1
|
Matsudo K, Takada K, Kinoshita F, Hashinokuchi A, Nagano T, Akamine T, Kohno M, Takenaka T, Shimokawa M, Oda Y, Yoshizumi T. CD155 Expression in Early-Stage Lung Adenocarcinoma. Ann Thorac Surg 2024; 118:1197-1205. [PMID: 38901626 DOI: 10.1016/j.athoracsur.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cluster of differentiation (CD) 155 is a transmembrane protein that belongs to the nectin-like molecule family, which is widely overexpressed in several types of cancer. However, the clinical significance of CD155 in pathologic stage I lung adenocarcinoma remains poorly understood. METHODS We analyzed 320 patients diagnosed with pathologic stage I lung adenocarcinoma who underwent surgical treatment at Kyushu University Hospital between 2006 and 2015. The number of tumor cells expressing CD155 was assessed by immunohistochemistry, and patients were categorized into high and low CD155 expression groups. We compared the clinical and pathologic characteristics and clinical outcomes between these groups. RESULTS Mutation status of the epidermal growth factor receptor gene (EGFR) was determined in 237 patients. A total of 106 patients (33.1%) had EGFR wild-type, and 131 patients (40.9%) had EGFR mutant-type. CD155 expression was classified as high in 77 patients (24.1%) and as low in 243 (75.9%) as low. Multivariate analysis identified pleural invasion and EGFR wild-type as independent predictors of high CD155 expression. The Kaplan-Meier plot demonstrated significantly poorer recurrence-free survival and overall survival in the high CD155 group compared with the low CD155 group. Multivariate analysis showed high CD155 expression was an independent poor prognostic factor for recurrence-free and overall survival. Subgroup analyses revealed that a prognostic difference related to CD155 expression was observed only in patients with EGFR wild-type but not in those with EGFR mutant-type. CONCLUSIONS Our findings suggest that high expression of CD155 is associated with EGFR wild-type and could serve as a valuable prognostic marker in pathologic stage I lung adenocarcinoma, particularly in cases without EGFR mutation.
Collapse
Affiliation(s)
- Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Sun T, Yang N, Li L, Zhang X, Liu H, Kusuman N, Chu J, Lü G, Aji T, Bi X, Lin R. sCD155 as a potential marker for diagnosing the vascular invasion in hepatic alveolar echinococcosis. Acta Trop 2024; 255:107203. [PMID: 38604326 DOI: 10.1016/j.actatropica.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Alveolar Echinococcosis (AE) is a malignant zoonotic disease caused by Echinococcus multilocularis infection. Considering whether the lesion is accompanied by vascular invasion (VI) is crucial for treatment strategies. A cost-effective and convenient clinical diagnostic method is urgently needed to supplement current techniques. Consequently, we detected soluble CD155 (sCD155) as a potential biomarker for diagnosing VI in hepatic alveolar echinococcosis (HAE). METHODS Blood samples were from 42 AE patients and 49 healthy controls (HCs). Based on the computed tomography (CT) and contrast-enhanced CT, AE patients were further categorized into HAE with VI (VIAE; 27 cases) and HAE without VI (NVAE; 15 cases). The sCD155 concentration was measured by an enzyme-linked immunosorbent assay (ELISA). Correlations between sCD155 expression levels and clinicopathological features of AE patients were analyzed using SPSS and GraphPad Prism software. RESULTS The sCD155 concentrations in AE patients were significantly higher than in HCs. The serum sCD155 level significantly differed between the VIAE and NVAE groups. The univariate analysis showed that VI of AE was significantly correlated with the sCD155 level when the sCD155 was greater than 11 ng/mL. After adjusting for potential confounding factors, the multivariable analysis showed that sCD155 had an independent effect on VI of HAE. The receiver operating characteristic (ROC) curve showed that sCD155 could differentially diagnose VI of HAE at the cut-off value of 11.08 ng/mL with an area under the curve (AUC) value of 0.75. The sensitivity and specificity were 74.07 % and 66.67 %, respectively; the positive and negative predictive values were 74.07 % and 60.00 %, respectively. CONCLUSION The sCD155 could be a VI biomarker for HAE. Elevated sCD155 levels are indicative of an increased likelihood of concomitant VI in HAE patients, necessitating a thorough evaluation of vascular impairment and the formulation of individualized management strategies.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Xue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Nuerbaiti Kusuman
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary and Hydatid Diseases, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China.
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China; Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China.
| |
Collapse
|
6
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544144. [PMID: 37333207 PMCID: PMC10274782 DOI: 10.1101/2023.06.07.544144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. Methods Murine NK cells were activated and expanded ex vivo with soluble IL-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, GVHD and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. Results AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Treatment with combination CD155 and anti-DNAM-1 pretreated alloNK ameliorated survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. Conclusions These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against OS and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.
Collapse
|
7
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Pan C, Zhai Y, Wang C, Liao Z, Wang D, Yu M, Wu F, Yin Y, Shi Z, Li G, Jiang T, Zhang W. Poliovirus receptor-based chimeric antigen receptor T cells combined with NK-92 cells exert potent activity against glioblastoma. J Natl Cancer Inst 2024; 116:389-400. [PMID: 37944044 PMCID: PMC10919341 DOI: 10.1093/jnci/djad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Poliovirus receptor interacts with 3 receptors: T-cell immunoglobulin immunoreceptor tyrosine-based inhibitory motif, CD96, and DNAX accessory molecule 1, which are predominantly expressed on T cells and natural killer (NK) cells. Many solid tumors, including IDH wild-type glioblastoma, have been reported to overexpress poliovirus receptor, and this overexpression is associated with poor prognosis. However, there are no preclinical or clinical trials investigating the use of cell-based immunotherapies targeting poliovirus receptor in IDH wild-type glioblastoma. METHODS We analyzed poliovirus receptor expression in transcriptome sequencing databases and specimens from IDH wild-type glioblastoma patients. We developed poliovirus receptor targeting chimeric antigen receptor T cells using lentivirus. The antitumor activity of chimeric antigen receptor T cells was demonstrated in patient-derived glioma stem cells, intracranial and subcutaneous mouse xenograft models. RESULTS We verified poliovirus receptor expression in primary glioma stem cells, surgical specimens from IDH wild-type glioblastoma patients, and organoids. Accordingly, we developed poliovirus receptor-based second-generation chimeric antigen receptor T cells. The antitumor activity of chimeric antigen receptor T cells was demonstrated in glioma stem cells and xenograft models. Tumor recurrence occurred in intracranial xenograft models because of antigen loss. The combinational therapy of tyrosine-based inhibitory motif extracellular domain-based chimeric antigen receptor T cells and NK-92 cells markedly suppressed tumor recurrence and prolonged survival. CONCLUSIONS Poliovirus receptor-based chimeric antigen receptor T cells were capable of killing glioma stem cells and suppressing tumor recurrence when combined with NK-92 cells.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - You Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Chen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhiyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Yiyun Yin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, PR China
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
10
|
Wu M, Dong H, Xu C, Sun M, Gao H, Bu F, Chen J. The Wnt-dependent and Wnt-independent functions of BCL9 in development, tumorigenesis, and immunity: Implications in therapeutic opportunities. Genes Dis 2024; 11:701-710. [PMID: 37692512 PMCID: PMC10491870 DOI: 10.1016/j.gendis.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
B-cell CLL/lymphoma 9 (BCL9) is considered a key developmental regulator and a well-established oncogenic driver in multiple cancer types, mainly through potentiating the Wnt/β-catenin signaling. However, increasing evidences indicate that BCL9 also plays multiple Wnt-independent roles. Herein, we summarized the updates of the canonical and non-canonical functions of BCL9 in cellular, physiological, or pathological processes. Moreover, we also concluded that the targeted inhibitors disrupt the interaction of β-catenin with BCL9 reported recently.
Collapse
Affiliation(s)
- Minjie Wu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Heng Dong
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haojin Gao
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fangtian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
11
|
Qian CJ, He YS, Guo T, Tao J, Wei ZY, Zhang JL, Bao C, Chen JH. ADAR-mediated RNA editing regulates PVR immune checkpoint in colorectal cancer. Biochem Biophys Res Commun 2024; 695:149373. [PMID: 38176170 DOI: 10.1016/j.bbrc.2023.149373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Recent studies have revealed that tumor immunotherapy resistance is influenced by ADAR-mediated RNA editing, but its targets remain unelucidated. Our current study identified the poliovirus receptor (PVR) oncogene, which encodes an immune checkpoint in colorectal cancer (CRC), as a potential target for RNA editing. We performed transcriptome sequencing analysis and experimental validation in two Chinese CRC cohorts. PVR and ADAR expressions significantly increased in CRC tumors and showed positive correlations in both cohorts, coupled with upregulated PVR RNA editing in CRC tumors. Manipulation of ADAR expression by over-expression or knockdown substantially changed PVR expression and RNA editing in HTC116 CRC cells. Luciferase reporter and actinomycin D assays further revealed that RNA editing in PVR 3'-UTR could upregulate PVR RNA expression, probably by increasing the RNA stability. By increasing PVR expression, ADAR-mediate RNA editing might contribute to tumor- and immune-related gene functions and pathways in CRC. Moreover, a signature combining PVR RNA editing and expression showed promising predictive performance in CRC diagnosis in both Chinese CRC cohorts. Our findings thus highlight the importance of ADAR-mediated RNA editing in PVR up-regulation in CRC tumors and provide new insight into the application of PVR RNA editing as a novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Cheng-Jia Qian
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Yu-Shan He
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Guo
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ji Tao
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi-Yuan Wei
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jia-Li Zhang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chuanqing Bao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, No. 1000 Hefeng Road, Wuxi, China.
| | - Jian-Huan Chen
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Chen R, Feng C, Chen L, Zheng X, Fang W, Wu S, Gao X, Chen C, Yang J, Wu Y, Chen Y, Zheng P, Hu N, Yuan M, Fu Y, Ying H, Zhou J, Jiang J. Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. Int Immunopharmacol 2024; 126:111268. [PMID: 37992442 DOI: 10.1016/j.intimp.2023.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Both preclinical and clinical studies have extensively proven the effectiveness of TIGIT inhibitors in tumor immunotherapy. However, it has been discovered that the presence of CD226 on tumor-infiltrating lymphocytes is crucial for the effectiveness of both anti-TIGIT therapy alone and when combined with anti-PD-1 therapy for tumors. In our investigation, we observed that cordycepin therapy significantly augmented the expression of the Cd226 gene. As a result, it was hypothesized that cordycepin therapy could enhance the effectiveness of anti-TIGIT therapy. By employing single-cell RNA sequencing analysis of immune cells in the MC38 tumor model, we discovered that cordycepin combined with anti-TIGIT therapy led to a significant increase in the proportion of NK cells within the tumor immune microenvironment. This increased NK cell activity and decreased the expression of inhibitory receptors and exhaustion marker genes. In the combination therapy group, CD8+ T cells had lower exhaustion state scores and increased cytotoxicity, indicating a better immune response. The combination therapy group increased DCs in the tumor immune microenvironment and promoted cellular interaction with CD4+ T cell and CD8+ T cell populations while decreasing Treg cell interactions. In conclusion, cordycepin with anti-TIGIT therapy in colon cancer could reshape the tumor immune microenvironment and have notable anticancer effects.
Collapse
Affiliation(s)
- Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Nan Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Fu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Jun Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
13
|
Adhikari E, Liu Q, Johnson J, Stewart P, Marusyk V, Fang B, Izumi V, Bowers K, Guzman KM, Koomen JM, Marusyk A, Lau EK. Brain metastasis-associated fibroblasts secrete fucosylated PVR/CD155 that induces breast cancer invasion. Cell Rep 2023; 42:113463. [PMID: 37995180 DOI: 10.1016/j.celrep.2023.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qian Liu
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Johnson
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul Stewart
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kiah Bowers
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kelly M Guzman
- Department of Analytic Microscopy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric K Lau
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
14
|
Smith AJ, Thurman RE, Zeng W, Grogan B, Lucas S, Gutierrez G, Heiser RA, Wo SW, Blackmarr A, Peterson S, Gardai SJ. Nonfucosylation of an anti-TIGIT antibody enhances FcγR engagement, driving innate immune activation and antitumor activity. Front Immunol 2023; 14:1280986. [PMID: 38022590 PMCID: PMC10654636 DOI: 10.3389/fimmu.2023.1280986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
TIGIT is an immune checkpoint receptor expressed on activated and memory T cells, immunosuppressive T regulatory cells, and natural killer (NK) cells. TIGIT has emerged as an attractive target for antitumor therapies, due to its proposed immunosuppressive effects on lymphocyte function and T cell activation. We generated an anti-TIGIT monoclonal antibody (mAb) that binds with high affinity to human, non-human primate, and murine TIGIT and through multiple experimental methodologies demonstrated that checkpoint blockade alone is insufficient for antitumor activity. Generating anti-TIGIT mAbs with various Fc backbones we show that muting the Fc-Fcγ receptor (FcγR) interaction failed to drive antitumor activity, while mAbs with Fc functional backbones demonstrate substantial antitumor activity, mediated through activation of antigen-presenting cells (APCs), T cell priming, and NK-mediated depletion of suppressive Tregs and exhausted T cells. Further, nonfucosylation of the Fc backbone resulted in enhanced immune responses and antitumor activity relative to the intact IgG1 backbone. The improved activity correlated with the biased FcγR interaction profile of the nonfucosylated anti-TIGIT mAb, which supports that FcγRIIIa binding with decreased FcγRIIb binding favorably activates APCs and enhances tumor-specific CD8+ T cell responses. The anti-TIGIT mAbs with intact FcγR interacting backbones also demonstrated synergistic enhancement of other standard antitumor treatments, including anti-PD-1 treatment and a model monomethyl auristatin E antibody-drug conjugate. These findings highlight the importance of the anti-TIGIT mAb's Fc backbone to its antitumor activity and the extent to which this activity can be enhanced through nonfucosylation of the backbone.
Collapse
|
15
|
Imazu Y, Nishiwada S, Yasuda S, Nagai M, Nakamura K, Matsuo Y, Terai T, Yoshida C, Kohara Y, Sho M. Identification of Nectin Family Interactive Gene Panel and Stratification of Clinical Outcomes in Patients with Pancreatic Cancer. J Am Coll Surg 2023; 237:719-730. [PMID: 37503950 DOI: 10.1097/xcs.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
BACKGROUND Although patient-risk stratification is important for selecting individualized treatment for pancreatic ductal adenocarcinoma (PDAC), predicting the oncologic outcomes after surgery remains a challenge. In this study, we identified a nectin family gene panel (NFGP) that can accurately stratify oncologic outcomes in patients with PDAC. STUDY DESIGN Comprehensive analysis of the expression of 9 nectin family genes identified the NFGP, which was assessed for predictive performance in 2 independent public cohorts (The Cancer Genome Atlas [TCGA] n = 176; International Cancer Genome Consortium [ICGC] n = 89). It was subsequently trained and validated for the in-house training cohort without neo-adjuvant therapy (NAT, n = 213) and the validation cohort with NAT (n = 307). RESULTS Using the Cox regression model, NFGP derived from 9 nectin family genes accurately stratified overall survival (OS) in TCGA (p = 0.038) and ICGC (p = 0.005). We subsequently optimized NFGP, which robustly discriminated postoperative prognosis, OS (p = 0.014) and relapse-free survival ([RFS] p = 0.006) in the training cohort. The NFGP was successfully validated in an independent validation cohort (OS: p < 0.001; RFS: p = 0.004). Multivariate analysis demonstrated the NFGP was an independent prognostic factor for OS and RFS in the training (p = 0.028 and 0.008, respectively) and validation (p < 0.001 and 0.013, respectively) cohorts. The subcohort analyses showed that the predictive performance of NFGP is applicable to the patients' subcohort according to resectability or adjuvant therapy status. Additionally, a combination model of NFGP score and CA19-9 level emerged with improved accuracy for predicting prognosis. CONCLUSIONS This study established the predictive significance of NFGP for oncologic outcomes after surgery in PDAC. Our data demonstrate its clinical impact as a potent biomarker for optimal patient selection for individualized treatment strategies.
Collapse
Affiliation(s)
- Yuki Imazu
- From the Department of Surgery, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakanishi T, Yoneshima Y, Okamura K, Yanagihara T, Hashisako M, Iwasaki T, Haratake N, Mizusaki S, Ota K, Iwama E, Takenaka T, Tanaka K, Yoshizumi T, Oda Y, Okamoto I. MicroRNA-326 negatively regulates CD155 expression in lung adenocarcinoma. Cancer Sci 2023; 114:4101-4113. [PMID: 37565582 PMCID: PMC10551600 DOI: 10.1111/cas.15921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Treatment with immune checkpoint inhibitors induces a durable response in some patients with non-small-cell lung cancer, but eventually gives rise to drug resistance. Upregulation of CD155 expression is implicated as one mechanism of resistance to programmed death receptor-1 (PD-1)/PD-1 ligand (PD-L1) inhibitors, and it is therefore important to characterize the mechanisms underlying regulation of CD155 expression in tumor cells. The aim of this study was to identify microRNAs (miRNAs) that might regulate CD155 expression at the posttranscriptional level in lung cancer. Comprehensive miRNA screening with target prediction programs and a dual-luciferase reporter assay identified miR-346, miR-328-3p, miR-326, and miR-330-5p as miRNAs that bind to the 3'-UTR of CD155 mRNA. Forced expression of these miRNAs suppressed CD155 expression in lung cancer cell lines. Immunohistochemical staining of CD155 in tissue specimens from 57 patients with lung adenocarcinoma revealed the median tumor proportion score for CD155 to be 68%. The abundance of miR-326 in these specimens with a low level of CD155 expression was significantly greater than in specimens with a high level (p < 0.005). Our results thus suggest that miR-326 negatively regulates CD155 expression in lung adenocarcinoma and might therefore play a role in the development of resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Takayuki Nakanishi
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koji Okamura
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Mikiko Hashisako
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shun Mizusaki
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
17
|
Fu C, Liu Z, An T, Li H, Hu X, Li X, Liu X, Wu D, Zhang R, Li K, Qiu Y, Wang H. Poliovirus receptor (PVR) mediates carboplatin-induced PD-L1 expression in non-small-cell lung cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130439. [PMID: 37516256 DOI: 10.1016/j.bbagen.2023.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.
Collapse
Affiliation(s)
- Chen Fu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixia Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyao Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Danjuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kui Li
- Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Yurong Qiu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci 2023; 24:12958. [PMID: 37629138 PMCID: PMC10455395 DOI: 10.3390/ijms241612958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed in tumors of different origins where it promotes cell migration and proliferation. In addition to this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT, expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches. Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has already been included in clinical trials. The aim of this review is to summarize all these potential therapies, highlighting the still controversial role of CD155 during tumor progression.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
19
|
Tang W, Chen J, Ji T, Cong X. TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis 2023; 14:466. [PMID: 37495610 PMCID: PMC10372028 DOI: 10.1038/s41419-023-05961-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Melanoma is the most aggressive and deadliest type of skin cancer. In the last 10 years, immune checkpoint blockades (ICBs) including PD-1/PD-L1 and CTLA-4 inhibitor has been shown to be effective against melanoma. PD-1/PD-L1 and CTLA-4 inhibitors have shown varying degrees of drug resistance in the treatment of melanoma patients. Furthermore, the clinical benefits of ICBs are also accompanied by severe immune toxicity. Therefore, there is an urgent need to develop new immune checkpoint inhibitors to optimize melanoma therapy and reduce cytotoxicity. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) is thought to activate inhibitory receptors in T cells, natural killer (NK) cells, and regulatory T cells (Tregs), and has become a promising target for immunotherapy. Studies have found that TIGIT can be detected in different stages of melanoma, which is closely related to the occurrence, development, and prognosis of melanoma. This review mainly describes the immunosuppressive mechanism of TIGIT and its role in antitumor immunity of melanoma, so as to provide new ideas and schemes for the clinical treatment of melanoma with targeted TIGIT.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China
| | - Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, 110000, China.
| | - Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
20
|
Cifaldi L, Melaiu O, Giovannoni R, Benvenuto M, Focaccetti C, Nardozi D, Barillari G, Bei R. DNAM-1 chimeric receptor-engineered NK cells: a new frontier for CAR-NK cell-based immunotherapy. Front Immunol 2023; 14:1197053. [PMID: 37359555 PMCID: PMC10285446 DOI: 10.3389/fimmu.2023.1197053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
DNAM-1 is a major NK cell activating receptor and, together with NKG2D and NCRs, by binding specific ligands, strongly contributes to mediating the killing of tumor or virus-infected cells. DNAM-1 specifically recognizes PVR and Nectin-2 ligands that are expressed on some virus-infected cells and on a broad spectrum of tumor cells of both hematological and solid malignancies. So far, while NK cells engineered for different antigen chimeric receptors (CARs) or chimeric NKG2D receptor have been extensively tested in preclinical and clinical studies, the use of DNAM-1 chimeric receptor-engineered NK cells has been proposed only in our recent proof-of-concept study and deserves further development. The aim of this perspective study is to describe the rationale for using this novel tool as a new anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
21
|
CD155 is a putative therapeutic target in medulloblastoma. Clin Transl Oncol 2023; 25:696-705. [PMID: 36301489 DOI: 10.1007/s12094-022-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.
Collapse
|
22
|
Ziegler AE, Fittje P, Müller LM, Ahrenstorf AE, Hagemann K, Hagen SH, Hess LU, Niehrs A, Poch T, Ravichandran G, Löbl SM, Padoan B, Brias S, Hennesen J, Richard M, Richert L, Peine S, Oldhafer KJ, Fischer L, Schramm C, Martrus G, Bunders MJ, Altfeld M, Lunemann S. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56 bright NK cells. Front Immunol 2023; 14:1117320. [PMID: 36845105 PMCID: PMC9948018 DOI: 10.3389/fimmu.2023.1117320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.
Collapse
Affiliation(s)
- Annerose E. Ziegler
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Fittje
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Luisa M. Müller
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika E. Ahrenstorf
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerri Hagemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sven H. Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Leonard U. Hess
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Tobias Poch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian M. Löbl
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sébastien Brias
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Myrtille Richard
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Laura Richert
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J. Oldhafer
- Department of General and Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glòria Martrus
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Madeleine J. Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| |
Collapse
|
23
|
Sadeghirad H, Bahrami T, Layeghi SM, Yousefi H, Rezaei M, Hosseini-Fard SR, Radfar P, Warkiani ME, O'Byrne K, Kulasinghe A. Immunotherapeutic targets in non-small cell lung cancer. Immunology 2023; 168:256-272. [PMID: 35933597 DOI: 10.1111/imm.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and has a 5-year survival rate of ~20%. Immunotherapies have shown promising results leading to durable responses, however, they are only effective for a subset of patients. To determine the best therapeutic approach, a thorough and in-depth profiling of the tumour microenvironment (TME) is required. The TME is a complex network of cell types that form an interconnected network, promoting tumour cell initiation, growth and dissemination. The stroma, immune cells and endothelial cells that comprise the TME generate a plethora of cytotoxic or cytoprotective signalling pathways. In this review, we discuss immunotherapeutic targets in NSCLC tumours and how the TME may influence patients' response to immunotherapy.
Collapse
Affiliation(s)
- Habib Sadeghirad
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tayyeb Bahrami
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh M Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Meysam Rezaei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Seyed R Hosseini-Fard
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payar Radfar
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ken O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Brazel D, Ou SHI, Nagasaka M. Tiragolumab (Anti-TIGIT) in SCLC: Skyscraper-02, a Towering Inferno. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:1-9. [PMID: 36636263 PMCID: PMC9831070 DOI: 10.2147/lctt.s379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Small cell lung cancer (SCLC) is characterized by rapid progression and poor prognosis. Although the phase II CITYSCAPE-02 trial found objective response rate (ORR) and progression-free survival (PFS) of non-small cell lung cancer (NSCLC) patients improved when tiragolumab was added to atezolizumab and chemotherapy, the phase III SKYSCRAPER-02 failed to find PFS or OS benefit in patients with SCLC. Atezolizumab was the first immunotherapy to show survival benefit in extensive SCLC based on the phase III IMpower133 study. Given that immunotherapy has become the standard of care for SCLC patients, further research is needed into ways to augment the immune system to better treat these patients.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Sai-Hong Ignatius Ou
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA,Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA,Chao Family Comprehensive Cancer Center, Orange, CA, USA,St. Marianna University School of Medicine, Kawasaki, Japan,Correspondence: Misako Nagasaka, Department of Medicine, University of California Irvine School of Medicine, 101 the City Drive, Orange, CA, USA, Email
| |
Collapse
|
25
|
Lin Y, Wilk U, Pöhmerer J, Hörterer E, Höhn M, Luo X, Mai H, Wagner E, Lächelt U. Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205318. [PMID: 36399647 DOI: 10.1002/smll.202205318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system offers great opportunities for the treatment of numerous diseases by precise modification of the genome. The functional unit of the system is represented by Cas9/sgRNA ribonucleoproteins (RNP), which mediate sequence-specific cleavage of DNA. For therapeutic applications, efficient and cell-specific transport into target cells is essential. Here, Cas9 RNP nanocarriers are described, which are based on lipid-modified oligoamino amides and folic acid (FolA)-PEG to realize receptor-mediated uptake and gene editing in cancer cells. In vitro studies confirm strongly enhanced potency of receptor-mediated delivery, and the nanocarriers enable efficient knockout of GFP and two immune checkpoint genes, PD-L1 and PVR, at low nanomolar concentrations. Compared with non-targeted nanoparticles, FolA-modified nanocarriers achieve substantially higher gene editing including dual PD-L1/PVR gene disruption after injection into CT26 tumors in vivo. In the syngeneic mouse model, dual disruption of PD-L1 and PVR leads to CD8+ T cell recruitment and distinct CT26 tumor growth inhibition, clearly superior to the individual knockouts alone. The reported Cas9 RNP nanocarriers represent a versatile platform for potent and receptor-specific gene editing. In addition, the study demonstrates a promising strategy for cancer immunotherapy by permanent and combined immune checkpoint disruption.
Collapse
Affiliation(s)
- Yi Lin
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Wilk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Jana Pöhmerer
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Elisa Hörterer
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Xianjin Luo
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
26
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Choi H, Lee Y, Park SA, Lee JH, Park J, Park JH, Lee HK, Kim TG, Jeun SS, Ahn S. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands. Oncoimmunology 2022; 11:2138152. [PMID: 36338147 PMCID: PMC9629076 DOI: 10.1080/2162402x.2022.2138152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell-mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,CONTACT Stephen Ahn Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul06591, Republic of Korea
| |
Collapse
|
28
|
Yang Z, Peng Y, Xu J, Chen P, Zhao Z, Cai Q, Li L, Tian H, Bai G, Liu L, Gao S, He J. PVR/TIGIT and PD-L1/PD-1 expression predicts survival and enlightens combined immunotherapy in lung squamous cell carcinoma. Transl Oncol 2022; 24:101501. [PMID: 35926369 PMCID: PMC9352965 DOI: 10.1016/j.tranon.2022.101501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
PVR/TIGIT and PD-L1/PD-1 axes play essential roles in tumor immune evasion and could be potential targets for combined immunotherapy. We aimed to evaluate the expression status of the above-mentioned immune markers in lung squamous cell carcinoma (LUSC), and investigate their survival impact and relevance with the immune microenvironment and clinicopathological features. We retrospectively collected specimens from 190 LUSC patients, who underwent pulmonary surgeries, and we performed immunohistochemistry assays of PVR, TIGIT, PD-L1, PD-1 and CD8. In our cohort, the positive rate of PVR was 85.8%, which was much higher than the positive rate of PD-L1 at 26.8%. A total of 32 (16.8%) patients demonstrated co-expression of PVR/PD-L1. High TIGIT density was correlated with positive PD-L1 expression, high PD-1 density, and high CD8 density (PD-L1, P=0.033; PD-1, P<0.001; CD8, P<0.001), and positive PVR expression was correlated with positive PD-L1 expression (P=0.046). High TIGIT density and high PVR/TIGIT expression were correlated with advanced TNM stage (TIGIT density, P=0.020; PVR/TIGIT expression, P=0.041). Patients with positive PVR expression, high TIGIT density, high PVR/TIGIT expression and PVR/PD-L1 co-expression exhibited a significantly worse prognosis (PVR, P=0.038; TIGIT, P=0.027; PVR/TIGIT, P=0.014; PVR/PD-L1, P=0.018). Multivariate analysis demonstrated that PVR/PD-L1 co-expression (Hazard ratio [HR], 1.756, 95% CI, 1.152-2.676, P=0.009) was an independent prognostic factor in LUSC patients. In conclusion, we demonstrated the expression status of PVR/TIGIT and PD-L1/PD-1 in LUSC. PVR/PD-L1 co-expression was an independent prognostic factor in LUSC patients and may serve as a potential predictive biomarker for dual-targeting immunotherapy.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China; Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinanlu, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - Ping Chen
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, No. 166 Yulongxilu, Yancheng, Jiangsu Province, China
| | - Zhenshan Zhao
- Department of Thoracic Surgery, Kailuan General Hospital, No. 57 Xinhuadongdao, Tangshan, Hebei Province, China
| | - Qingyuan Cai
- School of Life Sciences, Peking University, No. 5 Yiheyuanlu, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuannanli, Beijing, China.
| |
Collapse
|
29
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
30
|
Xin H, Liu Y, Chen P, Yin T, Wang M, Liu T, Wen Z, Cheng Y. CD155 promotes radioresistance and malignancy of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol 2022; 13:53. [PMID: 35768666 PMCID: PMC9243211 DOI: 10.1007/s12672-022-00515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
The expression of CD155 has been observed to increase in various human cancers, but its role in the development of esophageal cancer (EC) is unclear. Radiotherapy is one of the primary therapeutic options for EC. However, radioresistance is still a severe issue in EC treatment. In this study, Oncomine database mining, immunohistochemistry, and survival analysis showed that higher expression of CD155 in patients with EC than in healthy controls. In vitro and in vivo, we found for the first time that irradiation increased the expression of CD155 in EC cells. CD155 knockdown inhibited cell proliferation and migration and tumor formation, and significantly increased radiosensitivity in EC. The in vivo model with high CD155 expression significantly promoted the proliferation and migration of EC cells. Furthermore, increased CD155 expression was associated with poor prognosis in patients with EC. CD155 regulated the Hippo-Yap pathway, influencing cell proliferation and migration. Therefore, CD155 is essential for the proliferation, migration, and radioresistance of EC. CD155 inhibition may be a viable strategy for improving radiation treatment efficacy in individuals with EC.
Collapse
Affiliation(s)
- Huixian Xin
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Yuchen Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital, and Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Meijie Wang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Tianyu Liu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Zhihua Wen
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
31
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
32
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
33
|
Hamad A, Soboleva AV, Vorobyev PO, Mahmoud M, Vasilenko KV, Chumakov PM, Lipatova AV. Development of a recombinant oncolytic poliovirus type 3 strain with altered cell tropism. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diffuse gliomas are incurable, prevalent, and aggressive central nervous system tumors. Therefore, the development of selective oncolytic viral strains for malignant neoplasms is highly relevant. This study aimed to create an oncolytic virus based on a vaccine strain of poliovirus type 3 with natural antitumor activity. To achieve this goal, we replaced the internal ribosome entry site (IRES) of poliovirus with the corresponding fragment of human rhinovirus 30. The resulting recombinant oncolytic strain RVP3 retained the serotype of poliovirus type 3, as confirmed by virus neutralization micro-test with specific antiserum. In addition, the oncolytic efficacy of RVP3 was assessed in vitro on a broad panel of cell cultures. According to the results, RVP3 has changed its tropism, losing the ability to replicate in conditionally normal cell lines of embryonic astrocytes and embryonic fibroblasts while retaining the ability to replicate in tumor cells.
Collapse
Affiliation(s)
- A Hamad
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Soboleva
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - PO Vorobyev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - M Mahmoud
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | - PM Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Lipatova
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|
34
|
Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. J Immunol Res 2022; 2022:1810804. [PMID: 35465350 PMCID: PMC9020142 DOI: 10.1155/2022/1810804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims. Prostate cancer (PCa) is one of the neoplasms with the highest incidence and mortality rate in men worldwide. Advanced stages of the disease are usually very aggressive, and most are treated with chemotherapeutic drugs that generally cause side effects in these patients. However, additional therapeutic targets such as the IL6R/STAT-3 axis and TIGIT have been proposed, mainly due to their relevance in the development of PCa and regulation of NK cell-mediated cytotoxicity. Here, we evaluate the effect of inhibitors directed against these therapeutic targets primarily via an analysis of NK cell function versus prostate cancer cells. Methods. We analyzed the secretion of cytokines, chemokines, and growth factors in 22Rv1, LNCaP, and DU145 cells. In these cells, we also evaluated the expression of NK ligands, IL6R, STAT-3, and phosporylated STAT-3. In NK-92 cells, we evaluated the effects of Stattic (Stt) and tocilizumab (Tcz) on NK receptors. In addition, we assessed if the disruption of the IL6R/STAT-3 pathway and blockade of TIGIT potentiated the cytotoxicity of NK-92 cells versus DU145 cells. Results. DU145 abundantly secretes M-CSF, VEGF, IL-6, CXCL8, and TGF-β. Furthermore, the expression of CD155 was found to increase in accordance with aggressiveness and metastatic status in the prostate cancer cells. Stt and Tcz induce a decrease in STAT-3 phosphorylation in the DU145 cells and, in turn, induce an increase of NKp46 and a decrease of TIGIT expression in NK-92 cells. Finally, the disruption of the IL6R/STAT-3 axis in prostate cancer cells and the blocking of TIGIT on NK-92 were observed to increase the cytotoxicity of NK-92 cells against DU145 cells through an increase in sFasL, granzyme A, granzyme B, and granulysin. Conclusions. Our results reveal that the combined use of inhibitors directed against the IL6R/STAT-3 axis and TIGIT enhances the functional activity of NK cells against castration-resistant prostate cancer cells.
Collapse
|
35
|
Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol 2022; 144:58-70. [DOI: 10.1016/j.molimm.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
36
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
37
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
38
|
Examination of the TIGIT, CD226, CD112, and CD155 Immune Checkpoint Molecules in Peripheral Blood Mononuclear Cells in Women Diagnosed with Early-Onset Preeclampsia. Biomedicines 2021; 9:biomedicines9111608. [PMID: 34829838 PMCID: PMC8615567 DOI: 10.3390/biomedicines9111608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Early-onset preeclampsia is a common obstetrical disease with a potential genetic background and is characterized by the predominance of Th1 immune response. However, although many studies investigated the immunological environment in preeclamptic patients, no information is available about the potential role of the TIGIT/CD226/CD112/CD155 immune checkpoint pathway. A total of 37 pregnant women diagnosed with early-onset preeclampsia and 36 control women with appropriately matched gestational age were enrolled in this study. From venous blood, mononuclear cells were isolated and stored in the freezer. Using multicolor flow cytometry T-, NK cell and monocyte subpopulations were determined. After characterization of the immune cell subsets, TIGIT, CD226, CD112, and CD155 surface expression and intracellular granzyme B content were determined by flow cytometer. Significantly decreased CD226 expression and increased CD112 and CD155 surface expression were detected in almost all investigated T-cell, NK cell, and monocyte subpopulations in women diagnosed with preeclampsia compared to the healthy group. Furthermore, reduced TIGIT and granzyme B expression were measured only in preeclamptic CD8+ T cells compared to healthy pregnant women. A decreased level of the activatory receptor CD226 in effector lymphocytes accompanied with an elevated surface presence of the CD112 and CD155 ligands in monocytes could promote the TIGIT/CD112 and/or TIGIT/CD155 ligation, which mediates inhibitory signals. We assume that the inhibition of the immune response via this immune checkpoint pathway might contribute to compensate for the Th1 predominance during early-onset preeclampsia.
Collapse
|
39
|
Su L, Chen F, Yu H, Yan H, Zhao F, Fan C, Zhao Y. Addition-Elimination Mechanism-Activated Nucleotide Transition Sequencing for RNA Dynamics Profiling. Anal Chem 2021; 93:13974-13980. [PMID: 34612623 DOI: 10.1021/acs.analchem.1c03361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic information of intracellular transcripts is essential to understand their functional roles. Routine RNA-sequencing (RNA-seq) methods only measure RNA species at a steady state and do not provide RNA dynamic information. Here, we develop addition-elimination mechanism-activated nucleotide transition sequencing (AENT-seq) for transcriptome-wide profiling of RNA dynamics. In AENT-seq, nascent transcripts are metabolically labeled with 4-thiouridine (4sU). The total RNA is treated with N2H4·H2O under aqueous conditions. N2H4·H2O is demonstrated to convert 4sU to 4-hydrazino cytosine (C*) based on an addition-elimination chemistry. C* is regarded as cytosine (C) during the DNA extension process. This 4sU-to-C transition marks nascent transcripts, so it enables sequencing analysis of RNA dynamics. We apply our AENT-seq to investigate transcript dynamic information of several genes involved in cancer progression and metastasis. This method uses a simple chemical reaction in aqueous solutions and will be rapidly disseminated with extensive applications.
Collapse
Affiliation(s)
- Li Su
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Hao Yan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Fengjiao Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai JiaoTong University, Shanghai 200127, China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
40
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S, Jana S. CD155: A Key Receptor Playing Diversified Roles. Curr Mol Med 2021; 22:594-607. [PMID: 34514998 DOI: 10.2174/1566524021666210910112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in sonic hedgehog pathway, Ras-MEK-ERK pathway and during stress conditions like DNA damage response. The protein uses alternate splicing mechanism, producing four isoforms - two being soluble (CD155β and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 having important roles in cancer research and cell signaling field. The receptor is recognized as biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in cells defense mechanism. The immune-surveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT-CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cell. The receptor also has a role in metastasis of cancer and trans endothelial mechanism. In this review, authors discuss the virus-host interaction that occurs via single transmembrane receptor, the poliovirus infection pathway, which is being exploited as therapeutic pathway. The oncolytic virotherapy is now promising way for curing cancer.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Trupti Gohil
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sonali Ankush Sawant
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Upendra Pradeep Lambe
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad. India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt Ltd., Thane-West, Maharashtra-400604. India
| |
Collapse
|
42
|
Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Front Immunol 2021; 12:699895. [PMID: 34367161 PMCID: PMC8339559 DOI: 10.3389/fimmu.2021.699895] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
T cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on several types of lymphocytes. Efficacy of antibody blockade of TIGIT in cancer immunotherapy is currently widely being investigated in both pre-clinical and clinical studies. In multiple cancers TIGIT is expressed on tumor-infiltrating cytotoxic T cells, helper T cells, regulatory T cells and NK cells, and its main ligand CD155 is expressed on tumor-infiltrating myeloid cells and upregulated on cancer cells, which contributes to local suppression of immune-surveillance. While single TIGIT blockade has limited anti-tumor efficacy, pre-clinical studies indicate that co-blockade of TIGIT and PD-1/PD-L1 pathway leads to tumor rejection, notably even in anti-PD-1 resistant tumor models. Among inhibitory immune checkpoint molecules, a unique property of TIGIT blockade is that it enhances not only anti-tumor effector T-cell responses, but also NK-cell responses, and reduces the suppressive capacity of regulatory T cells. Numerous clinical trials on TIGIT-blockade in cancer have recently been initiated, predominantly combination treatments. The first interim results show promise for combined TIGIT and PD-L1 co-blockade in solid cancer patients. In this review, we summarize the current knowledge and identify the gaps in our current understanding of TIGIT’s roles in cancer immunity, and provide, based on these insights, recommendations for its positioning in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhouhong Ge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (MC), Rotterdam, Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (MC), Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (MC), Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center (MC), Rotterdam, Netherlands
| |
Collapse
|
43
|
Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers (Basel) 2021; 13:cancers13143524. [PMID: 34298735 PMCID: PMC8306848 DOI: 10.3390/cancers13143524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Communication signals and signaling pathways are often studied in different physiological systems. However, it has become abundantly clear that the immune system is not self-regulated, but functions in close association with the nervous system. The neural-immune interface is complex; its balance determines cancer progression, as well as autoimmune disorders. Immunotherapy remains a promising approach in the context of glioblastoma multiforme (GBM). The primary obstacle to finding effective therapies is the potent immunosuppression induced by GBM. Anti-inflammatory cytokines, induction of regulatory T cells, and the expression of immune checkpoint molecules are the key mediators for immunosuppression in the tumor microenvironment. Immune checkpoint molecules are ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. In the past decade, they have been extensively studied in preclinical and clinical trials in diseases such as cancer or autoimmune diseases in which the immune system has failed to maintain homeostasis. In this review, we will discuss promising immune-modulatory targets that are in the focus of current clinical research in glioblastoma, but are also in the precarious position of potentially becoming starting points for the development of autoimmune diseases like multiple sclerosis.
Collapse
|
44
|
Shirasuna K, Koelsch G, Seidel-Dugan C, Salmeron A, Steiner P, Winston WM, Brodkin HR, Nirschl CJ, Abbott S, Kinugasa F, Sugahara S, Ohori M, Takeuchi M, Hicklin DJ, Yoshida T. Characterization of ASP8374, a fully-human, antagonistic anti-TIGIT monoclonal antibody. Cancer Treat Res Commun 2021; 28:100433. [PMID: 34273876 DOI: 10.1016/j.ctarc.2021.100433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
The T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) is a validated immune checkpoint protein expressed on memory CD4+T-cellls, Tregs, CD8+T-cell and natural killer (NK) cells. ASP8374 is a fully human monoclonal immunoglobulin (Ig) G4 antibody designed to block the interaction of TIGIT with its ligands and inhibit TIGIT signaling. ASP8374 exhibited high affinity binding to TIGIT and increased interferon (IFN)-γ production of cultured peripheral blood mononuclear cells (PBMCs) in a titratable manner. When used in combination with pembrolizumab, an anti-programmed death-1 (PD-1) antibody, ASP8374 induced higher T-cell activation in vitro than either treatment alone. An anti-mouse TIGIT antibody surrogate, mSEC1, displayed anti-tumor efficacy in an MC38 syngeneic mouse tumor model alone and in combination with an anti-programmed death-ligand 1 (PD-L1) antibody. In an additional syngeneic mouse tumor model (CT26), while mSEC1 alone did not demonstrate anti-tumor efficacy, mSEC1 combined with an anti-PD-1 antibody enhanced anti-tumor efficacy above that of the anti-PD-1 antibody alone. These data provide evidence that ASP8374 has therapeutic potential for advanced malignancies.
Collapse
Affiliation(s)
- Kenna Shirasuna
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan.
| | - Gerald Koelsch
- Drug Discovery Research, Astellas Pharma Inc., 1 Astellas Way, Northbrook, IL 60062, USA
| | - Cynthia Seidel-Dugan
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Andres Salmeron
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Philipp Steiner
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - William M Winston
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Heather R Brodkin
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Christopher J Nirschl
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Sandra Abbott
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Fumitaka Kinugasa
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shingo Sugahara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Makoto Ohori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Daniel J Hicklin
- Potenza Therapeutics, 1030 Massachusetts Avenue, Suite 210, Cambridge, MA 02138, USA
| | - Taku Yoshida
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| |
Collapse
|
45
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
46
|
Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour. Cancers (Basel) 2021; 13:cancers13133242. [PMID: 34209558 PMCID: PMC8267924 DOI: 10.3390/cancers13133242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Invasive urothelial bladder cancer (UBC) has high recurrence rates even after radical cystectomy (RC). Exosomes are membrane-bound nanovesicles, which have been shown to contribute to carcinogenesis and metastasis. We previously showed that urinary exosomes display a malignant profile in UBC patients despite the absence of detectable tumour. Here, we investigated exosomes from sampling sites close to or distant from the former tumour, aiming to understand the effect of the tumour on the local milieu. Ten patients scheduled for cystectomy after transurethral bladder resection (TUR-B), without remaining detectable tumour, were included. Exosomes were isolated from tissue explants of both the previous tumour site and distant bladder tissue. Proteins were quantified by mass spectrometry in seven patients. Exosomes from the previous tumour site were enriched in inflammatory but not cancer-related pathways compared to distant tissue. However, the 69 most abundant proteins in tissue-derived exosomes regardless of site, 20 of which were also found in urinary exosomes from our previous study, were enriched for cancer-related metabolic pathways and associated with poor prognosis in an external mRNA dataset. The enrichment of cancer-related pathways in the most abundant proteins, regardless of sampling site, confirms our hypothesis that despite the absence of detectable tumour, the entire bladder releases exosomes that contribute to metastasis and highlights the need for early RC.
Collapse
|
47
|
Wang L, Wu J, Chen J, Dou W, Zhao Q, Han J, Liu J, Su W, Li A, Liu P, An Z, Xu C, Sun Y. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Talanta 2021; 226:122097. [PMID: 33676654 DOI: 10.1016/j.talanta.2021.122097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Standard two/three dimensional (2D/3D)-cell culture platforms have facilitated the understanding of the communications between various cell types and their microenvironments. However, they are still limited in recapitulating the complex functionalities in vivo, such as tissue formation, tissue-tissue interface, and mechanical/biochemical microenvironments of tissues and organs. Intestine-on-a-chip platforms offer a new way to mimic intestinal behaviors and functionalities by constructing in vitro intestinal models in microfluidic devices. This review summarizes the advances and limitations of the state-of-the-art 2D/3D-cell culture platforms, animal models, intestine chips, and the combined multi-organ chips related with intestines. Their applications to studying intestinal functions, drug testing, and disease modeling are introduced. Different intestinal cell sources are compared in terms of gene expression abilities and the recapitulated intestinal morphologies. Among these cells, cells isolated form human intestinal tissues and derived from pluripotent stem cells appear to be more suitable for in vitro reconstruction of intestinal organs. Key challenges of current intestine-on-a-chip platforms and future directions are also discussed.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Wu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin, 300350, China
| | - Junlei Han
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jinliang Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhao An
- Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chonghai Xu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| |
Collapse
|
48
|
Overexpression of PVR and PD-L1 and its association with prognosis in surgically resected squamous cell lung carcinoma. Sci Rep 2021; 11:8551. [PMID: 33879814 PMCID: PMC8058057 DOI: 10.1038/s41598-021-87624-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Targeting T-Cell Immunoreceptor with Ig and ITIM domain-poliovirus receptor (PVR) pathway is a potential therapeutic strategy in lung cancer. We analyzed the expression of PVR and programmed death ligand-1 (PD-L1) in surgically resected squamous cell lung carcinoma (SQCC) and determined its prognostic significance. We collected archival surgical specimens and data of 259 patients with SQCC at Yonsei Cancer Center (1998-2020). Analysis of variance was used to analyze the correlations between PVR and PD-L1 expression and patient characteristics. Kaplan-Meier curves were used to estimate recurrence-free survival (RFS) and overall survival (OS). Most patients were male (93%); the majority were diagnosed with stage 1 (47%), followed by stage 2 (29%) and stage 3 (21%). Overexpression of PVR resulted in a significantly shorter median RFS and OS (P = 0.01). PD-L1 expression was not significant in terms of prognosis. Patients were subdivided into four groups based on low and high PVR and PD-L1 expression. Those expressing high levels of PVR and PD-L1 had the shortest RFS (P = 0.03). PVR overexpression is associated with a poor prognosis in surgically resected SQCC. Inhibition of PVR as well as PD-L1 may help overcome the lack of response to immune checkpoint monotherapy.
Collapse
|
49
|
Dondero A, Morini M, Cangelosi D, Mazzocco K, Serra M, Spaggiari GM, Rotta G, Tondo A, Locatelli F, Castellano A, Scuderi F, Sementa AR, Eva A, Conte M, Garaventa A, Bottino C, Castriconi R. Multiparametric flow cytometry highlights B7-H3 as a novel diagnostic/therapeutic target in GD2neg/low neuroblastoma variants. J Immunother Cancer 2021; 9:jitc-2020-002293. [PMID: 33795387 PMCID: PMC8021887 DOI: 10.1136/jitc-2020-002293] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background High-risk neuroblastomas (HR-NBs) are rare, aggressive pediatric cancers characterized by resistance to therapy and relapse in more than 30% of cases, despite using an aggressive therapeutic protocol including targeting of GD2. The mechanisms responsible for therapy resistance are unclear and might include the presence of GD2neg/low NB variants and/or the expression of immune checkpoint ligands such as B7-H3. Method Here, we describe a multiparametric flow cytometry (MFC) combining the acquisition of 106 nucleated singlets, Syto16pos CD45neg CD56pos cells, and the analysis of GD2 and B7-H3 surface expression. 41 bone marrow (BM) aspirates from 25 patients with NB, at the onset or relapse, are analyzed, comparing results with cytomorphological analysis (CA) and/or immunohistochemistry (IHC). Spike in experiments assesses the sensitivity of MFC. Kaplan-Meier analysis on 498 primary NBs selects novel prognostic markers possibly integrating the MFC panel. Results No false positive are detected, and MFC shows high sensitivity (0.0005%). Optimized MFC identifies CD45negCD56pos NB cells in 11 out of 12 (91.6%) of BM indicated as infiltrated by CA, 7 of which coexpress high levels of GD2 and B7-H3. MFC detects CD45negCD56posGD2neg/low NB variants expressing high surface levels of B7-H3 in two patients with HR-NB (stage M) diagnosed at 53 and 139 months of age. One of them has a non-MYCN amplified tumor with unusual THpos PHOX2Bneg phenotype, which relapsed 141 months post-diagnosis with BM infiltration and a humerus lesion. All GD2neg/low NB variants are detected in patients at relapse. Kaplan-Meier analysis highlights an interesting dichotomous prognostic value of MML5, ULBPs, PVR, B7-H6, and CD47, ligands involved in NB recognition by the immune system. Conclusions Our study validates a sensitive MFC analysis providing information on GD2 and B7-H3 surface expression and allowing fast, specific and sensitive evaluation of BM tumor burden. With other routinely used diagnostic and prognostic tools, MFC can improve diagnosis, prognosis, orienting novel personalized treatments in patients with GD2low/neg NB, who might benefit from innovative therapies combining B7-H3 targeting.
Collapse
Affiliation(s)
- Alessandra Dondero
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Clinical Bioinformatic, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Katia Mazzocco
- UOC Anatomia Patologica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Annalisa Tondo
- Department of Pediatric Oncology, Meyer Children's University Hospital, Firenze, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Aurora Castellano
- Department of Pediatric Hematology and Oncology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | | | | | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Conte
- UOC Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristina Bottino
- Department of Experimental Medicine, University of Genova, Genova, Italy .,Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
50
|
Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, Ferencz B, Paku S, Lantos A, Fillinger J, Rezeli M, Marko-Varga G, Bogos K, Galffy G, Renyi-Vamos F, Hoda MA, Klepetko W, Hoetzenecker K, Laszlo V, Dome B. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Ther Oncolytics 2021; 20:470-483. [PMID: 33718595 PMCID: PMC7917449 DOI: 10.1016/j.omto.2021.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC; accounting for approximately 13%-15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications.
Collapse
Affiliation(s)
- Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Nandor Barany
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Bence Ferencz
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, 2045 Torokbalint, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|