G, Genovesi D, Togni S. A Controlled Study of a Lecithinized Delivery System of Curcumin (Meriva®) to Alleviate the Adverse Effects of Cancer Treatment. Phytother Res 2013; 28:444-50. [DOI: 10.1002/ptr.5014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Gianni Belcaro
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Morio Hosoi
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | | | | | | | - Andrea Ricci
- Chieti Pescara University Biomedical Sciences Chieti Italy
| | - Andrea Ledda
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Mark Dugall
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | | | - Claudia Maione
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Giovanna Ciammaichella
- Chieti Pescara University Biomedical Sciences Corso Umberto I, 18 San Valentino Pescara 65020 Italy
| | - Domenico Genovesi
- University of Chieti Pescara Department of Radiotherapy Chieti Italy
| | - Stefano Togni
- Indena SpA ‐ BD&L Viale Ortles, 12 Milan 20139 Italy
| |
Collapse
|
38
|
Lu WD, Qin Y, Yang C, Li L, Fu ZX. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo. Clinics (Sao Paulo) 2013; 68:694-701. [PMID: 23778405 PMCID: PMC3654338 DOI: 10.6061/clinics/2013(05)18] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. CONCLUSION Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- Wei-Dong Lu
- Chongqing Medical University, Department of Gastrointestinal Surgery, First Affiliated Hospital, Chongqing 400016, Chongqing, China
| | | | | | | | | |
Collapse
|
39
|
Xu D, Tian W, Shen H. Curcumin prevents induced drug resistance: a novel function? Chin J Cancer Res 2013; 23:218-23. [PMID: 23467256 DOI: 10.1007/s11670-011-0218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE We supposed that it will be a promising strategy to "prevent" multidrug resistance (MDR) instead of "reversing" it. This study was designed to investigate the potency of curcumin to prevent the acquired drug resistance induced by adriamycin (ADM) in native K562 cells. METHODS K562 cells were pretreated with curcumin or 0.5% DMSO for 24 h and then were co-incubated with ADM. P-glycoprotein (P-gp) and mdr1 mRNA levels were analyzed separately by flow cytometry and quantitative real-time RT-PCR. The intracellular Rh-123 accumulation was also detected by flow cytometer. Finally, we performed a MTT assay to determine the ADM-induced cytotoxicity with or without pretreatment of curcumin. RESULTS P-gp and mdr1 mRNA expressions were elevated in the ADM alone group. While in the curcumin pretreated groups, the induced P-gp and mdr1 mRNA levels gradually decreased with increasing curcumin concentrations, and the Rh-123 accumulation level was almost recovered close to the control group's. Finally, the MTT colorimetric assay verified the enhanced effect of curcumin on ADM-induced cytotoxicity. CONCLUSION Our present study suggested that curcumin exhibits the novel ability to prevent the up-regulation of P-gp and its mRNA induced by ADM. The prevention capacity is also functionally associated with the elevated intracellular drug accumulation and parallel enhanced ADM cytotoxicity. We revealed a novel function of curcumin as a potential drug resistance preventor.
Collapse
Affiliation(s)
- Dong Xu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310009, China
| | | | | |
Collapse
|
40
|
Schmidt M, Polednik C, Roller J, Hagen R. Cytotoxicity of herbal extracts used for treatment of prostatic disease on head and neck carcinoma cell lines and non-malignant primary mucosal cells. Oncol Rep 2013; 29:628-36. [PMID: 23165347 DOI: 10.3892/or.2012.2145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/18/2012] [Indexed: 11/05/2022] Open
Abstract
Previously, a growth inhibiting effect of PC-Spes on head and neck carcinoma cell lines had been demonstrated. In order to determine the toxic impact of particular herbs in the mixture, we exposed the head and neck cancer cell lines FADU, HLaC79 and its Paclitaxel-resistant subline HLaC79-Clone1 as well as primary mucosal keratinocytes to increasing concentrations of the herbal mixture Prostaprotect, which has a similar formulation as PC-Spes, as well as its single herbal components Dendranthema morifolium, Ganoderma lucidium, Glycyrrhiza glabra, Isatis indigotica, Panax pseudo-ginseng, Rabdosia rubescens, Scutellaria baicalensis and Pygeum africanum. Growth inhibition was measured using the MTT assay. Expression of P-glycoprotein (P-GP), multidrug resistance protein-1 (MRP-1), multidrug resistance protein-2 (MRP-2), breast cancer resistance protein (BCRP) and androgen receptor (AR) were examined by western blot analysis. Pygeum africanum extract clearly turned out as the main cytotoxic component of the Prostaprotect prescription mixture, and initated apoptosis in sensitive cell lines. All other extracts had only minor toxic effects. Western blot analysis revealed increased expression of P-GP in HLaC79-Clone1 cells, while HLaC79 and FADU cells were negative. All three cell lines were negative for MRP-1 and BCRP but positive for MRP-2. HLaC79 and its descendant HLaC79-Clone1 both expressed AR, as verified by western blotting and immunofluorescence staining. Primary mucosal keratinocytes were negative for all multidrug resistance markers as well as for AR. Growth inhibition rates of the single herbal extracts were compared with previously published results in prostate carcinoma cell lines. The relationship between expression levels of AR and multidrug resistance markers in relation to the measured toxicity of herbal extracts in our head and neck cancer cell system is critically discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chrysanthemum
- Drugs, Chinese Herbal/pharmacology
- Glycyrrhiza
- Head and Neck Neoplasms/metabolism
- Humans
- Isatis
- Isodon
- Keratinocytes/drug effects
- Multidrug Resistance-Associated Protein 2
- Neoplasm Proteins/metabolism
- Panax
- Plant Extracts/pharmacology
- Prunus africana
- Receptors, Androgen/metabolism
- Reishi
- Respiratory Mucosa
- Scutellaria baicalensis
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Marianne Schmidt
- Department of Otorhinolaryngology, University of Wuerzburg, D-97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
41
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
42
|
Cine N, Limtrakul P, Sunnetci D, Nagy B, Savli H. Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: A gene network-based microarray analysis. Exp Ther Med 2012; 5:23-27. [PMID: 23251236 PMCID: PMC3524226 DOI: 10.3892/etm.2012.754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/09/2012] [Indexed: 11/06/2022] Open
Abstract
Curcumin, or diferuloylmethane, is a major chemical component of turmeric (Curcuma longa Linn.) that has been consumed as a dietary spice through the ages. This yellow-colored polyphenol has a notably wide range of beneficial properties, including anti-inflammatory, antioxidant, antitumoral, anti-invasive and anti-metastatic activity. In the present study, microarray gene expression analysis was applied to identify the curcumin-regulated genes in a highly invasive human breast carcinoma cell line (MDA-MB 231). Cells were cultured with curcumin (20 μM) for 24 h; total RNA was isolated and hybridized to Whole Human Genome Microarray slides. Gene set enrichment analyses on our whole genome expression data revealed downregulation of the EGF pathway elements following curcumin treatment. Furthermore, gene network analysis identified a significantly relevant network among the differentially expressed genes, centered on the EGR1 and FOS genes. The members of these pathways and networks play an essential role in the regulation of cancer cell growth and development; the majority exhibited decreased expression levels following treatment with curcumin. These observations suggest that curcumin is an excellent candidate for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Naci Cine
- Department of Medical Genetics and Clinical Research Unit, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | |
Collapse
|
43
|
XU DONG, TIAN WEI, SHEN HONG. P-gp upregulation may be blocked by natural curcuminoids, a novel class of chemoresistance-preventing agent. Mol Med Rep 2012; 7:115-21. [DOI: 10.3892/mmr.2012.1106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/06/2012] [Indexed: 11/06/2022] Open
|
44
|
Kim JM, Noh EM, Kwon KB, Kim JS, You YO, Hwang JK, Hwang BM, Kim BS, Lee SH, Lee SJ, Jung SH, Youn HJ, Lee YR. Curcumin suppresses the TPA-induced invasion through inhibition of PKCα-dependent MMP-expression in MCF-7 human breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1085-1092. [PMID: 22921746 DOI: 10.1016/j.phymed.2012.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/16/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the plant turmeric (Curcuma longa), which is commonly used as a spice. Although anti-carcinogenic, anti-oxidant, anti-inflammation, and anti-angiogenic properties have been reported, the effect of curcumin on breast cancer metastasis is unknown. Matrix metalloproteinase-9 (MMP-9) is a major component in cancer cell invasion. In this study, we investigated the inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion and the molecular mechanisms involved in MCF-7 cells. Our results showed that curcumin inhibits TPA-induced MMP-9 expression and cell invasion through suppressing NF-κB and AP-1 activation. Also, curcumin strongly repressed the TPA-induced phosphorylation of p38 and JNK and inhibited TPA-induced translocation of PKCα from the cytosol to the membrane, but did not affect the translocation of PKCδ. These results indicate that curcumin-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the PKCα, MAPK and NF-κB/AP-1 pathway in MCF-7 cells. Curcumin may have potential value in restricting breast cancer metastasis.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju 560-182, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rege S, Momin S, Wadekar S, Pratap A, Bhowmick D. Effect of Demethoxycurcumin and Bisdemethoxycurcumin on Antioxidant Activity of Curcumin in Refined Sunflower Oil. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00777.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sameera Rege
- Oils, Oleochemicals & Surfactants Technology; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga (E) Mumbai Maharashtra 400019 India
| | - Shamim Momin
- Oils, Oleochemicals & Surfactants Technology; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga (E) Mumbai Maharashtra 400019 India
| | - Sushant Wadekar
- Oils, Oleochemicals & Surfactants Technology; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga (E) Mumbai Maharashtra 400019 India
| | - Amit Pratap
- Oils, Oleochemicals & Surfactants Technology; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga (E) Mumbai Maharashtra 400019 India
| | - Dipti Bhowmick
- Oils, Oleochemicals & Surfactants Technology; Institute of Chemical Technology; Nathalal Parekh Marg, Matunga (E) Mumbai Maharashtra 400019 India
| |
Collapse
|
46
|
Lee SK, Shehzad A, Jung JC, Sonn JK, Lee JT, Park JW, Lee YS. Protein kinase Cα protects against multidrug resistance in human colon cancer cells. Mol Cells 2012; 34:61-9. [PMID: 22639047 PMCID: PMC3887773 DOI: 10.1007/s10059-012-0087-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022] Open
Abstract
Multidrug resistance is the phenomenon by which, after exposure to a single chemotherapeutic agent, cancer cells evade the agent's cytotoxic effects as well as become resistant to several classes of diverse drugs. ATP-binding cassette (ABC) transporters are a family of transporter proteins that contribute to drug resistance via a n ATP - dependent drug efflux pump. P-glycoprotein (P-gp) is a prominent ABC superfamily protein encoded by the mdr gene which has the ability to mediate the cellular extrusion of xenobiotics and anticancer drugs from tumor cells. Exclusively expressed P-gp cells from the human colon cancer HCT15/DOX line showed resistance to doxorubicin while parental HCT15 cells treated with doxorubicin displayed typical signs of apoptosis. In order to verify the hypothesis that expression of MDR is controlled in part, by protein kinase C (PKC), expression patterns of different PKC isoforms were examined in both cell lines. Of the PKC isoforms evaluated, the membrane translocation and expression levels of PKCα were strikingly increased in HCT15/DOX cells. PKCα reversed doxorubicin-induced apoptosis through the scavenging of ROS as well as inhibition of PARP cleavage. In addition, inhibition of PKCα with Go6976, a specific inhibitor of classical PKC, led to reduced MDR expression and increased doxorubicin-induced apoptosis. Knockdown of PKCα by siRNA diminished the protective effects of PKCα for doxorubicin-induced apoptosis. These results suggested that over-expression and activity of PKCα is closely associated with the regulation of the MDR phenotype in human colon cancer HCT15 cells and provided insight into a new strategy for inhibiting doxorubicin resistance in human cancers.
Collapse
Affiliation(s)
- Se-Kyoung Lee
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Adeeb Shehzad
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | | | | | | | - Jeen-Woo Park
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Young-Sup Lee
- School of Life Sciences, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
47
|
He X, Mo L, Li ZY, Tan ZR, Chen Y, Ouyang DS. Effects of curcumin on the pharmacokinetics of talinolol in human withABCB1polymorphism. Xenobiotica 2012; 42:1248-54. [DOI: 10.3109/00498254.2012.697590] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Ma B, Chai S, Li N, To KK, Kan WLT, Yang D, Lin G. Reversal of P-glycoprotein-mediated multidrug resistance by a synthetic α-aminoxy peptidomimetic. Int J Pharm 2012; 424:33-9. [DOI: 10.1016/j.ijpharm.2011.12.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/06/2011] [Accepted: 12/25/2011] [Indexed: 11/29/2022]
|
49
|
Cao SQ, Li P, Yin TY, Yang SL. Curcumin reverses multidrug resistance of human hepatocellular carcinoma bel7402/5-FU cells. Shijie Huaren Xiaohua Zazhi 2012; 20:135-139. [DOI: 10.11569/wcjd.v20.i2.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether curcumin reverses multidrug resistance of hepatocellular carcinoma drug-resistant cell line Bel7402/5-FU and to explore potential mechanisms involved.
METHODS: The cell line Bel7402 was induced to form a multidrug resistant cell subline Bel7402/5-FU by exposing increasing concentrations of fluorouracil (5-FU). The sensitivity of Bel7402 and Bel7402/5-FU cells to chemotherapeutics and curcumin were tested by MTT assay. The protein levels of multi-resistance related protein 1 (MRP1), lung resistance-related protein (LRP), p-glycoprotein (P-gp) and programmed cell death 5 (PDCD5) were detected by Western blotting in Bel7402 cells, Bel7402/5-FU cells and Bel7402/5-FU cells treated with different concentrations of curcumin.
RESULTS: The Bel7402/5-FU cell line showed cross-resistance to six drugs, among which 5-FU had the highest RI. The protein expression levels of MRP1, LRP and P-gp in Bel-7402/5-FU cells were obviously higher than those in Bel7402 cells, while the expression of PDCD5 protein in Bel7402/5-FU cells was lower than that in Bel7402 cells. The expression of MRP1, LRP and P-gp proteins was down-regulated after curcumin treatment, while the PDCD5 protein was significantly increased.
CONCLUSION: Curcumin can reverse multidrug resistance of the Bel7402/5-FU cell line via mechanisms possibly associated with down-regulation of MRP1, LRP and P-gp expression and up-regulation of PDCD5 expression.
Collapse
|
50
|
Kasinathan RS, Morgan WM, Greenberg RM. Genetic knockdown and pharmacological inhibition of parasite multidrug resistance transporters disrupts egg production in Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1425. [PMID: 22163059 PMCID: PMC3232217 DOI: 10.1371/journal.pntd.0001425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022] Open
Abstract
P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread. Schistosomes are parasitic flatworms that are the causative agents of schistosomiasis, a major tropical disease. As adults, schistosomes reside within the host vasculature, taking up nutrients, evading host defenses, and expelling wastes and toxins. Multidrug resistance transporters are involved in removal of toxins and foreign compounds, including drugs, from cells. These transporters have broad selectivity, and when upregulated or mutated, can confer resistance to a wide spectrum of drugs against mammalian tumor cells. They are also associated with drug resistance in various parasites, including helminths. In this report, we have used knockdown of expression of these proteins and pharmacological inhibition of their transport function to dissect their physiological role in the schistosome life cycle. We find that either reducing transporter expression or pharmacologically inhibiting transporter function leads to disruption of egg production by adult worms. Eggs deposited within the host are the major cause of disease pathology, and eggs excreted by the host are the means of continuation of the life cycle and transmission of the disease. The capability to interfere with schistosome egg production could have major implications for development of new treatment strategies.
Collapse
Affiliation(s)
- Ravi S. Kasinathan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William M. Morgan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|