1
|
Chang HY, Huynh M, Roopra A, Callander NS, Miyamoto S. HAPLN1 matrikine: a bone marrow homing factor linked to poor outcomes in patients with MM. Blood Adv 2023; 7:6859-6872. [PMID: 37647592 PMCID: PMC10685165 DOI: 10.1182/bloodadvances.2023010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
The bone marrow (BM) microenvironment is critical for dissemination, growth, and survival of multiple myeloma (MM) cells. Homing of myeloma cells to the BM niche is a crucial step in MM dissemination, but the mechanisms involved are incompletely understood. In particular, any role of matrikines, neofunctional peptides derived from extracellular matrix proteins, remains unknown. Here, we report that a matrikine derived from hyaluronan and proteoglycan link protein 1 (HAPLN1) induces MM cell adhesion to the BM stromal components, such as fibronectin, endothelial cells, and stromal cells and, furthermore, induces their chemotactic and chemokinetic migration. In a mouse xenograft model, we show that MM cells preferentially home to HAPLN1 matrikine-conditioned BM. The transcription factor STAT1 is activated by HAPLN1 matrikine and is necessary to induce MM cell adhesion, migration, migration-related genes, and BM homing. STAT1 activation is mediated by interferon beta (IFN-β), which is induced by NF-κB after stimulation by HAPLN1 matrikine. Finally, we also provide evidence that higher levels of HAPLN1 in BM samples correlate with poorer progression-free survival of patients with newly diagnosed MM. These data reveal that a matrikine present in the BM microenvironment acts as a chemoattractant, plays an important role in BM homing of MM cells via NF-κB-IFN-β-STAT1 signaling, and may help identify patients with poor outcomes. This study also provides a mechanistic rationale for targeting HAPLN1 matrikine in MM therapy.
Collapse
Affiliation(s)
- Hae Yeun Chang
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Mailee Huynh
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Natalie S. Callander
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin-Madison, Madison, WI
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
2
|
Nowotarski HL, Attayek PJ, Allbritton NL. Automated platform for cell selection and separation based on four-dimensional motility and matrix degradation. Analyst 2020; 145:2731-2742. [PMID: 32083265 PMCID: PMC7716803 DOI: 10.1039/c9an02224d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Motility and invasion are key steps in the metastatic cascade, enabling cells to move through normal tissue borders into the surrounding stroma. Most available in vitro assays track cell motility or cell invasion but lack the ability to measure both simultaneously and then separate single cells with unique behaviors. In this work, we developed a cell-separation platform capable of tracking cell movement (chemokinesis) and invasion through an extracellular matrix in space and time. The platform utilized a collagen scaffold with embedded tumor cells overlaid onto a microraft array. Confocal microscopy enabled high resolution (0.4 × 0.4 × 3.5 µm voxel) monitoring of cell movement within the scaffolds. Two pancreatic cancer cell lines with known differing invasiveness were characterized on this platform, with median motilities of 14 ± 6 μm and 10 ± 4 μm over 48 h. Within the same cell line, cells demonstrated highly variable motility, with XYZ movement ranging from 144 μm to 2 μm over 24 h. The ten lowest and highest motility cells, with median movements of 33 ± 11 μm and 3 ± 1 μm, respectively, were separated and sub-cultured. After 6 weeks of culture, the cell populations were assayed on a Transwell invasion assay and 227 ± 56 cells were invasive in the high motility population while only 48 ± 10 cells were invasive in the low motility population, indicating that the resulting offspring possessed a motility phenotype reflective of the parental cells. This work demonstrates the feasibility of sorting single cells based on complex phenotypes along with the capability to further probe those cells and explore biological phenomena.
Collapse
Affiliation(s)
- Hannah L Nowotarski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
3
|
Schneider G, Bryndza E, Poniewierska-Baran A, Serwin K, Suszynska M, Sellers ZP, Merchant ML, Kaliappan A, Ratajczak J, Kucia M, Garbett NC, Ratajczak MZ. Evidence that vitronectin is a potent migration-enhancing factor for cancer cells chaperoned by fibrinogen: a novel view of the metastasis of cancer cells to low-fibrinogen lymphatics and body cavities. Oncotarget 2018; 7:69829-69843. [PMID: 27634880 PMCID: PMC5342518 DOI: 10.18632/oncotarget.12003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
Diluted (1%) plasma induces migration of malignant cell lines much more strongly than potent pro-metastatic factors. To characterize the factor(s) present in diluted plasma responsible for this phenomenon we performed i) heat inactivation, ii) dialysis, iii) proteinase K treatment, and iv) molecular size filtration studies. We found that this remarkable pro-migratory activity of diluted normal plasma is associated with a ~50–100-kD protein that interacts with GαI protein-coupled receptors and activates p42/44 MAPK and AKT signaling in target cells. Since this pro-migratory activity of 1% plasma decreases at higher plasma concentrations (> 20%), but is retained in serum, we hypothesized that fibrinogen may be involved as a chaperone of the protein(s). To identify the pro-migratory protein(s) present in diluted plasma and fibrinogen-depleted serum, we performed gel filtration and hydrophobic interaction chromatography followed by mass spectrometry analysis. We identified several putative protein candidates that were further tested in in vitro experiments. We found that this pro-migratory factor chaperoned by fibrinogen is vitronectin, which activates uPAR, and that this effect can be inhibited by fibrinogen. These results provide a novel mechanism for the metastasis of cancer cells to lymphatics and body cavities, in which the concentration of fibrinogen is low, and thus suggests that free vitronectin stimulates migration of tumor cells.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Ewa Bryndza
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Agata Poniewierska-Baran
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Karol Serwin
- Department of Regenerative Medicine Medical University of Warsaw, Poland.,Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Malwina Suszynska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Zachariah P Sellers
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Michael L Merchant
- Kidney Disease Program, Department of Medicine, University of Louisville, KY, USA
| | - Alagammai Kaliappan
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Poland
| | - Nichola C Garbett
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Poland.,Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Zou H, Yue W, Yu WK, Liu D, Fong CC, Zhao J, Yang M. Microfluidic Platform for Studying Chemotaxis of Adhesive Cells Revealed a Gradient-Dependent Migration and Acceleration of Cancer Stem Cells. Anal Chem 2015; 87:7098-108. [PMID: 26087892 DOI: 10.1021/acs.analchem.5b00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies reveal that solid tumors consist of heterogeneous cells with distinct phenotypes and functions. However, it is unclear how different subtypes of cancer cells migrate under chemotaxis. Here, we developed a microfluidic device capable of generating multiple stable gradients, culturing cells on-chip, and monitoring single cell migratory behavior. The microfluidic platform was used to study gradient-induced chemotaxis of lung cancer stem cell (LCSC) and differentiated LCSC (dLCSC) in real time. Our results showed the dynamic and differential response of both LCSC and dLCSC to chemotaxis, which was regulated by the β-catenin dependent Wnt signaling pathway. The microfluidic analysis showed that LCSC and dLCSC from the same origin behaved differently in the same external stimuli, suggesting the importance of cancer cell heterogeneity. We also observed for the first time the acceleration of both LCSC and dLCSC during chemotaxis caused by increasing local concentration in different gradients, which could only be realized through the microfluidic approach. The capability to analyze single cell chemotaxis under spatially controlled conditions provides a novel analytical platform for the study of cellular microenvironments and cancer cell metastasis.
Collapse
Affiliation(s)
- Heng Zou
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Wanqing Yue
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Wai-Kin Yu
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Dandan Liu
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Chi-Chun Fong
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Jianlong Zhao
- §State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Mengsu Yang
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Ryszawy D, Sarna M, Rak M, Szpak K, Kędracka-Krok S, Michalik M, Siedlar M, Zuba-Surma E, Burda K, Korohoda W, Madeja Z, Czyż J. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis 2014; 35:1920-30. [PMID: 24503443 DOI: 10.1093/carcin/bgu033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-β and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.
Collapse
Affiliation(s)
- Damian Ryszawy
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Michał Sarna
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Monika Rak
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Katarzyna Szpak
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Kvetoslava Burda
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| |
Collapse
|
6
|
Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, Klyachkin YM, Houghton P, Morris AJ, Vater A, Klussmann S, Kucia M, Ratajczak MZ. Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2013; 11:793-807. [PMID: 23615526 DOI: 10.1158/1541-7786.mcr-12-0600] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang L, Matsuda T, Raviraj V, Ching YW, Braet F, Nagai T, Soon LL. Imaging the dynamics of intracellular protein translocation by photoconversion of phamret-cybr/ROM. J Microsc 2010; 242:250-61. [PMID: 21118394 DOI: 10.1111/j.1365-2818.2010.03463.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cybr/Reduced On-random Motile (ROM) is a scaffold protein, containing a postsynaptic density protein-95/discs-large/ZO-1 (PDZ) domain, a LEU region and a PDZ domain binding region at the C-terminus. In the immune system, Cybr/ROM was found to localize in vesicles and at the plasma membrane, through interactions with cytohesin-1. In this investigation, we reported Cybr/ROM as occurring in vesicles, the cytoplasm and at membrane ruffles of H1299 lung cancer cells. Its localization at the ruffles was dependent on intact actin structures as indicated by latrunculin A treatment, which abrogated ruffle formation and staining of Cybr/ROM at the cells' periphery. Transfection of truncation mutants consisting of either the PDZ or LEU domain showed that the LEU domain of ROM was localized to membrane ruffles, vesicles and the cytoplasm, whereas, the PDZ domain localized to the membrane ruffles and cytoplasm only. There was therefore, domain/molecular segregation of Cybr/ROM in different cellular compartments. Cybr/ROM was subcloned into a plasmid carrying the photoactivation-mediated resonance energy transfer (Phamret) protein. The photoconversion experiments demonstrated the diffusion of ROM from the cytoplasm to the membrane ruffling sites and conversely from membrane ruffles to the cytoplasm. Large variances in the transport velocity of Cybr/ROM in the cytoplasm suggested that its movements were facilitated by other mechanisms in addition to diffusion.
Collapse
Affiliation(s)
- L Yang
- Australian Centre for Microscopy and Microanalysis (ACMM), Australian Microscopy and Microanalysis Research Facility (AMMRF), University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 2010; 103:715-26. [PMID: 20664600 PMCID: PMC2938263 DOI: 10.1038/sj.bjc.6605823] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). Methods: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. Results: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. Interpretation: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects.
Collapse
|
9
|
Basic fibroblast growth factor in the bone microenvironment enhances cell motility and invasion of Ewing's sarcoma family of tumours by activating the FGFR1-PI3K-Rac1 pathway. Br J Cancer 2010; 103:370-81. [PMID: 20606682 PMCID: PMC2920026 DOI: 10.1038/sj.bjc.6605775] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Ewing's sarcoma family of tumours (ESFT) is a malignant small round-cell tumour of the bone and soft tissues. It is characterised by a strong tendency to invade and form metastases. The microenvironment of the bone marrow is a large repository for many growth factors, including the basic fibroblast growth factor (bFGF). However, the role of bFGF in the invasive and metastatic phenotype of ESFT has not been investigated. Methods: The motility and invasion of ESFT cells were assessed by a wound-healing assay, chemotaxis assay, and invasion assay. The expression and activation of FGF receptors (FGFRs) in ESFT cell lines and clinical samples were detected by RT–PCR, western blotting, and immunohistochemistry. The morphology of ESFT cells was investigated by phase-contrast microscopy and fluorescence staining for actin. Activation of Rac1 was analysed by a pull-down assay. Results: bFGF strongly induced the motility and invasion of ESFT cells. Furthermore, FGFR1 was found to be expressed and activated in clinical samples of ESFT. Basic FGF-induced cell motility was mediated through the FGFR1–phosphatidylinositol 3-kinase (PI3K)–Rac1 pathway. Conditioned medium from bone marrow stromal cells induced the motility of ESFT cells by activating bFGF/FGFR1 signalling. Conclusion: The bFGF–FGFR1–PI3K–Rac1 pathway in the bone microenvironment may have a significant role in the invasion and metastasis of ESFT.
Collapse
|
10
|
Liu Y, Wang B, Wang J, Wan W, Sun R, Zhao Y, Zhang N. Down-regulation of PKCzeta expression inhibits chemotaxis signal transduction in human lung cancer cells. Lung Cancer 2008; 63:210-8. [PMID: 18701187 DOI: 10.1016/j.lungcan.2008.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 04/19/2008] [Accepted: 05/11/2008] [Indexed: 12/25/2022]
Abstract
Metastasis is the major cause of mortality in lung cancer. Chemotaxis plays a vital role in cancer cell metastasis. In the current study, we reported that epidermal growth factor (EGF) induced a robust chemotaxis of A549 and H1299 cells, two representative human non-small cell lung cancer (NSCLC) cells. Chelerythrine chloride, an inhibitor of all protein kinase C (PKC) isozymes, significantly reduced the chemotactic capacity of NSCLC cells while inhibitors of classical or novel PKC isozymes, such as Gö6976, calphostin C, or Gö6850, showed no effect, which suggested that atypical PKC might be involved in the chemotactic process of NSCLC cells. EGF-elicited translocation and phosphorylation of atypical PKCzeta, indicating that EGF could activate PKCzeta. Treatment with a PKCzeta specific inhibitor, a myristoylated pseudosubstrate, blocked the chemotaxis in a dose-dependent manner, further confirming that atypical PKCzeta was required for NSCLC chemotaxis. Mechanistic studies suggested that PKCzeta was regulated by phosphatidylinositol 3 kinase (PI3K)/Akt. Furthermore, PKCzeta-mediated chemotaxis by regulating actin polymerization and cell adhesion. Taken together, our study suggested that PKCzeta was required in NSCLC cell chemotaxis, thus could be used as a target to develop anti-lung cancer metastasis therapies.
Collapse
Affiliation(s)
- Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Chemical Biology, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Tchou-Wong KM, Fok SYY, Rubin JS, Pixley F, Condeelis J, Braet F, Rom W, Soon LL. Erratum to: Rapid chemokinetic movement and the invasive potential of lung cancer cells; a functional molecular study. BMC Cancer 2007. [PMCID: PMC1819389 DOI: 10.1186/1471-2407-7-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This is a correction of an earlier published article.
Collapse
|
12
|
Waxman S, Wurmbach E. De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genomics 2007; 8:243. [PMID: 17640361 PMCID: PMC1937003 DOI: 10.1186/1471-2164-8-243] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/18/2007] [Indexed: 11/22/2022] Open
Abstract
Background Tumorigenesis is associated with changes in gene expression and involves many pathways. Dysregulated genes include "housekeeping" genes that are often used for normalization for quantitative real-time RT-PCR (qPCR), which may lead to unreliable results. This study assessed eight stages of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) to search for appropriate genes for normalization. Results Gene expression profiles using microarrays revealed differential expression of most "housekeeping" genes during the course of HCV-HCC, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB), genes frequently used for normalization. QPCR reactions confirmed the regulation of these genes. Using them for normalization had strong effects on the extent of differential expressed genes, leading to misinterpretation of the results. Conclusion As shown here in the case of HCV-induced HCC, the most constantly expressed gene is the arginine/serine-rich splicing factor 4 (SFRS4). The utilization of at least two genes for normalization is robust and advantageous, because they can compensate for slight differences of their expression when not co-regulated. The combination of ribosomal protein large 41 (RPL41) and SFRS4 used for normalization led to very similar results as SFRS4 alone and is a very good choice for reference in this disease as shown on four differentially expressed genes.
Collapse
Affiliation(s)
- Samuel Waxman
- Mount Sinai School of Medicine, Department of Medicine, Division of Hematology/Oncology, New York, NY, USA
| | - Elisa Wurmbach
- Mount Sinai School of Medicine, Department of Medicine, Division of Hematology/Oncology, New York, NY, USA
| |
Collapse
|
13
|
Inoue A, Sawata SY, Taira K, Wadhwa R. Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci U S A 2007; 104:8983-8. [PMID: 17483488 PMCID: PMC1885614 DOI: 10.1073/pnas.0607595104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a loss-of-function screening system on the basis of intracellular expression of single domain antibodies. We demonstrate its use in identification of potential targets of metastasis of human cancerous cells. Randomized intracellular antibodies were expressed in highly metastatic cells, and a derivative pool of cells with loss of migration phenotype in chemotaxis assay was isolated. Isolation of antibodies from cells with loss of migration phenotype and identification of their target proteins revealed the involvement of the heterogeneous nuclear ribonucleoprotein K (hnRNP-K), a multifunctional signaling protein, in metastasis. Furthermore, we found that the cytoplasmic accumulation of hnRNP-K is crucial for its role in metastasis. The results demonstrate (i) the advantages of our functional interference screening over the gene-knockouts and gene-silencing, (ii) hnRNP-K as a potential target of metastasis, and (iii) a potential anti-metastasis peptide validated in in vitro cell migration assays.
Collapse
Affiliation(s)
- Atsushi Inoue
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan.
| | | | | | | |
Collapse
|
14
|
Soon L, Braet F, Condeelis J. Moving in the right direction-nanoimaging in cancer cell motility and metastasis. Microsc Res Tech 2007; 70:252-7. [PMID: 17279509 DOI: 10.1002/jemt.20411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although genetic and protein manipulations have been the cornerstone for the study and understanding of biological processes for many decades, complimentary nanoscale observations have only more recently been achieved in the live-imaging mode. It is at the nano measurement level that events such as protein-protein interactions, enzymatic conversions, and single-molecule stochastic behavior take place. Therefore, nanoscale observations allow us to reinterpret knowledge from large-scale or bulk techniques and gain new insight into molecular events that has cellular, tissue, and organismal phenotypic manifestations. This review identifies pertinent questions relating to the sensing and directional component of cancer cell chemotaxis and discusses the platforms that provide insight into the molecular events related to cell motility. The study of cell motility at the molecular imaging level often necessitates the use of devices such as microinjection, microfluidics, in vivo/intravital and in vitro chemotaxis assays, as well as fluorescence methods like uncaging and FRET. The micro- and nanofabricated devices that facilitate these techniques and their incorporation to specialized microscopes such as the multiphoton, AFM, and TIR-FM, for high-resolution imaging comprise the nanoplatforms used to explore the mechanisms of carcinogenesis. In real-time observations, within a milieu of physiological protein concentrations, true states of dynamic and kinetic fluxes can be monitored.
Collapse
Affiliation(s)
- Lilian Soon
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|